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Abstract. During the last 20 years extreme wildfires have
challenged firefighting capabilities. Often, the prediction of
the extreme behaviour is essential for the safety of citizens
and firefighters. Currently, there are several fire danger in-
dices routinely used by firefighting services, but they are not
suited to forecast extreme-wildfire behaviour at the global
scale. This article proposes a new fire danger index, the
extreme-fire behaviour index (EFBI), based on the analysis
of the vertical profiles of the atmosphere above wildfires as
an addition to the use of traditional fire danger indices. The
EFBI evaluates the ease of interaction between wildfires and
the atmosphere that could lead to deep moist convection and
erratic and extreme wildfires. Results of this research through
the analysis of some of the critical fires in the last years show
that the EFBI can potentially be used to provide valuable in-
formation to identify convection-driven fires and to enhance
fire danger rating schemes worldwide.

1 Introduction

Fires have naturally occurred in nearly all world biomes,
shaping ecosystems and landscapes, but are intrinsically
linked to human activities. As humans spread to colonize
most regions of the world, they brought fire with them and
used it as a tool in agriculture and cattle-raising activities.
Currently, over 90 % of the fires that occur in the world are
caused by humans, deliberately or accidentally (Balch et al.,
2017; Short, 2017; San-Miguel-Ayanz et al., 2012). In most
regions of the world the most prominent fire management
policy is that of fire exclusion. Fires that are purposely or ac-
cidentally started affect human assets and are thus controlled

and extinguished as fast as possible. Only fires in very high
latitudes, where human dwellings do not exist, are left to burn
naturally. In the context of this paper we use the term wild-
fires, referring to those fires that escape beyond human con-
trol and cause damage to human lives and property. Nowa-
days, it is estimated that about 400 million hectares of natural
and agricultural lands are burnt annually, although it is rec-
ognized that this figure is likely a gross underestimate of the
total area burnt in reality (Boschetti et al., 2019). Wildfires
are responsible for vast economic and environmental dam-
age, the loss of human lives, and about 17 % of the global
CO2 (Shi et al., 2015; Friedlingstein et al., 2019) emissions.
Most wildfires occur in the vicinity of humans, as they are
caused by humans, and thus they affect people and human
assets in the area where they occur. In Europe, this intermin-
gling of human dwellings and natural areas is referred to as
the wildland–urban interface (WUI) and corresponds to the
area where most fires and burnt areas occur.

The damage caused by fires in the WUI is thus much
greater than that of fires occurring in remote areas due to
the high adaptability of ecosystems in those areas (Pausas
and Keeley, 2009, 2017). In recent years, the occurrence of
extreme-fire seasons has increased dramatically in many re-
gions of the world, being associated in most cases with the ef-
fect that climate change is already posing on wildfire regimes
and wildfire behaviour. Examples of these extreme wild-
fires were those occurring in Indonesia (2015), Chile (2016),
California (USA, 2017, 2018, and 2020), Canada (2017),
Portugal (2017), California (2018), Greece (2018), Aus-
tralia (2019), Siberia (2019), Argentina (2021), Brazil, Bo-
livia, and Paraguay (2019). Common to these events was the
explosive behaviour of the single fires, which resulted in the
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loss of many lives and huge economic damage. Several en-
tities reported and analysed these wildfires that interact with
the atmosphere (Delicado and Gomes; Comissão Técnica In-
dependente, 2017), increasing wind speed and causing sud-
den wind direction changes and local fire tornadoes (Lareau
et al., 2018b; Pirsko et al., 1965) and vortexes (Khaykin et al.,
2020).

Often, the fire management agencies in these countries
make use of past fire history to analyse the potential be-
haviour of future wildfires. Fires are characterized by their
rate of spread and fire intensity as well as the weather and
fuel conditions when they occurred. One of the most com-
monly used fire danger indices is the Canadian Forest Fire
Weather index (Van Wagner, 1974); this is currently used in
many countries around the world and even at the global scale
(Vitolo et al., 2020). Other common fire danger indices are
the Australian McArthur, the US National Fire Danger Rat-
ing System (NFDRS), or the Ketch–Byram drought index.
Most of these indices provide reasonable information on the
potential of a wildfire to spread and cause damage. However,
these indices do not evaluate the context of the atmosphere
around the fire.

Wildfires are phenomena driven by fuel conditions, topog-
raphy, and weather. Fuel conditions are determined by rain-
fall, temperature, and relative humidity among others factors.
Some of these factors, such as wind and rainfall, are very dy-
namic in time, while others are static and characterize the lo-
cal fire behaviour, such as topography. The behaviour of ex-
treme fires, which prevents the evacuation of the affected ar-
eas and the possibility of fire extinction, is often related to the
interaction of the wildfire dynamics and the conditions of the
atmosphere around it (also known as coupled effects). There
are multiple factors that define the fire spread behaviour. The
relevance of a given factor as the most important or domi-
nant for the spread sometimes defines the type of fire. One
single fire event may transition from one type to another. For
instance, examples of these types are fuel-dominated fires or
wind-driven fires. In this work we will refer to fire driven by
convection when convection is an important driving factor of
the fire spread.

A first approximation to take into account regarding the
atmospheric instability around wildfires was the Haines In-
dex (Haines and Service, 1988), which is usually computed
between two different heights of the atmosphere above the
fire. In cases of extreme-wildfire events, the Haines Index
(Potter, 2018a) can identify dangerous fire spread conditions
by using values of temperature and humidity at different el-
evations. Although the index was successfully used in large
fire episodes in the USA (Potter, 2018b), it failed to explain
or predict the behaviour of extreme fires that have happened
recently (Pinto et al., 2020).

The main objective of our work is to evaluate the proposed
fire danger index (extreme-fire behaviour index, EFBI),
which considers deep moist convection, as this is not usu-

ally taken into account in most traditional fire danger rating
indices applied at the global scale.

In some cases, the Haines Index saturates (Potter, 2018a),
remaining at its maximum value, as in the case of the fire
in Pedrógão Grande, Portugal, in 2017 (San-Miguel-Ayanz
et al., 2019). The aim of the EFBI is to summarize the factors
that may imply a change in fire behaviour and to determine
how easy it is for the change in fire behaviour to happen. Sev-
eral authors used factors for storm forecasting such as the
convective available potential energy (CAPE) and convec-
tive inhibition (CIN) to address fire behaviour (Moncrieff and
Miller, 1976). Conditioned atmosphere stability was often a
common factor of extreme-wildfire events. Consequently, in-
creasing the temperature and/or humidity at the surface could
lead to atmospheric instability, causing local, dangerous, and
unexpected conditions.

