Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-377-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-377-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A modeling methodology to study the tributary-junction alluvial fan connectivity during a debris flow event
Alex Garcés
Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile
Gerardo Zegers
Department of Geosciences, University of Calgary, Calgary, Canada
Albert Cabré
Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, Toulouse, France
Germán Aguilar
Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile
Aldo Tamburrino
Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile
Department of Civil Engineering, Universidad de Chile, Santiago, Chile
Santiago Montserrat
CORRESPONDING AUTHOR
Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile
Related authors
No articles found.
Gerardo Zegers, Masaki Hayashi, and Rodrigo Pérez-Illanes
The Cryosphere, 19, 4091–4112, https://doi.org/10.5194/tc-19-4091-2025, https://doi.org/10.5194/tc-19-4091-2025, 2025
Short summary
Short summary
This research showed that airflow within sediment accumulations promotes cooling and sustains mountain permafrost. By enhancing a numerical model, we showed that natural air movement, driven by temperature differences between sediments and external air, allows permafrost to survive. Our work aids in predicting where and how permafrost exists, which is essential for understanding its role in mountain water systems and its response to climate change.
Ivan Vergara, Fernanda Santibañez, René Garreaud, and Germán Aguilar
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-27, https://doi.org/10.5194/esd-2024-27, 2024
Manuscript not accepted for further review
Short summary
Short summary
The denudation rate was modelled in over a thousand basins across the Earth. The results suggest that water and associated life have a positive effect across their whole range, which is regulated by topography. Because of this, bioclimatic effect is weak in flat landscapes, but it could vary denudation forty times in mountain settings. It was also observed that other things being equal, water availability steepens basins, so climate also has an indirect effect acting on geological timeframes.
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023, https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Short summary
The Central Andes are one of the most emblematic reliefs on Earth, but their western flank remains understudied. Here we explore two rare key sites in the hostile conditions of the Atacama desert to build cross-sections, quantify crustal shortening, and discuss the timing of this deformation at ∼20–22°S. We propose that the structures of the Western Andes accommodated significant crustal shortening here, but only during the earliest stages of mountain building.
Cited articles
Aguilar, G., Carretier, S., Regard, V., Vassallo, R., Riquelme, R., and
Martinod, J.: Grain size-dependent 10Be concentrations in alluvial stream sediment of the Huasco Valley, a semi-arid Andes region, Quatern.
Geochronol., 19, 163–172, https://doi.org/10.1016/j.quageo.2013.01.011, 2014. a
Aguilar, G., Cabré, A., Fredes, V., and Villela, B.: Erosion after an
extreme storm event in an arid fluvial system of the southern Atacama Desert:
an assessment of the magnitude, return time, and conditioning factors of
erosion and debris flow generation, Nat. Hazards Earth Syst. Sci., 20, 1247–1265, https://doi.org/10.5194/nhess-20-1247-2020, 2020. a, b, c, d, e
Ancey, C.: Plasticity and geophysical flows: a review, J. Non-Newtonian
Fluid Mech., 142, 4–35, 2007. a
Bozkurt, D., Rondanelli, R., Garreaud, R., and Arriagada, A.: Impact of warmer eastern tropical pacific SST on the March 2015 atacama floods, Mon.
Weather Rev., 144, 4441–4460, https://doi.org/10.1175/MWR-D-16-0041.1, 2016. a
Brunsden, D. and Thornes, J.: Landscape sensitivity and change, Trans. Inst. Brit. Geogr., 4, 463–484, 1979. a
Cabré, A., Aguilar, G., Mather, A. E., Fredes, V., and Riquelme, R.:
Tributary-junction alluvial fan response to an ENSO rainfall event in the El Huasco watershed, northern Chile, Prog. Phys. Geog., 44, 679–699, https://doi.org/10.1177/0309133319898994, 2020a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Cabré, A., Remy, D., Aguilar, G., Carretier, S., and Riquelme, R.:
Mapping rainstorm erosion associated with an individual storm from InSAR
coherence loss validated by field evidence for the Atacama Desert, Earth Surf. Proc. Land., 45, 2091–2106, https://doi.org/10.1002/esp.4868, 2020b. a
Church, M. and Jakob, M.: What is a debris flood?, Water Resour. Res., 56, e2020WR027144, https://doi.org/10.1029/2020WR027144, 2020. a
Colombo, F.: Quaternary telescopic-like alluvial fans, Andean Ranges, Argentina, Geol. Soc. Lond. Spec. Publ., 251, 69–84, https://doi.org/10.1144/GSL.SP.2005.251.01.06, 2005. a
D'Agostino, V. and Tecca, P. R.: Some considerations on the application of the FLO-2D model for debris flow hazard assessment, WIT Trans. Ecol. Environ., 90, 159–170, https://doi.org/10.2495/DEB060161, 2006. a
Dang, C., Cui, P., and Cheng, Z. L.: The formation and failure of debris
flow-dams, background, key factors and model tests: Case studies from China,
Environ. Geol., 57, 1901–1910, https://doi.org/10.1007/s00254-008-1479-6, 2009. a, b
Fryirs, K.: (Dis)Connectivity in catchment sediment cascades: a fresh look at
the sediment delivery problem, Earth Surf. Proc. Land., 38, 30–46, https://doi.org/10.1002/esp.3242, 2013. a
Fryirs, K. A., Brierley, G. J., Preston, N. J., and Spencer, J.: Catchment-scale (dis)connectivity in sediment flux in the upper Hunter
catchment, New South Wales, Australia, Geomorphology, 84, 297–316,
https://doi.org/10.1016/j.geomorph.2006.01.044, 2007. a, b
Garcés, A.: A modeling methodology to study the tributary-junction alluvial fan connectivity during a debris flow event – DATA, figshare [data set], https://doi.org/10.6084/m9.figshare.c.5739287.v1, 2021. a
Heckmann, T., Cavalli, M., Cerdan, O., Foerster, S., Javaux, M., Lode, E.,
Smetanová, A., Vericat, D., and Brardinoni, F.: Indices of sediment
connectivity: opportunities, challenges and limitations, Earth-Sci. Rev., 187, 77–108, https://doi.org/10.1016/j.earscirev.2018.08.004, 2018. a, b
Izquierdo, T., Abad, M., Gómez, Y., Gallardo, D., and Rodríguez-Vidal, J.: The March 2015 catastrophic flood event and its impacts in the city of Copiapó (southern Atacama Desert). An integrated analysis to mitigate future mudflow derived damages, J. S. Am. Earth Sci.,
105, 102975, https://doi.org/0.1016/j.jsames.2020.102975, 2021. a
Jakob, M. and Hungr, O.: Debris-flow Hazards and Related Phenomena, in: vol. 739 of Springer Praxis Books, Springer, Berlin, Heidelberg, https://doi.org/10.1007/b138657, 2005. a
Jordan, T. E., Herrera, L. C., Godfrey, L. V., Colucci, S. J., Gamboa, P.
C., Urrutia, M. J., González, L. G., and Paul, J. F.: Isotopic
characteristics and paleoclimate implications of the extreme precipitation
event of March 2015 in northern Chile, Andean Geol., 46, 1–31, https://doi.org/10.5027/andgeoV46n1-3087, 2019. a, b
Lagos, M. and Jara, F.: Estimación de la línea de nieves utilizando técnicas de percepción remota, entre −28∘ S y −36∘ S de latitud. ?`Qué ha pasado desde Peña y Vidal?, in: XXIII Congreso Chileno de Ingeniería Hidráulica SOCHID,
Valparaíso, 2017. a
Leeder, M. R. and Mack, G. H.: Lateral erosion (`toe-cutting') of alluvial
fans by axial rivers: implications for basin analysis and architecture, J. Geol. Soc., 158, 885–893, https://doi.org/10.1144/0016-760000-198, 2001. a
Mather, A. E. and Hartley, A.: Flow events on a hyper-arid alluvial fan:
Quebrada Tambores, Salar de Atacama, northern Chile, Geol. Soc. Lond. Spec. Publ., 251, 9–24, 2005. a
McDougall, S. and Hungr, O.: Dynamic modelling of entrainment in rapid
landslides, Can. Geotech. J., 42, 1437–1448, 2005. a
McMillan, M. and Schoenbohm, L. M.: Large-Scale Cenozoic Wind Erosion in the
Puna Plateau: The Salina del Fraile Depression, J. Geophys. Res.-Earth, 125, e2020JF005682, https://doi.org/10.1029/2020JF005682, 2020. a
Mergili, M., Emmer, A., Juřicová, A., Cochachin, A., Fischer, J.-T.,
Huggel, C., and Pudasaini, S. P.: How well can we simulate complex
hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the
Santa Cruz Valley (Cordillera Blanca, Perú), Earth Surf. Proc. Land., 43, 1373–1389, https://doi.org/10.1002/esp.4318, 2018. a, b
Michaelides, K. and Singer, M. B.: Impact of coarse sediment supply from
hillslopes to the channel in runoff-dominated, dryland fluvial systems, J. Geophys. Res.-Earth, 119, 1205–1221, 2014. a
