Articles | Volume 22, issue 10
https://doi.org/10.5194/nhess-22-3501-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-22-3501-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What weather variables are important for wet and slab avalanches under a changing climate in a low-altitude mountain range in Czechia?
Markéta Součková
CORRESPONDING AUTHOR
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
Department of Hydrology, T. G. Masaryk Water Research Institute, Podbabská 2582/30, 160 00 Prague 6, Czechia
Roman Juras
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
Kryštof Dytrt
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
Vojtěch Moravec
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
Department of Hydrology, T. G. Masaryk Water Research Institute, Podbabská 2582/30, 160 00 Prague 6, Czechia
Johanna Ruth Blöcher
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
Martin Hanel
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
Department of Hydrology, T. G. Masaryk Water Research Institute, Podbabská 2582/30, 160 00 Prague 6, Czechia
Related authors
Sadaf Nasreen, Markéta Součková, Mijael Rodrigo Vargas Godoy, Ujjwal Singh, Yannis Markonis, Rohini Kumar, Oldrich Rakovec, and Martin Hanel
Earth Syst. Sci. Data, 14, 4035–4056, https://doi.org/10.5194/essd-14-4035-2022, https://doi.org/10.5194/essd-14-4035-2022, 2022
Short summary
Short summary
This article presents a 500-year reconstructed annual runoff dataset for several European catchments. Several data-driven and hydrological models were used to derive the runoff series using reconstructed precipitation and temperature and a set of proxy data. The simulated runoff was validated using independent observed runoff data and documentary evidence. The validation revealed a good fit between the observed and reconstructed series for 14 catchments, which are available for further analysis.
Vishal Thakur, Yannis Markonis, Rohini Kumar, Johanna Ruth Thomson, Mijael Rodrigo Vargas Godoy, Martin Hanel, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 29, 4395–4416, https://doi.org/10.5194/hess-29-4395-2025, https://doi.org/10.5194/hess-29-4395-2025, 2025
Short summary
Short summary
Understanding the changes in water movement in earth is crucial for everyone. To quantify this water movement there are several techniques. We examined how different methods of estimating evaporation impact predictions of various types of water movement across Europe. We found that, while these methods generally agree on whether changes are increasing or decreasing, they differ in magnitude. This means selecting the right evaporation method is crucial for accurate predictions of water movement.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, Yannis Markonis, and Miroslav Trnka
Hydrol. Earth Syst. Sci., 29, 3341–3358, https://doi.org/10.5194/hess-29-3341-2025, https://doi.org/10.5194/hess-29-3341-2025, 2025
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, with clusters of 775 and 630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Hossein Abbasizadeh, Petr Maca, Martin Hanel, Mads Troldborg, and Amir AghaKouchak
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-297, https://doi.org/10.5194/hess-2024-297, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Here, we represented catchments as networks of variables connected by cause-and-effect relationships. By comparing the performance of statistical and machine learning methods with and without incorporating causal information to predict runoff properties, we showed that causal information can enhance models' robustness by reducing accuracy drop between training and testing phases, improving the model's interpretability, and mitigating overfitting issues, especially with small training samples.
Mijael Rodrigo Vargas Godoy, Yannis Markonis, Oldrich Rakovec, Michal Jenicek, Riya Dutta, Rajani Kumar Pradhan, Zuzana Bešťáková, Jan Kyselý, Roman Juras, Simon Michael Papalexiou, and Martin Hanel
Hydrol. Earth Syst. Sci., 28, 1–19, https://doi.org/10.5194/hess-28-1-2024, https://doi.org/10.5194/hess-28-1-2024, 2024
Short summary
Short summary
The study introduces a novel benchmarking method based on the water cycle budget for hydroclimate data fusion. Using this method and multiple state-of-the-art datasets to assess the spatiotemporal patterns of water cycle changes in Czechia, we found that differences in water availability distribution are dominated by evapotranspiration. Furthermore, while the most significant temporal changes in Czechia occur during spring, the median spatial patterns stem from summer changes in the water cycle.