Wildfire behaviour can be modelled by forest fire simula-
tors, which provide a forecast of the fire intensity and spread.
These simulators are based on semi-empirical (Rothermel,
1972) or physical (Mell et al., 2007) models and can
be coupled with atmospheric simulation models (WRF-
Fire, Weather Research and Forecasting, Mandel et al.,
2011; ForeFire–Meso-NH, mesoscale non-hydrostatic, Bap-
tiste Filippi et al., 2009) or wind field production models
such as WindNinja (Forthofer et al., 2009) to assess wild-
fire behaviour. However, as the numbers of coupled models
grow, the simulation becomes computationally more expen-
sive, and it is difficult to gather the required input data with-
out strong uncertainties. Therefore, fire danger ratings and
the experience of meteorologists, civil protection officers,
and fire analysts play an important role in decision making.
Moreover, it is not feasible to use coupled models for sim-
ulating all wildfires detected at the global scale. The capac-
ity to forecast the conditions under which these critical fires
can develop is thus of paramount importance and essential
for the prevention of damage to the population and human
assets. We hereby present a fire danger index referred to as
the extreme-fire behaviour index (EFBI), which looks into
the ease of interaction of the wildfire dynamics with the sur-
rounding atmosphere, targeting deep moist convection, and
determines if the behaviour of an ignited fire can become
critical, allowing it to develop into an extreme wildfire (Du-
ane et al., 2021). The size distribution of the fire events is
unbalanced, being more common in small-size fires with an
expected fire spread speed. Although less frequent, there is a
set of fire events with high fire spread that overwhelms fire-
fighting capabilities and reaches larger amounts of burnt area.
A subset of these fires, considered extreme fires, interact with
the atmosphere around them, leading to unexpected or er-
ratic behaviour. Among these extremes fires, some are char-
acterized by the occurrence of pyrocumulus (pyroCu) and
pyrocumulonimbus (pyroCb) clouds, analysed in Lareau and
Clements (2016). The occurrences of these phenomena led
to works that analysed the pyrocumulus (Tory et al., 2018)
clouds and to the assessment of the potential of pyroconvec-
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tion (Leach and Gibson, 2021; Tory and Kepert, 2021) using
different approaches, for instance, including the moisture and
heat released by the fire (Potter, 2005). In the last decades the
amount of extreme fires has become very relevant, and it has
increased awareness about fires as dangerous natural hazards.
Besides, the relation of climate change with those events has
been studied (Di Virgilio et al., 2019) relying on regional
records (McRae et al., 2015) (for Australia) and using well-
known fire danger indices such as the McArthur Forest Fire
Danger Index (FFDI) (McArthur, 1967) and Haines Index
(Haines and Service, 1988). At the global scale, the existing
records of fire data are quite fragmented, and there is much
more uncertainty when compared to using methods and data
suitable for specific regions as mentioned in fire-related stud-
ies at the global scale such as Bowman et al. (2017).

We used a global wildfire database (GlobFire; Artés et al.,
2019) and ERA5 weather reanalysis data (Hersbach, 2016)
to compute the EFBI over a set of wildfires. Our approach is
suited to being computed at the global scale using operational
weather forecast models to determine when an ongoing fire
can develop extreme-wildfire behaviour due to deep moist
convection. First, Sect. 2 describes the proposed index, the
workflow for wildfire event selection from the global wild-
fire database and the retrieval of the meteorological data, and
the description of three study cases. The results of the EFBI
for the study cases are explained in Sect. 3. Finally, the con-
clusions are presented in Sect. 4.

2 Data and methods

The proposed EFBI relies on the premise that the atmosphere
can cause a wildfire to be and become convection driven or
that the wildfire can disrupt the atmosphere, creating a con-
vective trend. The EFBI is based on well-known indicators
of convection such as Eqs. (2) and (3), which are also used
in Potter (2005) to demonstrate the effects of the increased
moisture due to the water released during the fire combus-
tion or the warmed air at the ground surface. In addition
Lareau and Clements (2016) measured and analysed atmo-
spheric data, using lidar and radar, to study pyroCu and py-
roCb. Lareau and Clements (2016) showed how the plume
condensation level is higher than the ambient lifting conden-
sation level (LCL). Besides, they suggested using the convec-
tive condensation level (CCL) for estimation of the convec-
tive temperature for a best representation of the plume con-
densation level. Also, Tory et al. (2018) proposed a method to
estimate the firepower threshold required for pyroCb poten-
tial. Leach and Gibson (2021) proposed a parcel-based model
to assess how the atmosphere will affect a growing wildfire
plume, including heat and moisture released from the fire. In
this work we propose a method which computes the current
convection trend of the atmosphere using CAPE and CIN,
then estimates the temperature required to have a CIN >= 0
in the parcel, also known as convective temperature, which

can be obtained when computing the CCL. Finally, we com-
pute the convective energy difference between the modified
profile and the original one. Most of the past works were
based on data gathered on the field, study cases, or a database
classified as potential pyroCu or pyroCb (as in Di Virgilio
et al., 2019). In this case, we do not estimate the heat and
the water release of the fire (as in Leach and Gibson, 2021),
but we evaluate the information contribution from a relatively
simple approach to estimate moist convection, which is fea-
sible to be applied with global weather forecasts. Therefore,
we assume that the difference between the surface tempera-
ture and the convective temperature is a potential indicator
of a change in potential convective energy and can trigger
the change in fire behaviour. More physically detailed ap-
proaches have been proposed like the blowup (BU) 1T term
in Leach and Gibson (2021), and the 1Tf term of Tory et al.
(2018) has been proposed for pyroCb–pyroCu assessment or
plume dynamics, but they cannot be analysed at the global
scale with the available open datasets.

The extreme-fire behaviour index (EFBI) determines the
amount of increase in temperature at the surface required to
cause a null CIN and quantifies the change in the available
convective energy. The amount of change of convective en-
ergy per degree Celsius is used as indicator of ease of deep
moist convection.

The EFBI is computed as follows:

EFBI=
((CAPEP+CINP)− (CAPE+CIN))

1T
, (1)

CAPE=

Zn∫
Zf

g
(Tv,parcel− Tv,env)

Tv,env
dz, (2)

CIN=

Zf∫
Zbottom

g
(Tv,parcel− Tv,env)

Tv,env
dz, (3)

{1T ∈ R|(1T = TbottomConv− Tbottom)∧CIN≥ 0

∧1T ≥ 0} , (4)

where CAPE and CIN are defined by Eqs. (2) and (3) (Mon-
crieff and Miller, 1976; Williams and Renno, 1993) and 1T

is the change in temperature degrees required to achieve a
null or negative convective inhibition energy (CIN) (Eq. 4).
1T is obtained from the difference between the surface
temperature and the increased temperature. The increased
temperature is obtained from the CCL as stated in Lareau
and Clements (2016) as a more accurate way to estimate
the pyroCb–pyroCu initiation heights and implies CIN >=0.
CAPE and CIN are recomputed with the increased tempera-
ture (Tbottom+1T ) and called CAPEP and CINP, with CINP
being zero or greater than zero (no inhibition). Zn is the
height of the equilibrium level; Zf is the height of the level of
free convection (LFC); g is the acceleration due to gravity;
Tv,parcel is the virtual temperature of a given parcel; Tv,env
is the virtual temperature of the environment; Zbottom is the
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lower height; Tbottom is the temperature at the lower altitude;
and TbottomConv is the temperature at the lower altitude that
causes CIN >= 0.

In cases in which the atmosphere is already unstable, CIN
is equal to or greater than zero, being 1T = 0, the values
assigned to the index are the full integration of CAPE+CIN.

The EFBI is expressed in J kg−1 ◦C−1, which is the
amount of energy exchange per unit of mass and per degree
of temperature. The value can be used as an estimation of
potential wildfire–atmosphere interaction.

