Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-509-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-509-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wildfire–atmosphere interaction index for extreme-fire behaviour
Tomàs Artés
CORRESPONDING AUTHOR
Joint Research Centre (JRC), European Commission, Ispra, Italy
Marc Castellnou
Grup de Recolzament a Actuacions Forestals (GRAF), Generalitat de Catalunya, Carretera de l'Autònoma, s/n. 08290 Cerdanyola del Vallès, Spain
Tracy Houston Durrant
Engineering Ingegneria Informatica S.p.A., European Commission, Rome, Italy
Jesús San-Miguel
Joint Research Centre (JRC), European Commission, Ispra, Italy
Related authors
No articles found.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
Marc Castellnou Ribau, Mercedes Bachfischer, Marta Miralles Bover, Borja Ruiz, Laia Estivill, Jordi Pages, Pau Guarque, Brian Verhoeven, Zisoula Ntasiou, Ove Stokkeland, Chiel Van Herwaeeden, Tristan Roelofs, Martin Janssens, Cathelijne Stoof, and Jordi Vilà-Guerau de Arellano
EGUsphere, https://doi.org/10.5194/egusphere-2025-1923, https://doi.org/10.5194/egusphere-2025-1923, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Firefighter entrapments can occur when wildfires escalate suddenly due to fire-atmosphere interactions. This study presents a method to analyze this in real-time using two weather balloon measurements: ambient and in-plume conditions. Researchers launched 156 balloons during wildfire seasons in Spain, Chile, Greece, and the Netherlands. This methodology detects sudden changes in fire behavior by comparing ambient and in-plume data, ultimately enhancing research on fire-atmosphere interactions.
Clément Bourgoin, René Beuchle, Alfredo Branco, João Carreiras, Guido Ceccherini, Duarte Oom, Jesus San-Miguel-Ayanz, and Fernando Sedano
EGUsphere, https://doi.org/10.5194/egusphere-2025-1823, https://doi.org/10.5194/egusphere-2025-1823, 2025
Short summary
Short summary
The Amazon forest faces increasing fires due to drier climate and human actions. In 2024, disturbances surged by 152 %, hitting a 20-year high. Forest damage from fires grew over 400 %, exceeding deforestation. Brazil and Bolivia were hit hardest. These fires released huge amounts of CO2, seven times more than before, pushing the Amazon towards a dangerous point. Urgent action is needed to prevent irreversible harm.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023, https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Short summary
This study conducts the first global evaluation of the latest generation of global climate models to simulate a set of fire weather indicators from the Canadian Fire Weather Index System. Models are shown to perform relatively strongly at the global scale, but they show substantial regional and seasonal differences. The results demonstrate the value of model evaluation and selection in producing reliable fire danger projections, ultimately to support decision-making and forest management.
Francesca Di Giuseppe, Claudia Vitolo, Blazej Krzeminski, Christopher Barnard, Pedro Maciel, and Jesús San-Miguel
Nat. Hazards Earth Syst. Sci., 20, 2365–2378, https://doi.org/10.5194/nhess-20-2365-2020, https://doi.org/10.5194/nhess-20-2365-2020, 2020
Short summary
Short summary
Forecasting of daily fire weather indices driven by the ECMWF ensemble prediction system is shown to have a good skill up to 10 d ahead in predicting flammable conditions in most regions of the world. The availability of these forecasts through the Copernicus Emergency Management Service can extend early warnings by up to 1–2 weeks, allowing for greater proactive coordination of resource-sharing and mobilization within and across countries.
Cited articles
Artés, T., Oom, D., De Rigo, D., Durrant, T. H., Maianti, P., Libertà,
G., and San-Miguel-Ayanz, J.: A global wildfire dataset for the analysis of
fire regimes and fire behaviour, Scientific Data, 6, 1–11, 2019. a
Bagley, R. B. and Clements, C. B.: Extreme fire weather associated with
nocturnal drying in elevated coastal terrain of California, Mon. Weather
Rev., 149, 2497–2511, 2021. a
Balch, J., Bradley, B., Abatzoglou, J., Nagy, R., Fusco, E., and Mahood, A.:
Human-started wildfires expand the fire niche across the United States,
P. Natl. Acad. Sci. USA, 114, 2–946, 2017. a
Baptiste Filippi, J., Bosseur, F., Mari, C., Lac, C., Le Moigne, P., Cuenot,
B., Veynante, D., Cariolle, D., and Balbi, J.-H.: Coupled atmosphere-wildland
fire modelling, J. Adv. Model. Earth Sy., 1, 11, https://doi.org/10.3894/JAMES.2009.1.11, 2009. a
Boschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M., and Humber,
M. L.: Global validation of the collection 6 MODIS burned area product,
Remote Sens. Environ., 235, 111490, https://doi.org/10.1016/j.rse.2019.111490, 2019. a
Bowman, D. M., Williamson, G. J., Abatzoglou, J. T., Kolden, C. A., Cochrane,
M. A., and Smith, A. M.: Human exposure and sensitivity to globally extreme
wildfire events, Nature Ecology & Evolution, 1, 1–6, 2017. a
Byram, G. M.: Atmospheric conditions related to blowup fires. Station Paper SE-SP-35, Asheville, NC: USDA-Forest Service, Southeastern Forest Experiment Station. 35, 1–36, https://www.fs.usda.gov/treesearch/pubs/45778 (last access: 11 February 2022), 1954. a
Comissão Técnica Independente: Análise e apuramento dos factos relativos aos incêndios que
ocorreram em Pedrógão Grande, Castanheira de Pêra, Ansião, Alvaiázere,
Figueiró dos Vinhos, Arganil, Góis, Penela, Pampilhosa da Serra, Oleiros e
Sertã entre 17 e 24 de junho de 2017, Comissão Técnica Independente,
Assembleia da Républica, Lisboa,
https://www.esquerda.net/sites/default/files/relatoriocti12out2017.pdf (last access: 10 February 2022),
2017. a, b, c
Deeming, J. E., Burgan, R. E., and Cohen, J. D.: 1977. The national fire-danger rating system, 1978 (Vol. 39), Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1977.