Petr Kavka, Jiří Cajthaml, Adam Tejkl, and Martin Hanel
Abstr. Int. Cartogr. Assoc., 6, 120, https://doi.org/10.5194/ica-abs-6-120-2023, https://doi.org/10.5194/ica-abs-6-120-2023, 2023
Sadaf Nasreen, Markéta Součková, Mijael Rodrigo Vargas Godoy, Ujjwal Singh, Yannis Markonis, Rohini Kumar, Oldrich Rakovec, and Martin Hanel
Earth Syst. Sci. Data, 14, 4035–4056, https://doi.org/10.5194/essd-14-4035-2022, https://doi.org/10.5194/essd-14-4035-2022, 2022
Short summary
Short summary
This article presents a 500-year reconstructed annual runoff dataset for several European catchments. Several data-driven and hydrological models were used to derive the runoff series using reconstructed precipitation and temperature and a set of proxy data. The simulated runoff was validated using independent observed runoff data and documentary evidence. The validation revealed a good fit between the observed and reconstructed series for 14 catchments, which are available for further analysis.
Cited articles
Bellaire, S., van Herwijnen, A., Mitterer, C., and Schweizer, J.:
On forecasting wet-snow avalanche activity using simulated snow cover data, Cold Reg. Sci. Technol., 144, 28–38, https://doi.org/10.1016/j.coldregions.2017.09.013, 2017. a, b
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.:
The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018. a
Biecek, P. and Burzykowski, T.:
Explanatory model analysis: explore, explain, and examine predictive models, CRC Press, New York, https://doi.org/10.1201/9780429027192, 2021. a
Bintanja, R.:
The impact of Arctic warming on increased rainfall, Sci. Rep.-UK, 8, 6–11, https://doi.org/10.1038/s41598-018-34450-3, 2018. a
Blahušiaková, A., Matoušková, M., Jenicek, M., Ledvinka, O., Kliment, Z., Podolinská, J., and Snopková, Z.:
Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe, Hydrolog. Sci. J., 65, 2083–2096, https://doi.org/10.1080/02626667.2020.1784900, 2020. a, b, c
Bogena, H. R., Herrmann, F., Jakobi, J., Brogi, C., Ilias, A., Huisman, J. A., Panagopoulos, A., and Pisinaras, V.:
Monitoring of snowpack dynamics with cosmic-ray neutron probes: A comparison of four conversion methods, Frontiers in Water, 2, 1–17, https://doi.org/10.3389/frwa.2020.00019, 2020. a
Castebrunet, H., Eckert, N., Giraud, G., Durand, Y., and Morin, S.:
Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods, The Cryosphere, 8, 1673–1697, 2014. a
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.:
SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, 321–357, 2002. a
Christen, M., Kowalski, J., and Bartelt, P.:
RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, 2010. a
Corona, C., Saez, J. L., Stoffel, M., Rovéra, G., Edouard, J.-L., and Berger, F.:
Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings, Holocene, 23, 292–304, 2013. a
Czech Hydrometeorological Institute (CHMI): Daily data acording to collection of laws: 123/1998, https://www.chmi.cz/historicka-data/pocasi/denni-data/Denni-data-dle-z.-123-1998-Sb 2021. a
Dreier, L., Harvey, S., van Herwijnen, A., and Mitterer, C.:
Relating meteorological parameters to glide-snow avalanche activity, Cold Reg. Sci. Technol., 128, 57–68, https://doi.org/10.1016/j.coldregions.2016.05.003, 2016. a, b, c
Eckerstorfer, M. and Christiansen, H.:
Relating meteorological variables to the natural slab avalanche regime in High Arctic Svalbard, Cold Reg. Sci. Technol., 69, 184–193, https://doi.org/10.1016/j.coldregions.2011.08.008, Special Issue: International Snow Science Workshop 2010 Lake Tahoe, 2011. a, b, c, d, e
Engel, Z., Nývlt, D., Křížek, M., Treml, V., Jankovská, V., and Lisá, L.:
Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic, Quaternary Sci. Rev., 29, 913–927, https://doi.org/10.1016/j.quascirev.2009.12.008, 2010. a