High EFBI values point to a sudden change of energy per
mass for a small temperature increase (low value of 1T and
high value of total convective energy). Under these condi-
tions, air can potentially move vertically, creating local con-
ditions which are not explicitly provided by meteorological
forecasts. When the values are low, the magnitude of the
change is small, and/or a higher temperature is required at
the surface to cause any change. This information is essen-
tial for firefighters, since local eddies and sudden weather
changes can occur and lead to very fast ember-spotting fire
spread, which creates dangerous and unpredictable condi-
tions for front line safety (Lareau et al., 2018a).

To test the EFBI, we propose two machine learning ap-
proaches, a decision tree and a multilayer perceptron. The
EFBI and Canadian Forest Fire Weather index (FWI) were
used to evaluate the discriminatory potential between two
fire classes: small fires (500 ha during more than 1 d) and
large fires (10 000 ha in 1 d). Fire events were extracted from
the GlobFire database. The fire size thresholds were chosen
to consider both average and extreme-fire spread. Small-size
fires were selected in the same zones where the large fires
were selected but in a different year and always outside the
area burnt by the large fires. Using the same zone for both
sets of fires, we limited the variability in fuel and topog-
raphy, ensuring that the differences in fire behaviour were
due to the meteorological conditions under which the fires
evolved. Often small fires are caused by fire spotting or as
the result of agricultural practices. To avoid these types of
fires, it was required that the fires had more than 90 % of the
burnt area in wildland vegetation. The final selection was a
total of 445 cases, with 223 fires larger than 10 000 ha and
222 fires smaller than 500 ha. Figure 1 shows the distribution
and the year of each fire at the global scale.

For each fire, the Canadian Forest Fire Weather index
(FWI) and all its components were retrieved from the
ECMWF ERA5 dataset at 0.25◦ resolution (Vitolo et al.,
2020). In order to differentiate between agricultural fires or
wildfires, the land cover from the Climate Change Initiative
(CCI; Defourny et al., 2012) was used, requiring that 90 %
of the burnt area was forest or shrubs and thus avoiding fires
in crops or agricultural areas. For each selected fire, tempera-
ture, relative humidity, and wind profile were retrieved for all
the heights above the wildfire event using the application pro-
gramming interface (API) of the Climate Data Store (CDS)
for the ERA5 reanalysis dataset (Hersbach, 2016). Then, the

EFBI and the vertical profiles for every event were computed,
producing skew-t plots for every time step and generating
plots with the time evolution of the index and the factors used
for the computation of the EFBI. The aim of the skew-t plots
is to visualize the ease with which the fire may become con-
vection driven given an atmosphere context.

All the parameters obtained from the FWI and EFBI were
used to compute the mutual information (MI) of the wildfires
that spread more than 10 000 ha in 1 d (large) or less than
500 ha in more than 1 d (small). The MI has been chosen to
quantify the individual importance of the variables gathered
for each fire (such as the FWI components and the EFBI)
in relation to the speed of the spread of the fire, which is
categorized into either small- or large-fire events. The FWI
was computed for an entire day, and the EFBI was computed
with 1 h time steps. Therefore, the values of the EFBI were
aggregated using the minimum, the maximum, and the aver-
age value for the time window. In addition, the date associ-
ated with the burnt area was based on GlobFire, which uses
the burnt area product of MODIS MCD64A1 (Giglio et al.,
2015). Due to clouds or dense smoke plumes, it is possible
that a fire might have not been detected until some days after
its ignition. To account for this delay, the initial day of the
time window for the FWI and EFBI was decreased by 2 d.
The maximum value of the FWI and its components during
the time window were selected. When applying the FWI at
the global scale its values are not comparable between differ-
ent locations. Despite that fact, the percentiles of the FWI can
provide information about the fire danger for a given area.
Therefore, the values of the FWI were used in percentile val-
ues, computed for the period 1979 to 2019 of the same week
of the year.

In addition to the proposed EFBI and FWI, cHaines (con-
tinuous Haines Index) is also computed using the same
ERA5 data used for the EFBI. For the temperature depression
term, we used the temperature at 850 and 700 hPa. For the
dew point depression term, we used temperature at 850 hPa
and dew point temperature at 850 hPa.

The MI for continuous values was computed using the
method described in Kraskov et al. (2004) and Ross (2014)
and using Pedregosa et al. (2011). These methods use a
nearest-neighbour approach with a random initialization; for
that reason, 10 additional attributes were added to the analy-
sis with random values to evaluate the noise of the MI. The
MI computation was done 1000 times. The computations of
the MI were initialized with random values to evaluate the
noise of the attributes for the MI computation.

In addition, the behaviour of the EFBI was shown analysed
for three different study cases. First, we analysed the fire in
Pedrógão Grande, Portugal, in 2017 using high-spatial- and
high-temporal-resolution fire perimeters. Next, the EFBI was
computed with forecast data using for the analysis the daily
fire perimeters of the wildfire that took place in Roboré, Bo-
livia, in 2019. Lastly, we studied the spatial distribution of
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Figure 1. Location of the wildfires coloured by year. Fast fires and slow fires are depicted with triangles and circles respectively.

the EFBI for the set of extreme wildfires in the southeastern
coast of Australia at the end of 2019.

3 Results

EFBI results are evaluated by combining the resulting values
of the EFBI and FWI (Vitolo et al., 2020) to predict extreme-
fire behaviour observed in GlobFire using weather data from
ERA5 (Hersbach, 2016). In this work, a machine learning
approach is used to check the feasibility of using the EFBI
to predict extreme-wildfire behaviour at the global scale. In
addition, the EFBI values are shown for several study cases.

In Fig. 2, we illustrate how EFBI components behave for a
given vertical profile at a given time step. The blue area is the
convective inhibition (CIN), and the red area (from the point
for the level of free convection (LFC) to the equilibrium level
(EL)) is the convective available energy (CAPE). When CIN
values are low and CAPE values are high, wildfires can be
convection driven at high altitudes. A temperature increase
at the surface can reduce CIN values and increase CAPE val-
ues. Figure 2 shows a skew-t plot with the parameters used
to compute the EFBI. The figure shows the vertical profile
of the atmosphere with the temperature as a red line and the
temperature dew point in green at different altitudes (right
vertical axis). These parameters are enough to compute the
amount of work caused by the buoyancy force. By modi-
fying temperature and dew point temperature the buoyancy
changes and, consequently, the trend of the air to move. Fig-
ure 2 shows how a change of 14 ◦C at the surface tempera-
ture causes a considerable change in CAPE and CIN values
with a CAPEP close to 2443 J kg−1 and a low value of CINP.
The temperature increase, 14 ◦C, is only used, as is an in-
dicator of the moist-convection trend by an increase of heat
at the surface, since the biomass burnt, heat, and gases re-
leased by the fire are not estimated; the heat dissipation is not

simulated or estimated (Byram, 1954; Morvan and Frangieh,
2018; Tory and Kepert, 2021). Therefore, the amount of work
due to the buoyancy change passes from 34 J kg−1 (CAPE)
to 2443 J kg−1 (CAPEP) when CIN is not an inhibition, i.e.
passing from a negative value to a positive value. This leads
to a total change of 233.531 J kg−1 ◦C−1 for each degree
increase at the surface. The CAPEP is around 2443 J kg−1

when thunderstorms often exceed CAPE values of 1000 and
5000 J kg−1 in extreme cases (Lombardo and Colle, 2011).
The increased temperature (1T ) can not be understood as a
real temperature increase but as an indicator, since it would
not be realistic that an entire parcel receives enough energy
to increase the surface temperature instantly being isolated
from the neighbouring parcels and upper layers. In this work,
we assume that the EFBI can be an indicator of ease of deep
moist convection, but we do not take into account all com-
plex factors involved in fire behaviour and atmosphere in-
teractions (Sullivan, 2017). Figure 2 also illustrates how the
CCL is used as suggested by Lareau and Clements (2016)
as a better estimation of the convective temperature for a
best representation of the plume condensation level. From
the CCL temperature, following the dry adiabatic up to the
surface, we obtain the temperature which would neutralize
CIN and increase considerably CAPE.