Defourny, P., Kirches, G., Brockmann, C., Boettcher, M., Peters, M., Bontemps,
S., Lamarche, C., Schlerf, M., and Santoro, M.: Land cover CCI, Product User
Guide Version, 2, https://www.esa-landcover-cci.org/?q=webfm_send/84 (last access: 11 February 2022), 2012. a
Delicado, N. T. S. and Gomes, A.: O GRANDE INCÊNDIO FLORESTAL DE PEDROGÃO GRANDE Análise Crítica, https://www.researchgate.net/profile/Nuno-Delicado/publication/319839493_O_Grande_Incendio_Florestal _de_Pedrogao_Grande/links/59bd712ba6fdcca8e567e2fc/O-Grande-Incendio-Florestal-de-Pedrogao-Grande.pdf
2017. a
Duane, A., Castellnou, M., and Brotons, L.: Towards a comprehensive look at
global drivers of novel extreme wildfire events, Climatic Change, 165, 1–21,
2021. a
Forthofer, J., Shannon, K., and Butler, B.: Simulating diurnally driven slope winds with WindNinja. In In: Proceedings of 8th Eighth Symposium on Fire and Forest Meteorology, October 13–15 2009, Kalispell, MT, Boston, MA: American Meteorological Society, 13 pp., https://ams.confex.com/ams/8Fire/techprogram/paper_156275.htm (last access: 11 February 2022), 2009. a
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, 2019. a
Giglio, L., Justice, C., Boschetti, L., and Roy, D.: MCD64A1 MODIS/Terra+ Aqua
Burned Area Monthly L3 Global 500 m SIN Grid V006, NASA EOSDIS
Land Processes DAAC: Sioux Falls, SD, USA, [data set], https://doi.org/10.5067/MODIS/MCD64A1.006, 2015. a
Keetch, J. J. and Byram, G. M.: A drought index for forest fire control,
vol. 38, US Department of Agriculture, Forest Service, Southeastern Forest
Experiment, available at: https://www.fs.usda.gov/treesearch/pubs/40 (last access: 11 February 2022), 1968.
Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tence, F., Bekki, S., Bourassa, A., Rieger, L., Zawada, D., Jumelet, J., and Godin-Beekmann, S.: The 2019/20
Australian wildfires generated a persistent smoke-charged vortex rising up to
35 km altitude, Communications Earth & Environment, 1, 1–12, https://doi.org/10.1038/s43247-020-00022-5, 2020. a
KingaD, A.: A method for stochastic optimization, Anon.