Feng, S. and Hu, Q.:
Changes in winter snowfall/precipitation ratio in the contiguous United States, J. Geophys. Res.-Atmos., 112, 1–12, https://doi.org/10.1029/2007JD008397, 2007. a
Gądek, B., Kaczka, R. J., Rączkowska, Z., Rojan, E., Casteller, A., and Bebi, P.:
Snow avalanche activity in Żleb Żandarmerii in a time of climate change (Tatra Mts., Poland), Catena, 158, 201–212, 2017. a
Germain, D., Filion, L., and Hétu, B.:
Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Quebec, Canada, Can. J. Earth Sci., 42, 2103–2116, 2005. a
Germain, D., Filion, L., and Hétu, B.:
Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada, Climatic Change, 92, 141–167, 2009. a
Germain, D., Pop, O. T., Gratton, M., Holobâcă, I.-H., and Burada, C.:
Snow-avalanche hazard assessment based on dendrogeomorphic reconstructions and classification tree algorithms for ski area development, Parâng Mountains, Romania, Cold Reg. Sci. Technol., 201, 103612, https://doi.org/10.1016/j.coldregions.2022.103612, 2022. a
Giacona, F., Eckert, N., Mainieri, R., Martin, B., Corona, C., Lopez-Saez, J., Monnet, J.-M., Naaim, M., and Stoffel, M.:
Avalanche activity and socio-environmental changes leave strong footprints in forested landscapes: a case study in the Vosges medium-high mountain range, Ann. Glaciol., 59, 111–133, 2018. a, b, c
Gregorutti, B., Michel, B., and Saint-Pierre, P.:
Correlation and variable importance in random forests, Stat. Comput., 27, 659–678, 2017. a
Hendrikx, J., Murphy, M., and Onslow, T.:
Classification trees as a tool for operational avalanche forecasting on the Seward Highway, Alaska, Cold Reg. Sci. Technol., 97, 113–120, 2014. a
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., and Zhang, Y.: High mountain areas, in: The ocean and cryosphere in a changing climate. A special report of the intergovernmental panel on climate change, edited by: Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., and Weyer, N. M., Intergovernmental Panel on Climate Change. Sine loco, 131–202, 2019. a, b, c, d, e, f, g, h, i, j
Horton, S., Towell, M., and Haegeli, P.:
Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables, Nat. Hazards Earth Syst. Sci., 20, 3551–3576, https://doi.org/10.5194/nhess-20-3551-2020, 2020. a, b
Hynčica, M. and Huth, R.:
Long-term changes in precipitation phase in Czechia, Geografie-Sbornik CGS, 124, 41–55, https://doi.org/10.37040/geografie2019124010041, 2019. a
James, G., Witten, D., Hastie, T., and Tibshirani, R.:
An introduction to statistical learning, vol. 112, Springer, New York, https://doi.org/10.1007/978-1-0716-1418-1, 2013. a
Janík, T., Zỳka, V., Skokanová, H., Borovec, R., Demková, K., Havlíček, M., Chumanová, E., Houška, J., and Romportl, D.:
Vývoj krkonošské krajiny-od založení Krkonošského národního
parku po současnost [Landscape development in the Krkonoše
Mts: from foundation of the Krkonoše Mts National Park till present], Opera Corcontica, 57, 65–76, 2020. a
Jeník, J.:
Alpinská vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku: teorie anemo-orografickỳch systém, Nakl. Cěskoslevenské Akademie Věd, Prague, 409 pp.,
1961. a
Juras, R., Pavlásek, J., Blahůt, J., Bašta, P., Klose, Z., Moudrý, V., and Balek, J.: New tool for avalanche forecasting in the Krkonoše Mountains, In conference collection: International Snow Science Workshop Grenoble, Chamonix Mont-Blanc,
https://doi.org/10.13140/2.1.1591.6483, 2013. a
Juras, R., Blöcher, J. R., Jenicek, M., Hotovy, O., and Markonis, Y.:
What affects the hydrological response of rain-on-snow events in low-altitude mountain ranges in Central Europe?, J. Hydrol., 603, 127002, https://doi.org/10.1016/j.jhydrol.2021.127002, 2021. a, b