It is worth mentioning that CIN values at lower heights
are also related to the temperature dew point at the surface
(green line at 1000 hPa). With a constant temperature at the
surface and an increase of dew point temperature, the CIN is
reduced, and therefore the EFBI increases. This may happen
with a sudden increase of humidity at the surface, without
any increase of temperature (already taken into account in
the computation of the EFBI).

The timeline of the EFBI for the wildfire in Sala (2014,
Sweden) is shown in Fig. 3. The time period when the fire
had an extreme behaviour, as documented by firefighters
on the ground, is delimited with vertical dashed lines. In
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Figure 2. Sample of one skew-t plot for a given time step for the
wildfire that took place in La Torre de l’Espanyol, Spain, and burnt
6625 ha from 26 to 27 June 2019.

this period, the modified convective available energy reaches
values above 2500 J kg−1, and the index values are near
800 J kg−1 ◦C−1.

The EFBI is computed for each time step, as explained
in the previous illustrative example, for all the cases ex-
tracted from GlobFire database using the method described
in Sect. 2. Regarding the information of the different features
used to discriminate small from large fires, Fig. 4 shows the
values of the MI mean and standard deviations of each at-
tribute for the 1000 iterations. The use of only the minimum,
maximum, or average of the EFBI provided more informa-
tion to separate small from large fires than the percentile
and value of the drought code (DC) of the FWI. Figure 4
does not show the discriminatory power of all variables but
rather the amount of information with which each of the fac-
tors individually contributes to the classification between the
two classes. The EFBI on its own cannot easily discrimi-
nate between the classes without using factors included in
the computation of the FWI such as fine fuel moisture con-
tent (FFMC), duff moisture code (DMC), or drought code
(DC). The discriminatory potential between the two classes
using the EFBI is very low without using the FWI. Regarding
the MI of cHaines, the minimum value provides a consider-
able amount of information, more than the minimum value
of the EFBI. However, the maximum value of cHaines pro-
vides a very low amount of information when compared to
the maximum value of the EFBI, which provides valuable
information for the classification. That fact could point to a
potential saturation of cHaines, meaning that the maximum

value is not giving information about whether the fire is small
or large.

For instance, the EFBI can have high values after a rain-
fall event. It is thus important to stress that the EFBI be-
comes relevant when combined with the FWI components.
A decision tree based on information gain as the criteria was
used to show the relevance of the EFBI in discriminating
small fires from large fires. Figure 5 shows the decision tree,
which is based on entropy reduction with a maximum depth
of four levels (for visualizing purposes). The root uses the
daily severity rating (DSR), which is a transformation of the
FWI. At the second level, the maximum value of the EFBI is
used, before considering any of the FWI components such as
the percentiles of the initial spread index (ISI), the drought
code (DC), the built-up index (BUI), and the fine fuel mois-
ture content (FFMC). Therefore, the EFBI helps to reduce
the entropy when discriminating between the two classes at
the global scale, being more relevant than the ISI or DC per-
centile.

A machine learning approach was applied using a deci-
sion tree and a multilayer perceptron. Removing the maxi-
mum depth restriction to the decision tree and performing a
cross-validation of 1000 splits with 5 % of cases, as a test,
the average accuracy was 65.13 % with a standard error of
7.29 %. The accuracy was computed using scikit-learn con-
sidering the accuracy of the percentage of each sample with
which each label is correctly predicted.

Applying a multilayer perceptron with 3 hidden layers
of 300 neurons each with ReLU (rectified linear unit) ac-
tivation and using an Adam solver (KingaD, 2015) opti-
mizer for training and the same parameters for a cross-
validation, an accuracy of 78.37 % (standard error of 1.85 %)
was reached. If the parameters related to the FWI were ex-
clusively used, the accuracy decreased to 60.75 % (standard
error of 2.24 %). Using FWI with cHaines raised the accu-
racy to 63.42 % (standard error of 4.12 %). All input values
have been normalized for the three cases (FWI, FWI+EFBI,
and FWI+ cHaines).

As previously mentioned in Sect. 2, the dataset used to test
the EFBI was obtained using a fully automated process. The
information regarding the fire behaviour was obtained from
GlobFire using SQL (Structured Query Language) queries.
The query guarantees that there are no fires happening in
a 2◦ radius around a detected fire during a time period of
30 d. During the cross-validation process, the wildfires that
were more frequently misclassified can be identified. When
looking at the first 50 wildfires that are often misclassified,
the proportion of the cases is very balanced between true
small- and large-fire cases. Assuming that such cases are a
source of noise and can be deleted from the dataset, the ac-
curacy rises to 80.30 % (standard error of 1.94 %). It should
be noted that some cases could be false positives or false neg-
atives. False positives could happen when a fire was burning
in a cloudy area for several days. Once the area is free of
clouds, the burnt area is detected for that day, even it was
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Figure 3. Sample of the timeline of the EFBI (right vertical axis) and the factors used (left vertical axis) for the wildfire in Sala (2014,
Sweden) that burnt close to 10 000 ha from 3 to 4 August 2014 (time period marked with vertical dashed lines). Horizontal axis is the
timeline using hourly steps in the format dd-mm hh. TOTALE=CIN+CAPE. TOTALEP=CINP+CAPEP.

Figure 4. Mutual information of the different attributes gathered for each fire regarding their tag as fast or slow fires. CH: cHaines.

burning for days before this day. False negatives may have
happened with re-ignitions of large fires. Besides, large fires
are not always convection driven or related to an unstable at-
mosphere. The current automated process to discriminate po-
tential large fires using the GlobFire database can be imple-
mented in near-real time, using weather forecast data, allow-
ing for the potential identification of dangerous convection-
driven fires in advance and thus increasing the wildfire dan-
ger rating. This, in turn, would increase preparedness for fire-
fighting procedures and enhance the safety of crews on the
ground. Additionally, the overall procedure in the discrimi-
nation of potential large fires can be improved if the dataset
is manually checked and the fire types are better defined.

3.1 Study cases

3.1.1 Pedrógão Grande, Portugal, 2017

This wildfire had one of the most severe fire behaviours in
Europe. The fire was ignited on 17 June and ran until 23 June.

Figure 6 shows an explosive expansion from 17 to 18 June,
which is followed by a constant but severe fire expansion.
For this analysis the fire perimeters made for a wildfire re-
port done by a technical commission (Comissão Técnica In-
dependente, 2017) were used as reference for the fire spread.

From 17 to 18 June there was an increase of burnt area
larger than 20 000 ha in 1 d.

