Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-method monitoring of rockfall activity along the classic route up Mont Blanc (4809 m a.s.l.) to encourage adaptation by mountaineers
Jacques Mourey
CORRESPONDING AUTHOR
EDYTEM, Savoie Mont-Blanc University, CNRS, 73000 Chambéry,
France
Interdisciplinary Center for Mountain Research, University of
Lausanne, Ch. de l'Institut 18, 1967 Bramois, Switzerland
Pascal Lacroix
ISTerre, IRD-CNRS-OSUG, Grenoble Alpes University, 38400
Saint-Martin-d'Hères, France
Pierre-Allain Duvillard
EDYTEM, Savoie Mont-Blanc University, CNRS, 73000 Chambéry,
France
STYX4D, 73370 Le Bourget du Lac, France
Guilhem Marsy
EDYTEM, Savoie Mont-Blanc University, CNRS, 73000 Chambéry,
France
LISTIC, Savoie Mont-Blanc University, Polytech Annecy-Chambéry,
Annecy-Chambéry, France
TENEVIA, 38240 Meylan, France
Marco Marcer
PACTE, Grenoble Alpes University, Alpine Geography Institute, CNRS,
38041 Grenoble, France
Emmanuel Malet
EDYTEM, Savoie Mont-Blanc University, CNRS, 73000 Chambéry,
France
Ludovic Ravanel
EDYTEM, Savoie Mont-Blanc University, CNRS, 73000 Chambéry,
France
Interdisciplinary Center for Mountain Research, University of
Lausanne, Ch. de l'Institut 18, 1967 Bramois, Switzerland
Related authors
No articles found.
Matan Ben-Asher, Antoine Chabas, Jean-Yves Josnin, Josué Bock, Emmanuel Malet, Amaël Poulain, Yves Perrette, and Florence Magnin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2450, https://doi.org/10.5194/egusphere-2025-2450, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We studied how water moves through fractured rock walls in a high mountain area in the Alps. Using sensors and tracers over two years, in a high-altitude site, we tracked where the water came from and when it flowed. Most of it came from melting snow, but some came from rain and older ice. The results show that heat and water flow can speed up the melting of frozen ground, which may affect mountain stability. This helps us understand how climate change influences these fragile environments.
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
The Cryosphere, 19, 2559–2581, https://doi.org/10.5194/tc-19-2559-2025, https://doi.org/10.5194/tc-19-2559-2025, 2025
Short summary
Short summary
This study presents a robust methodological approach to detect and analyse rock glacier kinematics using Landsat 7/Landsat 8 imagery. In the semiarid Andes, 382 landforms were monitored, showing an average velocity of 0.37 ± 0.07 m yr⁻¹ over 24 years, with rock glaciers moving 23 % faster. Results demonstrate the feasibility of using medium-resolution optical imagery, combined with radar interferometry, to monitor rock glacier kinematics with widely available satellite datasets.
Benedetta Dini, Pascal Lacroix, and Marie-Pierre Doin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1945, https://doi.org/10.5194/egusphere-2025-1945, 2025
Short summary
Short summary
Landslides can happen without warning. Traditional satellite radar (InSAR) methods help but have limits. Here, we show that lesser-used radar signals can act as early warning markers, when traditional methods fail. Using a landslide in Peru as example, we show signs of instability up to five years before failure. These findings suggest that alternative radar-based approaches can complement existing methods, detecting landslides earlier, with key applicability across large regions.
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
The Cryosphere, 19, 1335–1352, https://doi.org/10.5194/tc-19-1335-2025, https://doi.org/10.5194/tc-19-1335-2025, 2025
Short summary
Short summary
We have reconstructed the multi-decadal (1980s–2023) ice mass changes for all the current mountain glaciers in the Dolomites. We used historical aerial photographs, drone surveys, and lidar to fill the glaciological data gap for the region. We observed an alarming decline in both glacier area and volume, with some of the glaciers showing smaller losses due to local topography and debris cover feedback. We strongly recommend more specific monitoring of these glaciers.