Lavigne, A., Eckert, N., Bel, L., and Parent, E.:
Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences, J. R. Stat. Soc. C-Appl., 64, 651–671, 2015. a
Liaw, A. and Wiener, M.:
Classification and Regression by randomForest, R News, 2, 18–22, https://CRAN.R-project.org/doc/Rnews/ (last access: 2 September 2022), 2002. a
Loy, A., Follett, L., and Hofmann, H.:
Variations of Q–Q plots: the power of our eyes!, Am. Stat., 70, 202–214, 2016. a
Lunardon, N., Menardi, G., and Torelli, N.:
ROSE: a Package for Binary Imbalanced Learning, R J., 6, 82–92, 2014. a
Maćkiewicz, A. and Ratajczak, W.:
Principal components analysis (PCA), Comput. Geosci., 19, 303–342, 1993. a
MaGICLandscapes: Krkonoše National Park and surroundings, Czech Republic, https://www.interreg-central.eu/Content.Node/MaGICLandscapes.html (last access: 14 July 2022), 2020. a
Mainieri, R., Favillier, A., Lopez-Saez, J., Eckert, N., Zgheib, T., Morel, P., Saulnier, M., Peiry, J.-L., Stoffel, M., and Corona, C.:
Impacts of land-cover changes on snow avalanche activity in the French Alps, Anthropocene, 30, 100244, https://doi.org/10.1016/j.ancene.2020.100244, 2020. a, b, c
Mair, R. and Nairz, P.:
Lawine, Die, 10, 10–11, 2011. a
Marienthal, A., Hendrikx, J., Birkeland, K., and Irvine, K. M.:
Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers, Cold Reg. Sci. Technol., 120, 227–236, https://doi.org/10.1016/j.coldregions.2015.08.007, 2015. a, b, c
Martin, E., Giraud, G., Lejeune, Y., and Boudart, G.:
Impact of a climate change on avalanche hazard, Ann. Glaciol., 32, 163–167, 2001. a
Marty, C., Tilg, A. M., and Jonas, T.:
Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps, J. Hydrometeorol., 18, https://doi.org/10.1175/JHM-D-16-0188.1, 2017. a
Mountain Rescue Service: Avalanche danger in Krkonoše National Park, https://www.horskasluzba.cz/cz/pocasi-na-horach/lavinova-predpoved/krkonose, last access: 1 November 2021. a
Möhle, S., Bründl, M., and Beierle, C.:
Modeling a system for decision support in snow avalanche warning using balanced random forest and weighted random forest, 16th International Conference, AIMSA 2014, Varna, Bulgaria, Switzerland, 11–13 September, https://doi.org/10.1007/978-3-319-10554-3_8, 2014. a
Murtagh, F. and Legendre, P.:
Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion?, J. Classif., 31, 274–295, 2014. a
Nedelcev, O. and Jeníček, M.:
Trends in seasonal snowpack and their relation to climate variables in mountain catchments in Czechia, Hydrolog. Sci. J., 66, 2340–2356, https://doi.org/10.1080/02626667.2021.1990298, 2021. a, b, c
Notarnicola, C.:
Hotspots of snow cover changes in global mountain regions over 2000–2018, Remote Sens. Environ., 243, 111781, https://doi.org/10.1016/j.rse.2020.111781, 2020. a
Probst, P., Wright, M. N., and Boulesteix, A.-L.:
Hyperparameters and tuning strategies for random forest, WIREs Data Min. Knowl., 9, e1301, https://doi.org/10.1002/widm.1301, 2019. a
Reuter, B., Mitterer, C., und Bellaire, S.: WARNSIGNAL KLIMA: Die Lawinengefahr im Klimawandel, in: Warnsignal Klima: Hochgebirge im Wandel Hamburg, Germany: Verlag Wissenschaftliche Auswertungen in Kooperation mit GEO Magazin-Hamburg, 316–323, https://doi.org/10.25592/uhhfdm.9337, 2020. a
Schattan, P., Baroni, G., Oswald, S. E., Schöber, J., Fey, C., Kormann, C., Huttenlau, M., and Achleitner, S.:
Continuous monitoring of snowpack dynamics in alpine terrain by aboveground neutron sensing, Water Resour. Res., 53, 3615–3634, 2017. a
Schweizer, J., Bruce Jamieson, J., and Schneebeli, M.:
Snow avalanche formation, Rev. Geophys., 41, 1016, https://doi.org/10.1029/2002RG000123, 2003. a
Schweizer, J., Mitterer, C., and Stoffel, L.:
On forecasting large and infrequent snow avalanches, Cold Reg. Sci. Technol., 59, 234–241, 2009. a