Figure 7 shows the value of the EFBI and its compo-
nents during the entire month for the fires computed from the
ERA5 reanalysis; the two vertical dashed lines in the figure
delimit the duration of the fire. The EFBI shows that there is
a considerable potential for the interaction of the fire with the
atmosphere. In addition, during the days of the fire there was
a natural CAPE of nearly 5000 J kg−1 inhibited by a small
value of CIN. Increasing the temperature at the surface, re-
moving the inhibition, would produce a sudden convection.
The index values are close to a 250 J kg−1 ◦C−1 increase and
a total convective energy about 6000 J kg−1.

This case shows a natural tendency towards a convection-
driven behaviour that may be caused by the atmospheric in-
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Figure 5. Decision tree based on entropy reduction built with the 445 wildfire events (222 small and 223 large wildfires).

Figure 6. Time sequence of the wildfire which took place in Pedrógão Grande (Comissão Técnica Independente, 2017), Portugal, on
17 June 2017. The maximum speed line between time steps is shown with a black arrow. Background image © MapTiler (https:
//maptiler.com/copyright, last access: 15 March 2021). GWIS: Global Wildfire Information System.

stability itself, without the need for a considerable amount of
heat and/or an increase in relative humidity at the surface.

For this case study, detailed fire perimeters for each time
step were available, which made it possible to analyse the re-
lation between the maximum fire spread and the EFBI. Fig-

ure 8 shows a scatter plot where each point is a time step
given an EFBI value and the estimated maximum fire speed.
While a wide variety of values of the EFBI are shown for low
fire spread speed values, considerably higher EFBI values are
shown for high speed values, compared with the rest of the
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Figure 7. The EFBI and its components for the wildfire in Pedrógão Grande on June 2017 for the fire centroid (−8.2252, 39.952). Horizontal
axis is the timeline using hourly steps in the format dd-mm hh.

Figure 8. Scatter plot showing the maximum fire front speed and
the values of the EFBI for each time step with a logarithmic trend
line.

point cloud. However, there is a weak correlation between the
speed and the EFBI. It is worth mentioning that the blowup of
the wildfire took place at the beginning of the event; assum-
ing that the fire was in convection almost from the first time
steps, the EFBI and fire spread speed may not show a strong
correlation when looking at all the hourly time steps. How-
ever, Fig. 8 shows that, even with an ongoing convection-
driven fire, the atmosphere stability context computed from a
numeric model is still important, and speeds faster 1 km h−1

are only present when the EFBI is above 220.

3.1.2 Forecast use in Roboré, Bolivia, 2019

The values of the EFBI were computed using the ERA5 fore-
cast for the fire that took place in Roboré, Bolivia, in 2019.
This wildfire lasted 2 months and had a very variable fire be-
haviour. Figure 9 shows the daily burnt area for this wildfire
using the GlobFire database. However, the level of detail of
the fire mapping for this study case is not as accurate as in
the previous case shown in Fig. 6.

For this case, the EFBI was computed with three different
deterministic forecasts of ERA5 on 15 and 29 August and
3 September. During this wildfire, the EFBI forecasted dif-
ferent periods of extreme behaviour caused by moist convec-
tion, although the correlation was not as clear as in the case
shown in Sect. 3.1.1. For long duration wildfires that inter-

act with the atmosphere it can be assumed that once a wild-
fire interacts strongly with the atmosphere, the trends of the
EFBI are no longer valid, since they are based on a forecast
that does not include the interaction. However, in the above
case of Bolivia, our results show that, despite the wildfire–
atmosphere interactions, the overall moist convective trend
may remain important and the values of the EFBI can be rel-
evant for a second convection interaction. It is not feasible
to find a correlation between the fire spread and the EFBI
values in this case because the quality of the fire mapping is
daily, with a potential uncertainty of days of the maps. Also,
the weather forecast that has been computed previous to a
potential wildfire–atmosphere interaction may not depict the
atmosphere around the fire just after a wildfire–atmosphere
interaction.

Figure 10 shows the computation of the daily EFBI av-
erage joining the data from the different forecasts. In addi-
tion, the GlobFire database was retrieved and used to esti-
mate the maximum daily fire run. Since the daily burnt area
could have been mapped with some days of delay, an average
was applied to the maximum daily fire run using a time win-
dow of the 2 previous days. Figure 10 shows a peak of the
EFBI followed by another one which started on 16 August
and a third peak on 22 August. After the first peak, the max-
imum fire longitude of the daily burnt areas had increased
from 16 to 20 August, while the highest runs of the fire hap-
pened between 18 and 20 August; the fire activity has another
peak after 22 August, having two observed pyroCb clouds on
18 and 25 August. After 25 August, the EFBI trends seem
to be totally uncorrelated with the fire runs until 1 Septem-
ber. Afterwards, there is another peak on 7 September which
also seems to affect the fire runs, with two observed pyroCb
clouds on 7 and 8 September. Later, the EFBI and the max-
imum line length are again uncorrelated until 17 September
when there is again a relation at the last peak of the run, when
another pyroCb was observed.

An example of a pyroCb seen with Sentinel-2 is displayed
in Fig. 11, where parts of the plume are shown in white.
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Figure 9. Daily burnt area for the duration of wildfire in Roboré, Bolivia, in 2019. The maximum speed line between time steps is shown with
a black arrow. The missing days do not have any daily burnt area in GlobFire. Background image © MapTiler (https://maptiler.com/copyright,
last access: 18 March 2021). Please note that the date format in this figure is yyyy-mm-dd.

Figure 10. Maximum longitude of the daily burnt area and the EFBI and its components for the wildfire in Roboré, Bolivia, in 2019. Vertical
dashed red lines show when a pyroCb took place. Please note that the date format in this figure is yyyy-mm-dd.

3.1.3 Wildfires in Australia, 2019

The EFBI was computed with ERA5 reanalysis for this area
at the time of the fires showing very high values. Figure 12
shows the maximum values of the EFBI overlapped with the
active fires (thermal anomalies shown as black points) that
took place the next day.

It is worth mentioning that the assimilation system used to
generate the ERA5 reanalysis dataset could partially affect
the behaviour of the EFBI. In reanalysis, some of the con-
sequences of heat release from the fire could be taken into
account, while in the forecast for a given day those condi-
tions would not be considered.

4 Conclusions

This work demonstrates that simple metrics of the atmo-
sphere stability could provide valuable information for en-
hanced fire danger rating applied at the global scale, increas-
ing preparedness and improving the safety and efficiency of
firefighting. The EFBI could be used to detect days in which
fires could exhibit extreme behaviour on a global scale. On
those days, fires could add an unpredictable interaction with
an atmospheric vertical profile, increasing fire behaviour due
to moist convection. However, the EFBI is targeting only
deep moist convection and is subject to several factors which
could cause uncertainty due to the wildfire–atmosphere in-
teraction during a forecast and to the resolution of data used.
Also, convection-driven fires are not the only kind of fires
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Figure 11. Sentinel-2, natural colour and atmospheric penetration, from right to left from Sentinel-2 on 18 August. Roboré, Bolivia.

Figure 12. The EFBI from 28 to 30 December 2019 overlapped with the active fires (black dots) that took place the next day over southeastern
Australia. Please note that the date format used in this figure is dd/mm/yyyy.

that can exhibit extremely fast spreading. Despite this, the ap-
proach used to differentiate between fast- and slow-spreading
fires at the global scale demonstrates a potential use of the
EFBI combined with the FWI to forecast extreme-fire be-
haviour. Moreover, the data used for the vertical profiles
could be improved by estimating the surface temperature and
relative humidity at the surface using the altitude of the fire
even, and evaluating the air dryness at different levels.