Montserrat, S., Tamburrino, A., Roche, O., and Niño, Y.: Pore fluid
pressure diffusion in defluidizing granular columns, J. Geophys. Res.-Earth, 117, F02034, https://doi.org/10.1029/2011JF002164, 2012. a, b
Nicolleti, P. G. and Sorriso-Valvo, M.: Geomorphic controls of the shape and
mobility of rock avalanches, Geol. Soc. Am. Bull., 103, 1365–1373, https://doi.org/10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2, 1991. a
O'Brien, J. S., Julien, P. Y., and Fullerton, W. T.: Two-dimensional water
flood and mudflow simulation, J. Hydraul. Eng., 119, 244–261, https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244), 1993. a
Olsson, A. M. and Sandberg, G. E.: Latin hypercube sampling for stochastic
finite element analysis, J. Eng. Mech., 128, 121–125, 2002. a
Ortega, C., Vargas, G., Rojas, M., Rutllant, J. A., Muñoz, P., Lange, C. B., Pantoja, S., Dezileau, L., and Ortlieb, L.: Extreme ENSO-driven torrential rainfalls at the southern edge of the Atacama Desert during the Late Holocene and their projection into the 21th century, Global Planet. Change, 175, 226–237, https://doi.org/10.1016/j.gloplacha.2019.02.011, 2019. a, b
Parker, G.: Surface-based bedload transport relation for gravel rivers, J. Hydraul. Res., 28, 417–436, 1990. a
Parker, G. and Klingeman, P. C.: On why gravel bed streams are paved, Water
Resour. Res., 18, 1409–1423, 1982. a
Parker, G., Klingeman, P. C., and McLean, D. G.: Bedload and size distribution in paved gravel-bed streams, J. Hydraul. Div.-ASCE, 108, 544–571, 1982. a
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res.-Earth, 117, F03010, https://doi.org/10.1029/2011JF002186, 2012. a
Rickenmann, D.: Empirical relationships for debris flows, Nat. Hazards, 19,
47–77, 1999. a
Rickenmann, D., Laigle, D., McArdell, B. W., and Hübl, J.: Comparison of
2D ebris-flow simulation models with field events, Comput. Geosci., 10, 241–264, https://doi.org/10.1007/s10596-005-9021-3, 2006.
a, b, c, d
Savi, S., Tofelde, S., Wickert, A. D., Bufe, A., Schildgen, T. F., and
Strecker, M. R.: Interactions between main channels and tributary alluvial
fans: channel adjustments and sediment-signal propagation, Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, 2020. a, b, c, d, e, f, g
Stancanelli, L. M. and Musumeci, R. E.: Geometrical characterization of
sediment deposits at the confluence of mountain streams, Water (MDPI), 10,
401, https://doi.org/10.3390/w10040401, 2018. a, b, c
Takahashi, T., Nakagawa, H., Harada, T., and Yamashiki, Y.: Routing debris
flows with particle segregation, J. Hydraul. Eng., 118, 1490–1507, 1992. a
USACE: Hydologic Modelling System (HEC-HMS), available at:
http://www.hec.usace.army.mil/software/hec-hms/ (last access: 1 March 2019), 2015. a
von Boetticher, A., Turowski, J. M., McArdell, B. W., Rickenmann, D., and
Kirchner, J. W.: DebrisInterMixing-2.3: a finite volume solver for
three-dimensional debris-flow simulations with two calibration parameters –
Part 1: Model description, Geosci. Model Dev., 9, 2909–2923,
https://doi.org/10.5194/gmd-9-2909-2016, 2016. a
Wells, S. G. and Harvey, A. M.: Sedimentologic and geomorphic variations in
storm-generated alluvial fans, Howgill Fells, northwest England, Geol. Soc. Am. Bull., 98, 182–198,
https://doi.org/10.1130/0016-7606(1987)98<182:SAGVIS>2.0.CO;2, 1987. a
Wilcox, A. C., Escauriaza, C., Agredano, R., Mignot, E., Zuazo, V., Otárola, S., Castro, L., Gironás, J., Cienfuegos, R., and Mao, L.: An integrated analysis of the March 2015 Atacama floods, Geophys. Res. Lett., 43, 8035–8043, https://doi.org/10.1002/2016GL069751, 2016. a, b
Short summary
We propose a workflow to model the response of an alluvial fan located in the Atacama Desert during an extreme storm event. For this alluvial fan, five different deposits were identified and associated with different debris flow surges. Using a commercial software program, our workflow concatenates these surges into one model. This study depicts the significance of the mechanical classification of debris flows to reproduce how an alluvial fan controls the tributary–river junction connectivity.
We propose a workflow to model the response of an alluvial fan located in the Atacama Desert...
Altmetrics
Final-revised paper
Preprint