Feras Abdulsamad, Josué Bock, Florence Magnin, Emmanuel Malet, André Revil, Matan Ben-Asher, Jessy Richard, Pierre-Allain Duvillard, Marios Karaoulis, Thomas Condom, Ludovic Ravanel, and Philip Deline
EGUsphere, https://doi.org/10.5194/egusphere-2025-637, https://doi.org/10.5194/egusphere-2025-637, 2025
Short summary
Short summary
Permafrost dynamics at Aiguille du Midi in the French Alps was investigated using Automated Electrical Resistivity Tomography (A-ERT) during four years. A-ERT reveals seasonal and multi-year permafrost changes. Temperatures estimated using resistivity measurements provide a good agreement with measured temperature in borehole in frozen zone. Variations in active layer thickness across different faces were observed, along with a slight decrease in permafrost resistivity suggesting warming.
Carlo Mologni, Marie Revel, Eric Chaumillon, Emmanuel Malet, Thibault Coulombier, Pierre Sabatier, Pierre Brigode, Gwenael Hervé, Anne-Lise Develle, Laure Schenini, Medhi Messous, Gourguen Davtian, Alain Carré, Delphine Bosch, Natacha Volto, Clément Ménard, Lamya Khalidi, and Fabien Arnaud
Clim. Past, 20, 1837–1860, https://doi.org/10.5194/cp-20-1837-2024, https://doi.org/10.5194/cp-20-1837-2024, 2024
Short summary
Short summary
The reactivity of local to regional hydrosystems to global changes remains understated in East African climate models. By reconstructing a chronicle of seasonal floods and droughts from a lacustrine sedimentary core, this paper highlights the impact of El Niño anomalies in the Awash River valley (Ethiopia). Studying regional hydrosystem feedbacks to global atmospheric anomalies is essential for better comprehending and mitigating the effects of global warming in extreme environments.
Marco Marcer, Pierre-Allain Duvillard, Soňa Tomaškovičová, Steffen Ringsø Nielsen, André Revil, and Thomas Ingeman-Nielsen
The Cryosphere, 18, 1753–1771, https://doi.org/10.5194/tc-18-1753-2024, https://doi.org/10.5194/tc-18-1753-2024, 2024
Short summary
Short summary
This study models present and future rock wall temperatures in the mountains near Sisimiut, creating knowledge on mountain permafrost in Greenland for the first time. Bedrock is mostly frozen but also has temperatures near 0 oC, making it very sensitive to climate changes. Future climatic scenarios indicate a reduction in frozen rock wall areas. Since mountain permafrost thaw is linked to an increase in landslides, these results call for more efforts addressing mountain permafrost in Greenland.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Short summary
Quantitative knowledge of water availability on high mountain rock slopes is very limited. We use a numerical model and field measurements to estimate the water balance at a steep rock wall site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. The new information presented here can be used to improve the understanding of thermal, hydrogeological, and mechanical processes on steep mountain rock slopes.
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Short summary
Climate change impacts all parts of the cryosphere but most importantly the smaller ice bodies like ice aprons (IAs). This study is the first attempt on a regional scale to assess the impacts of the changing climate on these small but very important ice bodies. Our study shows that IAs have consistently lost mass over the past decades. The effects of climate variables, particularly temperature and precipitation and topographic factors, were analysed on the loss of IA area.
S. Kaushik, S. Leinss, L. Ravanel, E. Trouvé, Y. Yan, and F. Magnin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 325–332, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, 2022
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Cited articles
Alpes Ingé: Couloir du Goûter, Suivi et analyse des chutes de blocs
et de la fréquentation pendant l'été 2011, Rapport final,
Fondation Petzl, 37 pp., 2012.
Collins, B. and Stock, G.: Rockfall triggering by cyclic thermal stressing of exfoliation fractures, Nat. Geosci., 9, 345–500, https://doi.org/10.1038/NGEO2686, 2016.