The EFBI holds the potential to improve fire danger fore-
cast ratings applied at the global scale. The initial testing pre-
sented in this article reached a 78 % accuracy, discriminat-
ing the final size of fires between small (≤ 500 ha) and large
(≥ 10 000) at the global scale. Accuracy could be improved
by increasing the number of classes and using other input
factors to discriminate wind-driven fires in small bushes or
grass which can become large fires but have a low proba-
bility of becoming convection-driven wildfires or breaking
the atmosphere stability. These big fires are not discarded in
this work. For instance, dry and strong catabatic wind-driven

fires like those of the mistral (western Europe), Santa Ana
and Diablo winds (California), or Zonda wind (Argentina
and Chile) are not always fast wildfires caused by convec-
tion. These kinds of fires are not convection driven but are
extreme fires anyway and could reduce the accuracy reached
in this work. This might have influenced the study case in
Roboré, Bolivia, which generated several pyroCb clouds but
had also wind-driven fire spreads.

The EFBI can be computed at least twice per day at the
global scale with up to a 10 d forecast. For instance, using the
Global Forecast System (GFS) for a 10 d forecast at 0.25◦ of
spatial resolution (approximately 25 km), the computation of
the EFBI at the global scale took 4 h in a single node with
linear speed up, using multiple cores.

The EFBI has shown high discriminatory power of large
fires using ERA5 at 0.25◦ resolution at hourly steps and
GlobFire at 500 m with a temporal resolution of 1 d. It
showed a considerable relevance in the mutual information
and in the discriminative power with the decision tree. It
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should be noted that the training of the neural network with
only FWI values and its components, which are the fire dan-
ger indices most used worldwide, dropped the accuracy from
65.5 % to 58 %. Our results also highlight the relevance of the
GlobFire dataset in analysing fire behaviour and improving
current danger ratings for extreme wildfires that may happen
more frequently worldwide under climate change. This work
also stresses the importance of developing datasets for fire
behaviour, improving temporal and spatial resolution. Such
datasets would enable the application and validation of com-
plex models such as those proposed by Tory et al. (2018)
and Tory and Kepert (2021) and use of detailed analysis as
done, for instance, by Lareau et al. (2018a) and Bagley and
Clements (2021).

Using a high-spatial- and high-temporal-resolution dataset
in the study case of Pedrógão Grande in Portugal, the EFBI
showed a close relation with the speed of fire spread. More-
over, using the daily data of GlobFire for the fire behaviour in
the case of Roboré, the EFBI could have forecasted the con-
vective periods during the wildfire. For the last study case,
which includes a cluster of extreme wildfires in Australia,
high values of the EFBI match spatially with the occurrences
of such events, although the behaviour of the individual fires
within the cluster was not analysed.

The above results indicate that the EFBI shows a potential
to improve the current fire danger rating at the global scale
by establishing a fire typology which could characterize po-
tential explosive behaviour of wildfires using an estimation
of deep moist convection and ERA5.

Code availability. The code is available upon request to the corre-
sponding author.

Author contributions. TA conceived and designed the experiments;
JSM directed the research project. TA performed the experiments
and created the method. TA and MC analysed the data, the method,
and the overall application. The first paper draft was written by
TA. All authors discussed the results and contributed to the paper-
editing process. THD proofread and edited the paper for language
errors.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. A non-published work between Tomàs Artés
and Thomas Petroliagkis in 2015 led to the proposed method af-
ter the development of GlobFire, the customization of MetPy, and

the publication of ERA5. Reconstructed wildfire spread data for Pe-
drógão Grande was supplied by Nuno Guiomar and Paulo Fernan-
des.

Review statement. This paper was edited by Ricardo Trigo and re-
viewed by Miguel Pinto and one anonymous referee.

References

Artés, T., Oom, D., De Rigo, D., Durrant, T. H., Maianti, P., Libertà,
G., and San-Miguel-Ayanz, J.: A global wildfire dataset for the
analysis of fire regimes and fire behaviour, Scientific Data, 6, 1–
11, 2019.

Bagley, R. B. and Clements, C. B.: Extreme fire weather associated
with nocturnal drying in elevated coastal terrain of California,
Mon. Weather Rev., 149, 2497–2511, 2021.

Balch, J., Bradley, B., Abatzoglou, J., Nagy, R., Fusco, E., and Ma-
hood, A.: Human-started wildfires expand the fire niche across
the United States, P. Natl. Acad. Sci. USA, 114, 2–946, 2017.

Baptiste Filippi, J., Bosseur, F., Mari, C., Lac, C., Le Moigne, P.,
Cuenot, B., Veynante, D., Cariolle, D., and Balbi, J.-H.: Coupled
atmosphere-wildland fire modelling, J. Adv. Model. Earth Sy., 1,
11, https://doi.org/10.3894/JAMES.2009.1.11, 2009.

Boschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M., and
Humber, M. L.: Global validation of the collection 6 MODIS
burned area product, Remote Sens. Environ., 235, 111490,
https://doi.org/10.1016/j.rse.2019.111490, 2019.

Bowman, D. M., Williamson, G. J., Abatzoglou, J. T., Kolden,
C. A., Cochrane, M. A., and Smith, A. M.: Human exposure and
sensitivity to globally extreme wildfire events, Nature Ecology &
Evolution, 1, 1–6, 2017.

Byram, G. M.: Atmospheric conditions related to blowup fires.
Station Paper SE-SP-35, Asheville, NC: USDA-Forest Ser-
vice, Southeastern Forest Experiment Station. 35, 1–36, https:
//www.fs.usda.gov/treesearch/pubs/45778 (last access: 11 Febru-
ary 2022), 1954.

Comissão Técnica Independente: Análise e apuramento dos factos
relativos aos incêndios que ocorreram em Pedrógão Grande, Cas-
tanheira de Pêra, Ansião, Alvaiázere, Figueiró dos Vinhos, Ar-
ganil, Góis, Penela, Pampilhosa da Serra, Oleiros e Sertã entre
17 e 24 de junho de 2017, Comissão Técnica Independente, As-
sembleia da Républica, Lisboa, https://www.esquerda.net/sites/
default/files/relatoriocti12out2017.pdf (last access: 10 Febru-
ary 2022), 2017.

Deeming, J. E., Burgan, R. E., and Cohen, J. D.: 1977. The national
fire-danger rating system, 1978 (Vol. 39), Department of Agricul-
ture, Forest Service, Intermountain Forest and Range Experiment
Station, 1977.

Defourny, P., Kirches, G., Brockmann, C., Boettcher, M., Pe-
ters, M., Bontemps, S., Lamarche, C., Schlerf, M., and San-
toro, M.: Land cover CCI, Product User Guide Version, 2,
https://www.esa-landcover-cci.org/?q=webfm_send/84 (last ac-
cess: 11 February 2022), 2012.