Sielenou, P. D., Viallon-Galinier, L., Hagenmuller, P., Naveau, P., Morin, S., Dumont, M., Verfaillie, D., and Eckert, N.:
Combining random forests and class-balancing to discriminate between three classes of avalanche activity in the French Alps, Cold Reg. Sci. Technol., 187, 103276, https://doi.org/10.1016/j.coldregions.2021.103276, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m
Soteres, R. L., Pedraza, J., and Carrasco, R. M.:
Snow avalanche susceptibility of the Circo de Gredos (Iberian Central System, Spain), J. Maps, 16, 155–165, 2020. a
Součková, M., Juras, R., Dytrt, K., Moravec, V., Blöcher, J. R., and Hanel, M.:
What weather variables are important for wet and slab avalanches under a changing climate in low altitude mountain range in Czechia?, Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.7041129, 2022. a, b, c, d
Statham, G., Haegeli, P., Greene, E., Birkeland, K., Israelson, C., Tremper, B., Stethem, C., McMahon, B., White, B., and Kelly, J.:
A conceptual model of avalanche hazard, Nat. Hazards, 90, 663–691, 2018. a
Stull, R.:
Wet-bulb temperature from relative humidity and air temperature, J Appl. Meteorol. Clim., 50, 2267–2269, 2011. a
Štursa, J., Jeník, J., and Váňa, J.:
The alpine forest-limit in the Giant Mts (Central Europe) and Abisko Mts (subarctic Sweden), Opera Corcontica, 47, 129–164, 2010. a
Techel, F., Zweifel, B., and Winkler, K.:
Analysis of avalanche risk factors in backcountry terrain based on usage frequency and accident data in Switzerland, Nat. Hazards Earth Syst. Sci., 15, 1985–1997, https://doi.org/10.5194/nhess-15-1985-2015, 2015. a
Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., Pavšek, M., Valt, M., and Darms, G.:
Avalanche fatalities in the European Alps: long-term trends and statistics, Geogr. Helv., 71, 147–159, https://doi.org/10.5194/gh-71-147-2016, 2016. a
Therneau, T. and Atkinson, B.:
rpart: Recursive Partitioning and Regression Trees, R package version 4.1-15, https://CRAN.R-project.org/package=rpart (last access: 2 January 2022), 2019. a
Tolasz, R., Míková, T., Valeriánová, A., and Voženílek, V.: Atlas podnebí Český hydrometeorologický ústav [Climate atlas of Czechia], Univerzita Palackého v Olomouci, 2007, Czech Hydrometeorological
Institute, Palacký University Olomouc, ISBN 978-80-244-1626-7, 2007. a
Zahradníček, P., Brázdil, R., Štěpánek, P., and Řezníčková, L.:
Differences in wind speeds according to measured and homogenized series in the Czech Republic, 1961–2015, Int. J. Climatol., 39, 235–250, 2019. a
Zgheib, T., Giacona, F., Granet-Abisset, A.-M., Morin, S., and Eckert, N.:
One and a half century of avalanche risk to settlements in the upper Maurienne valley inferred from land cover and socio-environmental changes, Global Environ. Chang., 65, 102149, https://doi.org/10.1016/j.gloenvcha.2020.102149, 2020. a, b
Zgheib, T., Giacona, F., Granet-Abisset, A.-M., Morin, S., Lavigne, A., and Eckert, N.:
Spatio-temporal variability of avalanche risk in the French Alps, Reg. Environ. Change, 22, 1–18, 2022. a
Short summary
Avalanches are natural hazards that threaten people and infrastructure. With climate change, avalanche activity is changing. We analysed the change in frequency and size of avalanches in the Krkonoše Mountains, Czechia, and detected important variables with machine learning tools from 1979–2020. Wet avalanches in February and March have increased, and slab avalanches have decreased and become smaller. The identified variables and their threshold levels may help in avalanche decision-making.
Avalanches are natural hazards that threaten people and infrastructure. With climate change,...
Special issue
Altmetrics
Final-revised paper
Preprint