InternationalConferenceon Learning Representations, SanDego, arXiv [preprint], arXiv:1412.6980
2015. a
Kraskov, A., Stögbauer, H., and Grassberger, P.: Estimating mutual
information, Phys. Rev. E, 69, 066138, https://doi.org/10.1103/PhysRevE.69.066138, 2004. a
Lareau, N. P., Nauslar, N. J., and Abatzoglou, J. T.: The Carr Fire Vortex: A
Case of Pyrotornadogenesis?, Geophys. Res. Lett., 45,
13107–13115, https://doi.org/10.1029/2018GL080667,
2018b. a
Leach, R. N. and Gibson, C. V.: Assessing the Potential for Pyroconvection and
Wildfire Blow Ups, Journal of Operational Meteorology, 9, 47–61, https://doi.org/10.15191/nwajom.2021.0904, 2021. a, b, c, d
Lombardo, K. A. and Colle, B. A.: Convective storm structures and ambient
conditions associated with severe weather over the northeast United States,
Weather Forecast., 26, 940–956, 2011. a
Mandel, J., Beezley, J. D., and Kochanski, A. K.: Coupled atmosphere-wildland
fire modeling with WRF-fire, arXiv [preprint],
arXiv:1102.1343, 2011. a
McArthur, A.: Fire behaviour in eucalyptus forests, vol. 107, Commonw. Aust.,
Dep. Nat. Devel., Forest and Timber Bureau, Canberra, Leaflet n107, 36 pp., 1967. a
McRae, R. H. D., Sharples, J. J., and Fromm, M.: Linking local wildfire dynamics to pyroCb development, Nat. Hazards Earth Syst. Sci., 15, 417–428, https://doi.org/10.5194/nhess-15-417-2015, 2015. a
Mell, W., Jenkins, M. A., Gould, J., and Cheney, P.: A physics-based approach
to modelling grassland fires, Int. J. Wildland Fire, 16,
1–22, 2007. a
Morvan, D. and Frangieh, N.: Wildland fires behaviour: wind effect versus
Byram’s convective number and consequences upon the regime of propagation,
Int. J. Wildland Fire, 27, 636–641, 2018. a
Pausas, J. G. and Keeley, J. E.: A burning story: the role of fire in the
history of life, BioScience, 59, 593–601, 2009. a
Pausas, J. G. and Keeley, J. E.: Epicormic resprouting in fire-prone
ecosystems, Trends Plant Sci., 22, 1008–1015, 2017. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Pinto, M. M., DaCamara, C. C., Hurduc, A., Trigo, R. M., and Trigo, I. F.:
Enhancing the fire weather index with atmospheric instability information,
Environ. Res. Lett., 15, 0940b7, https://doi.org/10.1088/1748-9326/ab9e22,
2020. a
Pirsko, A. R., Sergius, L. M., and Hickerson, C. W.: Causes and behavior of a
tornadic fire-whirlwind, Res. Note PSW-RN-061, Berkeley, CA, US Department of
Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment
Station, 61, 13 pp., available at: https://www.fs.usda.gov/treesearch/pubs/42171 (last access: 10 February 2022), 1965. a
Potter, B. E.: Quantitative Evaluation of the Haines Index’s Ability to
Predict Fire Growth Events, Atmosphere, 9, 177, https://doi.org/10.3390/atmos9050177, 2018b. a
Ross, B. C.: Mutual information between discrete and continuous data sets, PloS
One, 9, 1–5, https://doi.org/10.1371/journal.pone.0087357, 2014. a
Rothermel, R. C.: A mathematical model for predicting fire spread in wildland fuels, Res. Pap. INT-115, Ogden, UT: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station, 40 pp., available at: https://www.fs.usda.gov/treesearch/pubs/32533
(last access: 10 February 2022), 1972. a
San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., Giovando, C., Boca, R., Sedano, F., Kempeneers, P., McInerney, D., Withmore, C., Santos de Oliveira, S., Rodrigues, M., Durrant, T., Corti, P., Oehler, F., Vilar, L., and Amatulli, G.: Comprehensive
monitoring of wildfires in Europe: the European forest fire information
system (EFFIS), in: Approaches to managing disaster-Assessing hazards,
emergencies and disaster impacts, IntechOpen, https://doi.org/10.5772/28441, 2012. a
San-Miguel-Ayanz, J., Oom, D., Artes, T., Viegas, D., Fernandes, P., Faivre,
N., Freire, S., Moore, P., Rego, F., and Castellnou, M.: Forest fires in
Portugal in 2017, in: Science for Disaster Risk Management 2020: acting
today, protecting tomorrow, edited by: Casajus Valles, A., Marin Ferrer, M.,
Poljansek, K., and Clark, I., Publications Office of the European Union,
Luxembourg, https://doi.org/10.2760/438998, 2019.
a
Shi, Y., Matsunaga, T., Saito, M., Yamaguchi, Y., and Chen, X.: Comparison of
global inventories of CO2 emissions from biomass burning during 2002–2011
derived from multiple satellite products, Environ. Pollut., 206,
479–487, 2015. a
Short, K. C.: Spatial wildfire occurrence data for the United States,
1992–2015, Forest Service Research Data Archive [data set],
https://doi.org/10.2737/RDS-2013-0009.4, 2017. a
Sullivan, A. L.: Inside the inferno: fundamental processes of wildland fire
behaviour, Current Forestry Reports, 3, 150–171, 2017. a
Van Wagner, C. E.: Structure of the Canadian forest fire weather index,
vol. 1333, Environment Canada, Forestry Service, https://cfs.nrcan.gc.ca/publications?id=19927 (last access: 10 February 2022), 1974. a
Williams, E. and Renno, N.: An analysis of the conditional instability of the
tropical atmosphere, Mon. Weather Rev., 121, 21–36, 1993. a
Short summary
During the last 20 years extreme wildfires have challenged firefighting capabilities. Several fire danger indices are routinely used by firefighting services but are not suited to forecast convective extreme wildfire behaviour at the global scale. This article proposes a new fire danger index for deep moist convection, the extreme-fire behaviour index (EFBI), based on the analysis of the vertical profiles of the atmosphere above wildfires to use along with traditional fire danger indices.
During the last 20 years extreme wildfires have challenged firefighting capabilities. Several...
Altmetrics
Final-revised paper
Preprint