Delicado, N. T. S. and Gomes, A.: O GRANDE IN-
CÊNDIO FLORESTAL DE PEDROGÃO GRANDE
Análise Crítica, https://www.researchgate.net/profile/Nuno-
Delicado/publication/319839493_O_Grande_Incendio_Florestal‚

Nat. Hazards Earth Syst. Sci., 22, 509–522, 2022 https://doi.org/10.5194/nhess-22-509-2022

https://doi.org/10.3894/JAMES.2009.1.11
https://doi.org/10.1016/j.rse.2019.111490
https://www.fs.usda.gov/treesearch/pubs/45778
https://www.fs.usda.gov/treesearch/pubs/45778
https://www.esquerda.net/sites/default/files/relatoriocti12out2017.pdf
https://www.esquerda.net/sites/default/files/relatoriocti12out2017.pdf
https://www.esa-landcover-cci.org/?q=webfm_send/84
https://www.researchgate.net/profile/Nuno-Delicado/publication/319839493_O_Grande_Incendio_Florestal_de_Pedrogao_Grande/links/59bd712ba6fdcca8e567e2fc/O-Grande-Incendio-Florestal-de-Pedrogao-Grande.pdf
https://www.researchgate.net/profile/Nuno-Delicado/publication/319839493_O_Grande_Incendio_Florestal_de_Pedrogao_Grande/links/59bd712ba6fdcca8e567e2fc/O-Grande-Incendio-Florestal-de-Pedrogao-Grande.pdf


T. Artés et al.: Wildfire–atmosphere interaction index 521

_de_Pedrogao_Grande/links/59bd712ba6fdcca8e567e2fc/O-
Grande-Incendio-Florestal-de-Pedrogao-Grande.pdf 2017.

Di Virgilio, G., Evans, J. P., Blake, S. A., Armstrong, M., Dowdy,
A. J., Sharples, J., and McRae, R.: Climate change increases the
potential for extreme wildfires, Geophys. Res. Lett., 46, 8517–
8526, 2019.

Duane, A., Castellnou, M., and Brotons, L.: Towards a comprehen-
sive look at global drivers of novel extreme wildfire events, Cli-
matic Change, 165, 1–21, 2021.

Forthofer, J., Shannon, K., and Butler, B.: Simulating diurnally
driven slope winds with WindNinja. In In: Proceedings of 8th
Eighth Symposium on Fire and Forest Meteorology, October 13–
15 2009, Kalispell, MT, Boston, MA: American Meteorological
Society, 13 pp., https://ams.confex.com/ams/8Fire/techprogram/
paper_156275.htm (last access: 11 February 2022), 2009.

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M.,
Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le
Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jack-
son, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V.,
Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier,
F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan,
D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Har-
ris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain,
A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K.,
Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N.,
Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire,
P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S.,
Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A.,
Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E.,
Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P.,
Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wilt-
shire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth
Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-
1783-2019, 2019.

Giglio, L., Justice, C., Boschetti, L., and Roy, D.: MCD64A1
MODIS/Terra+ Aqua Burned Area Monthly L3 Global
500 m SIN Grid V006, NASA EOSDIS Land Pro-
cesses DAAC: Sioux Falls, SD, USA, [data set],
https://doi.org/10.5067/MODIS/MCD64A1.006, 2015.

Haines, D. A. and Service, U. F.: A lower atmospheric severity
index for wildland fires, available at: https://www.frames.gov/
catalog/11664 (last access: 14 February 2022), 1988.

Hersbach, H.: The ERA5 Atmospheric Reanalysis, in: AGU
fall meeting abstracts, https://ui.adsabs.harvard.edu/abs/
2016AGUFMNG33D..01H/abstract (last access: 10 Febru-
ary 2021), 2016.

Keetch, J. J. and Byram, G. M.: A drought index for forest fire
control, vol. 38, US Department of Agriculture, Forest Ser-
vice, Southeastern Forest Experiment, available at: https://www.
fs.usda.gov/treesearch/pubs/40 (last access: 11 February 2022),
1968.

Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tence,
F., Bekki, S., Bourassa, A., Rieger, L., Zawada, D., Jumelet,
J., and Godin-Beekmann, S.: The 2019/20 Australian wild-
fires generated a persistent smoke-charged vortex rising up to
35 km altitude, Communications Earth & Environment, 1, 1–12,
https://doi.org/10.1038/s43247-020-00022-5, 2020.

KingaD, A.: A method for stochastic optimization, Anon. Interna-
tionalConferenceon Learning Representations, SanDego, arXiv
[preprint], arXiv:1412.6980 2015.

Kraskov, A., Stögbauer, H., and Grassberger, P.: Estimat-
ing mutual information, Phys. Rev. E, 69, 066138,
https://doi.org/10.1103/PhysRevE.69.066138, 2004.

Lareau, N., Nauslar, N., and Abatzoglou, J. T.: The Carr Fire vortex:
a case of pyrotornadogenesis?, Geophys. Res. Lett., 45, 13–107,
2018a.

Lareau, N. P. and Clements, C. B.: Environmental con-
trols on pyrocumulus and pyrocumulonimbus initiation
and development, Atmos. Chem. Phys., 16, 4005–4022,
https://doi.org/10.5194/acp-16-4005-2016, 2016.

Lareau, N. P., Nauslar, N. J., and Abatzoglou, J. T.: The Carr Fire
Vortex: A Case of Pyrotornadogenesis?, Geophys. Res. Lett., 45,
13107–13115, https://doi.org/10.1029/2018GL080667, 2018b.

Leach, R. N. and Gibson, C. V.: Assessing the Potential for Pyro-
convection and Wildfire Blow Ups, Journal of Operational Mete-
orology, 9, 47–61, https://doi.org/10.15191/nwajom.2021.0904,
2021.

Lombardo, K. A. and Colle, B. A.: Convective storm structures
and ambient conditions associated with severe weather over the
northeast United States, Weather Forecast., 26, 940–956, 2011.

Mandel, J., Beezley, J. D., and Kochanski, A. K.: Cou-
pled atmosphere-wildland fire modeling with WRF-fire, arXiv
[preprint], arXiv:1102.1343, 2011.

McArthur, A.: Fire behaviour in eucalyptus forests, vol. 107, Com-
monw. Aust., Dep. Nat. Devel., Forest and Timber Bureau, Can-
berra, Leaflet n107, 36 pp., 1967.

McRae, R. H. D., Sharples, J. J., and Fromm, M.: Linking local
wildfire dynamics to pyroCb development, Nat. Hazards Earth
Syst. Sci., 15, 417–428, https://doi.org/10.5194/nhess-15-417-
2015, 2015.

Mell, W., Jenkins, M. A., Gould, J., and Cheney, P.: A physics-based
approach to modelling grassland fires, Int. J. Wildland Fire, 16,
1–22, 2007.

Moncrieff, M. W. and Miller, M. J.: The dynamics and simulation of
tropical cumulonimbus and squall lines, Q. J. Roy. Meteor. Soc.,
102, 373–394, 1976.

Morvan, D. and Frangieh, N.: Wildland fires behaviour: wind effect
versus Byram’s convective number and consequences upon the
regime of propagation, Int. J. Wildland Fire, 27, 636–641, 2018.

Pausas, J. G. and Keeley, J. E.: A burning story: the role of fire in
the history of life, BioScience, 59, 593–601, 2009.

Pausas, J. G. and Keeley, J. E.: Epicormic resprouting in fire-prone
ecosystems, Trends Plant Sci., 22, 1008–1015, 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Pinto, M. M., DaCamara, C. C., Hurduc, A., Trigo, R. M., and
Trigo, I. F.: Enhancing the fire weather index with atmo-
spheric instability information, Environ. Res. Lett., 15, 0940b7,
https://doi.org/10.1088/1748-9326/ab9e22, 2020.