Dammeier, F., Moore, J., Haslinger, F., and Loew, S.: Characterization of alpine rockslides using statistical analysis of seismic signals, J. Geophys. Res., 116, F04024, https://doi.org/10.1029/2011JF002037, 2011.
Debarbieux, B.: L'Unesco au mont Blanc, Chamonix, Guérin, France, https://archive-ouverte.unige.ch/unige:130712 (last access: 14 February 2022), 2020.
DeRoin, N. and Mc Nutt, S.: Rockfalls at Augustino Volcano, Alaska: The
influence of eruption precursors and seasonal factors on occurrence patterns 1997–2009, J. Volcanol. Geoth. Res., 211–212, 61–75,
https://doi.org/10.1016/j.jvolgeores.2011.11.003, 2012.
Dietze, M., Mohadjer, S., Turowski, J., Ehlers, T., and Hovius, N.: Seismic
monitoring of small alpine rockfalls – validity, precision and limitations,
Earth Surf. Dynam., 5, 653–668, https://doi.org/10.5194/esurf-5-653-2017, 2017a.
Dietze, M., Turowski, J., Cook, K., and Hovius, N.: Spatiotemporal patterns,
triggers and anatomies of seismically detected rockfalls, Earth Surf. Dynam., 5, 757–779, https://doi.org/10.5194/esurf-5-757-2017, 2017b.
Draebing, D., Krautblatter, M., and Dikau, R.: Interaction of thermal and
mechanical processes in steep permafrost rock walls: a conceptual approach,
Geomorphology, 226, 226–235, https://doi.org/10.1016/j.geomorph.2014.08.009, 2014
Draebing, D., Krautblatter, M., and Hoffmann, T.: Thermo-cryogenic controls
of fracture kinematics in permafrost rockwalls, Geophys. Res. Lett., 44, 3535–3544, https://doi.org/10.1002/2016GL072050, 2017.
Durand, V., Mangeney, A., Haas, F., Jia, X., Bonilla, F., Peltier, A., Hibert, C., Ferrazzini, V., Kowalski, P., Lauret, F., Brunet, C., Satriano,
C., Wegner, K., Delorme, A., and Villeneuve, N.: On the link between external
forcings and slope instabilities in the Piton de la Fournaise summit crater,
Reunion island, J. Geophys. Res.-Earth, 123, 2422–2442, https://doi.org/10.1029/2017JF004507, 2018.
Dussauge, C., Grasso, J.-R., and Helmstetter, A.: Statistical analysis of
rockfall volume distributions: implications for rockfall dynamics, J. Geophys. Res., 108, 2286, https://doi.org/10.1029/2001JB000650, 2003.
Fedorov, V., Arias, P., Facciolo, G., and Ballester, C.: Affine Invariant
Self-similarity for exemplar-based Inpainting, in: 11th joint Conference on
Computer Vision, Imag. Comput. Graph. Theory Appl., 3, 50–60, https://doi.org/10.5220/0005728100480058, 2016.
Flöry, S., Ressl, C., Hollaus, M., Pürcher, G., Piermattei, L., and Pfeifer, N.: “WEBSNOW”: Estimation Of Snow Cover From Freely Accessible Webcam Images In The Alps, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 695–701, https://doi.org/10.5194/isprs-annals-V-2-2020-695-2020, 2020.
Gardent, M., Rabatel, A., Dedieu, J. P., and Deline, P.: Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s, Global Planet. Change, 120, 24–37, https://doi.org/10.1016/j.gloplacha.2014.05.004, 2014
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its
temperature-related destabilization following climate change, J. Geophys Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Gruber, S., Hoelzle, M., and Haeberli, W.: Permafrost thaw and destabilization of Alpine rock walls in the hot summer 2003, Geophys. Res. Lett., 31, L13504,, https://doi.org/10.1029/2004GL020051, 2004.