Pirsko, A. R., Sergius, L. M., and Hickerson, C. W.: Causes
and behavior of a tornadic fire-whirlwind, Res. Note PSW-RN-
061, Berkeley, CA, US Department of Agriculture, Forest Ser-
vice, Pacific Southwest Forest and Range Experiment Station,

https://doi.org/10.5194/nhess-22-509-2022 Nat. Hazards Earth Syst. Sci., 22, 509–522, 2022

https://www.researchgate.net/profile/Nuno-Delicado/publication/319839493_O_Grande_Incendio_Florestal_de_Pedrogao_Grande/links/59bd712ba6fdcca8e567e2fc/O-Grande-Incendio-Florestal-de-Pedrogao-Grande.pdf
https://www.researchgate.net/profile/Nuno-Delicado/publication/319839493_O_Grande_Incendio_Florestal_de_Pedrogao_Grande/links/59bd712ba6fdcca8e567e2fc/O-Grande-Incendio-Florestal-de-Pedrogao-Grande.pdf
https://ams.confex.com/ams/8Fire/techprogram/paper_156275.htm
https://ams.confex.com/ams/8Fire/techprogram/paper_156275.htm
https://doi.org/10.5194/essd-11-1783-2019
https://doi.org/10.5194/essd-11-1783-2019
https://doi.org/10.5067/MODIS/MCD64A1.006
https://www.frames.gov/catalog/11664
https://www.frames.gov/catalog/11664
https://ui.adsabs.harvard.edu/abs/2016AGUFMNG33D..01H/abstract
https://ui.adsabs.harvard.edu/abs/2016AGUFMNG33D..01H/abstract
https://www.fs.usda.gov/treesearch/pubs/40
https://www.fs.usda.gov/treesearch/pubs/40
https://doi.org/10.1038/s43247-020-00022-5
https://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.5194/acp-16-4005-2016
https://doi.org/10.1029/2018GL080667
https://doi.org/10.15191/nwajom.2021.0904
https://arxiv.org/abs/1102.1343
https://doi.org/10.5194/nhess-15-417-2015
https://doi.org/10.5194/nhess-15-417-2015
https://doi.org/10.1088/1748-9326/ab9e22


522 T. Artés et al.: Wildfire–atmosphere interaction index

61, 13 pp., available at: https://www.fs.usda.gov/treesearch/pubs/
42171 (last access: 10 February 2022), 1965.

Potter, B.: The Haines Index – it’s time to revise it or replace it, Int.
J. Wildland Fire, 27, 437–440, 2018a.

Potter, B. E.: The role of released moisture in the atmospheric dy-
namics associated with wildland fires, Int. J. Wildland Fire, 14,
77–84, 2005.

Potter, B. E.: Quantitative Evaluation of the Haines Index’s
Ability to Predict Fire Growth Events, Atmosphere, 9, 177,
https://doi.org/10.3390/atmos9050177, 2018b.

Ross, B. C.: Mutual information between discrete
and continuous data sets, PloS One, 9, 1–5,
https://doi.org/10.1371/journal.pone.0087357, 2014.

Rothermel, R. C.: A mathematical model for predicting fire spread
in wildland fuels, Res. Pap. INT-115, Ogden, UT: U.S. De-
partment of Agriculture, Intermountain Forest and Range Ex-
periment Station, 40 pp., available at: https://www.fs.usda.gov/
treesearch/pubs/32533 (last access: 10 February 2022), 1972.

San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl,
P., Liberta, G., Giovando, C., Boca, R., Sedano, F., Kempeneers,
P., McInerney, D., Withmore, C., Santos de Oliveira, S., Ro-
drigues, M., Durrant, T., Corti, P., Oehler, F., Vilar, L., and Am-
atulli, G.: Comprehensive monitoring of wildfires in Europe: the
European forest fire information system (EFFIS), in: Approaches
to managing disaster-Assessing hazards, emergencies and disas-
ter impacts, IntechOpen, https://doi.org/10.5772/28441, 2012.

San-Miguel-Ayanz, J., Oom, D., Artes, T., Viegas, D., Fernandes,
P., Faivre, N., Freire, S., Moore, P., Rego, F., and Castellnou, M.:
Forest fires in Portugal in 2017, in: Science for Disaster Risk
Management 2020: acting today, protecting tomorrow, edited
by: Casajus Valles, A., Marin Ferrer, M., Poljansek, K., and
Clark, I., Publications Office of the European Union, Luxem-
bourg, https://doi.org/10.2760/438998, 2019.

Shi, Y., Matsunaga, T., Saito, M., Yamaguchi, Y., and Chen,
X.: Comparison of global inventories of CO2 emissions from
biomass burning during 2002–2011 derived from multiple satel-
lite products, Environ. Pollut., 206, 479–487, 2015.

Short, K. C.: Spatial wildfire occurrence data for the United States,
1992–2015, Forest Service Research Data Archive [data set],
https://doi.org/10.2737/RDS-2013-0009.4, 2017.

Sullivan, A. L.: Inside the inferno: fundamental processes of wild-
land fire behaviour, Current Forestry Reports, 3, 150–171, 2017.

Tory, K. and Kepert, J.: Pyrocumulonimbus Firepower Threshold:
Assessing the atmospheric potential for pyroCb, Weather Fore-
cast., 36, 439–456, 2021.

Tory, K. J., Thurston, W., and Kepert, J. D.: Thermodynamics of py-
rocumulus: A conceptual study, Mon. Weather Rev., 146, 2579–
2598, 2018.

Van Wagner, C. E.: Structure of the Canadian forest fire weather
index, vol. 1333, Environment Canada, Forestry Service, https:
//cfs.nrcan.gc.ca/publications?id=19927 (last access: 10 Febru-
ary 2022), 1974.

Vitolo, C., Di Giuseppe, F., Barnard, C., Coughlan, R., San-Miguel-
Ayanz, J., Libertà, G., and Krzeminski, B.: ERA5-based global
meteorological wildfire danger maps, Scientific Data, 7, 1–11,
2020.

Williams, E. and Renno, N.: An analysis of the conditional instabil-
ity of the tropical atmosphere, Mon. Weather Rev., 121, 21–36,
1993.

Nat. Hazards Earth Syst. Sci., 22, 509–522, 2022 https://doi.org/10.5194/nhess-22-509-2022

https://www.fs.usda.gov/treesearch/pubs/42171
https://www.fs.usda.gov/treesearch/pubs/42171
https://doi.org/10.3390/atmos9050177
https://doi.org/10.1371/journal.pone.0087357
https://www.fs.usda.gov/treesearch/pubs/32533
https://www.fs.usda.gov/treesearch/pubs/32533
https://doi.org/10.5772/28441
https://doi.org/10.2760/438998
https://doi.org/10.2737/RDS-2013-0009.4
https://cfs.nrcan.gc.ca/publications?id=19927
https://cfs.nrcan.gc.ca/publications?id=19927

	Abstract
	Introduction
	Data and methods
	Results
	Study cases
	Pedrógão Grande, Portugal, 2017
	Forecast use in Roboré, Bolivia, 2019
	Wildfires in Australia, 2019


	Conclusions
	Code availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