Guillermot, A., Helmstetter, A., Larose, E., Baillet., L., Garambois, S.,
Mayoraz, R., and Delaloye, R.: Seismic monitoring in the Gugla rock glacier
(Switzerland): ambiant noise correlation, microseismicity and modelling,
Geophys. J. Int., 221, 1719–1735, https://doi.org/10.1093/gji/ggaa097, 2020.
Hartley, R. and Zisserman, A.: Multiple view geometry in computer vision, Cambridge University Press, 48 pp., https://www.cambridge.org/ch/academic/subjects/computer-science/computer-graphics-image-processing-and-robotics/multiple-view-geometry-computer-vision-2nd-edition?format=PB&isbn=9780521540513
(last access: 14 February 2022), 2003.
Hartmeyer, I., Delleske, R., Keusching, M., Krautblatter, M., Lang, A.,
Schrott, L., and Otto, J.-C.: Current glacier recession causes significant
rockfall increase: the immediate paraglacial response of defglaciating cirque walls, Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, 2020.
Hasler, A., Gruber, S., Font, M., and Dubois, A.: Advective heat transport in
Frozen Rock Clefts: conceptual model, laboratory experiments and numerical
simulation, Permafrost Periglac. Process., 22, 378–389, https://doi.org/10.1002/ppp.737, 2011.
Helmstetter, A. and Garambois, S.: Seismic monitoring of Séchilienne
rockslide (French Alps): Analysis of seismic signals and their correlation
with rainfalls, J. Geophys. Res., 15, F03016, https://doi.org/10.1029/2009JF001532, 2010.
Hibert, C., Mangeney, A., Grandjean, G., and Shapiro, N. M.: Slope instabilities in Dolomieu crater, Réunion Island: from seismic signals to rockfall characteristics, J. Geophys. Res., 116, F04032, https://doi.org/10.1029/2011JF002038, 2011.
Hibert, C., Malet, J.-P., Bourrier, F., Provost, F., Berger, F., Bornemann, P., Tardif, P., and Mermin, E.: Single-block rockfall dynamics inferred from seismic signal analysis, Earth Surf. Dynam., 5, 283–292, https://doi.org/10.5194/esurf-5-283-2017, 2017.
Hibert, C., Michéa, D., Provost, F., Malet, J.-P., and Geertsema, M.:
Exploration of continuous seismic recordings with a machine learning approach to document 20 yr of landslide activity in Alaska, Geophys. J. Int., 219, 1138–1147, https://doi.org/10.1093/gji/ggz354, 2019.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Lacroix, P. and Helmstetter, A.: Location of Seismic Signals Associated with
Microearthquakes and Rockfalls on the Séchilienne Landslide, French Alps, Bull. Seismol. Soc. Am., 101, 341–353, https://doi.org/10.1785/0120100110, 2011.
Legay, A., Magnin, F., and Ravanel L.: Rock temperature prior to failure:
analysis of 209 rockfall events in the Mont Blanc massif (Western European
Alps), Permafrost Periglac. Process., 32, 520–536, https://doi.org/10.1002/ppp.2110, 2021.
Lemarchal, D.: EURL Meije: Massif du Mont-Blanc, Traversée du Grand
Couloir, Etude de faisabilité et avant-projet de sécurisation, Fondation Petzl, 87 pp., 2011.
Le Roy, G., Helmstetter, A., Amitrano, D., Guyoton, F., and Le Roux-Mallouf, R.: Seismic analysis of the detachment and impact phases of rockfalland
application for estimating rockfall volume and free-fall height, J.
Geophys. Res.-Earth, 124, 2602–2622, https://doi.org/10.1029/2019JF004999, 2019.
Magnin, F., Brenning, A., Bodin, X., Deline, P., and Ravanel, L.: Statistical
modelling of rock wall permafrost distribution: application to the Mont Blanc massif, Geomorphologie, 21, 145–162, https://doi.org/10.4000/geomorphologie.10965, 2015.
Magnin, F., Josnin, J.-Y., Ravanel, L., Pergaud, J., Pohl, B., and Deline, P.: Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century, The Cryosphere, 11, 1813–1834,
https://doi.org/10.5194/tc-11-1813-2017, 2017a.
Manconi, A., Picozzi, M., Coviello, V., De Santis, F., and Elia, L.: Real time detection, location and characterization of rockslides using broadband
regional seismic networks, Geophys. Res. Lett., 43, 6960–6967,
https://doi.org/10.1002/2016GL069572, 2016.
Matsuoka, N.: Mechanisms of rock breakdown by frost action – an experimental approach, Cold Reg. Sci. Technol., 17, 253–270, https://doi.org/10.1016/S0165-232X(05)80005-9, 1990.
McColl, S. T. and Draebing, D.: Rock slope instability in the proglacial
zone: State of the Art, in: Geomorphology of proglacial systems – Landform and sediment dynamics in recently deglaciated alpine landscapes, edited by: Heckmann, T. and Morche, D., Springer, Heidelberg, 119–141, https://doi.org/10.1007/978-3-319-94184-4_8, 2019.
McDowell, G., Stephenson, E., and Ford, J.: Adaptation to climate change in
glaciated mountain regions, Climatic Change, 126, 77–91, https://doi.org/10.1007/s10584-014-1215-z, 2019.
Mennessier, G., Carme, F., Bellire, J., Dhellemes, R., Antoine, P., Dabrowski, H., and Meloux, J.: Notice explicative: Carte Géologique de la France à 1:50 000, Feuille ST-Gervais-les-Bains, http://ficheinfoterre.brgm.fr/Notices/0703N.pdf (last access: 14 February 2022), 1977.
Mourey, J. and Ravanel, L.: Measuring the attendance of access routes to
high mountain in the Mont-Blanc massif using pyroelectric sensors,
Collection EDYTEM SI Monitoring en milieux naturels, retours d'expériences en terrains difficiles, 263–270, https://doi.org/10.3406/edyte.2017.1394, 2017.
Mourey, J., Moret, O., Descamps, P., and Bozon, S.: Accidentology of the normal route up Mont Blanc between 1990 and 2017, Fondation Petzl, 20, https://www.petzl.com/fondation/projets/accidents-couloir-gouter?language=en
(last access: 13 July 2021), 2018.
Mourey, J., Marcuzzi, M., Ravanel, L., and Pallandre, F.: Effects of climate
change on high Alpine environments: evolution of mountaineering routes in the Mont Blanc massif (Western Alps) over half a century, Arct. Antarct. Res., 51, 176–189, https://doi.org/10.1080/15230430.2019.1612216, 2019.
Mourey, J., Lacroix, P., Duvillard, P.-A., Marsy, G., Marcer, M., Malet, E., and Ravanel, L.: Multi-method monitoring of rockfall activity along the classic route up Mont Blanc (4809 m a.s.l.) to encourage adaptation by mountaineers [data set], In Natural Hazards and Earth System Sciences, Zenodo [data set], https://doi.org/10.5281/zenodo.6074472, 2022.
NRCC (Permafrost Subcommittee): Glossary of permafrost and related ground-ice terms, Technical memorandum 142, National Research Council of Canada, 156 pp., https://globalcryospherewatch.org/reference/glossary_docs/permafrost_and_ground_terms_canada.pdf (last access: 14 February 2022), 1988.
Paul, F., Rastner, P., Azzoni, R. S., Diolaiuti, G., Fugazza, D., Le Bris,
R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., and Smiraglia, C.:
Glacier shrinkage in the Alps continues unabated as revealed by a new
glacier inventory from Sentinel-2, Earth Syst. Sci. Data, 12, 1805–1821,
https://doi.org/10.5194/essd-12-1805-2020, 2020.
Pogliotti, P., Guglielmin, M., Cremonese, E., Morra di Cella, U., Filippa, G., Pellet, C., and Hauck, C.: Warming permafrost and active layer variability at Cime Bianche, Western European Alps, The Cryosphere, 9, 647–661, https://doi.org/10.5194/tc-9-647-2015, 2015.
Pröbstl-Haider, U., Dabrowska, K., and Haider, W.: Risk perception and
preferences of mountain tourists in light of glacial retreat and permafrost
degradation in the Austrian Alps, J. Outdoor Recreat. Tourism, 13, 66–78, https://doi.org/10.1016/j.jort.2016.02.002, 2016.
Purdie, H. and Kerr, T.: Aoraki Mont Cook : Environmental change on an iconic mountaineering route, Mount. Res. Dev., 38, 364–379, https://doi.org/10.1659/MRD-JOURNAL-D-18-00042.1, 2018.
Ravanel, L. and Deline, P.: Climate influence on rockfalls in high-Alpine
steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc
massif) since the end of the `Little Ice Age', Holocene, 21, 357–365, https://doi.org/10.1177/0959683610374887, 2010.
Ravanel, L., Magnin, F., and Deline, P.: Impacts of the 2003 and 2015 summer
heatwaves on permafrost-affected rock-walls in the Mont Blanc massif, Sci. Total Environ., 609, 132–143, https://doi.org/10.1016/j.scitotenv.2017.07.055, 2017.
Ridler, T. W. and Calvard, S.: Picture thresholding using an iterative
selection method, IEEE Trans. Syst. Man Cybern., 8, 630–632, https://doi.org/10.1109/TSMC.1978.4310039, 1978.
Ritter, F., Fiebig, M., and Muhar, A.: Impacts of Global Warming on
Mountaineering: A Classification of Phenomena Affecting the Alpine Trail
Network, Mount. Res. Dev., 32, 4–15, https://doi.org/10.1659/MRD-JOURNAL-D-11-00036.1, 2011.
Seto, M.: Freeze thaw cycles on rock surfaces below the timberline in a
montane zone: field measurements in Kobugahara, Northern Ashio Mountains,
Central Japan, Catena, 82, 218–226, https://doi.org/10.1016/j.catena.2010.06.006, 2010.
Soulé, B., Lefèvre, B., Boutroy, E., Reynier, V., Roux, F., and
Corneloup, J.: Accidentologie des sports de montagne, Etats des lieux et
diagnostic, Fondation Petzl, https://www.petzl.com/fondation/s/accidentologie-des-sports-de-montagne?language=en_US
(last access: 25 June 2021), 2014.
Temme, A. J. A. M.: Using Climber's Guidebooks to Assess Rock Fall Patterns
Over Large Spatial and Decadal Temporal Scales: An Example from the Swiss
Alps, Geograf. Ann. A, 97, 793–807, https://doi.org/10.1111/geoa.12116, 2015.
Van Everdingen, R.: Multi-language glossary of permafrost and related ground-ice terms, National Snow and Ice Data Center/World Data Center for
Glaciology, Boulder, CO, USA, updated 2005, https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf
(last access: 3 July 2021), 1998.
Vincent, C., Thibert, E., Gagliardini, O., Legchenko, A., Gilbert, A., Garambois, S., Condom, T., Baltassat, J. M., and Girard, J. F.: Mechanisms of subglacial cavity filling in Glacier de Tête Rousse, French Alps, J. Glaciol., 61, 609–623, https://doi.org/10.3189/2015JoG14J238, 2015.
Weber, S., Faillettaz, J., Meyer, M., Beutel, J., and Vieli, A.: Acoustic and
Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH), J. Geophys. Res.-Earth, 123, 1363–1385, https://doi.org/10.1029/2018JF004615, 2018.
Short summary
More frequent rockfalls in high alpine environments due to climate change are a growing threat to mountaineers. This hazard is particularly important on the classic route up Mont Blanc. Our results show that rockfalls are most frequent during snowmelt periods and the warmest hours of the day, and that mountaineers do not adapt to the local rockfall hazard when planning their ascent. Disseminating the knowledge acquired from our study caused management measures to be implemented for the route.
More frequent rockfalls in high alpine environments due to climate change are a growing threat...
Altmetrics
Final-revised paper
Preprint