Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-2981-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2981-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global assessment and mapping of ecological vulnerability to wildfires
Fátima Arrogante-Funes
CORRESPONDING AUTHOR
Environmental Remote Sensing Research Group, Department of
Geography and Geology, Universidad de Alcalá, Colegios 2, 28801
Alcalá de Henares, Spain
Inmaculada Aguado
Environmental Remote Sensing Research Group, Department of
Geography and Geology, Universidad de Alcalá, Colegios 2, 28801
Alcalá de Henares, Spain
Emilio Chuvieco
Environmental Remote Sensing Research Group, Department of
Geography and Geology, Universidad de Alcalá, Colegios 2, 28801
Alcalá de Henares, Spain
Related authors
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
This article is included in the Encyclopedia of Geosciences
Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2025-3550, https://doi.org/10.5194/egusphere-2025-3550, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce BuRNN, a model which estimates monthly burned area based on satellite observations and climate, vegetation, and socio-economic data using machine learning. BuRNN outperforms existing process-based fire models. However, the model tends to underestimate burned area in parts of Africa and Australia. We identify the extent of bare ground, the presence of grasses, and fire weather conditions (long periods of warm and dry weather) as key regional drivers of fire activity in BuRNN.
This article is included in the Encyclopedia of Geosciences
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
This article is included in the Encyclopedia of Geosciences
Pere Joan Gelabert, Adrián Jiménez-Ruano, Clara Ochoa, Fermín Alcasena, Johan Sjöström, Christopher Marrs, Luís Mário Ribeiro, Palaiologos Palaiologou, Carmen Bentué Martínez, Emilio Chuvieco, Cristina Vega-Garcia, and Marcos Rodrigues
EGUsphere, https://doi.org/10.5194/egusphere-2025-143, https://doi.org/10.5194/egusphere-2025-143, 2025
Short summary
Short summary
Wildfires threaten ecosystems and communities across Europe. Our study developed models to predict where and why these ignitions occur in different European environments. We found that weather anomalies and human factors, like proximity to urban areas and roads, are key drivers. Using Machine Learning our models achieved strong predictive accuracy. These insights help design better wildfire prevention strategies, ensuring safer landscapes and communities as fire risks grow with climate change.
This article is included in the Encyclopedia of Geosciences
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
This article is included in the Encyclopedia of Geosciences
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
This article is included in the Encyclopedia of Geosciences
Elena Aragoneses, Mariano García, Michele Salis, Luís M. Ribeiro, and Emilio Chuvieco
Earth Syst. Sci. Data, 15, 1287–1315, https://doi.org/10.5194/essd-15-1287-2023, https://doi.org/10.5194/essd-15-1287-2023, 2023
Short summary
Short summary
We present a new hierarchical fuel classification system with a total of 85 fuels that is useful for preventing fire risk at different spatial scales. Based on this, we developed a European fuel map (1 km resolution) using land cover datasets, biogeographic datasets, and bioclimatic modelling. We validated the map by comparing it to high-resolution data, obtaining high overall accuracy. Finally, we developed a crosswalk for standard fuel models as a first assignment of fuel parameters.
This article is included in the Encyclopedia of Geosciences
Joshua Lizundia-Loiola, Magí Franquesa, Martin Boettcher, Grit Kirches, M. Lucrecia Pettinari, and Emilio Chuvieco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-399, https://doi.org/10.5194/essd-2020-399, 2021
Preprint withdrawn
Short summary
Short summary
The article presents the burned area product of the Copernicus Climate Change Service, called C3SBA10. It is the adaptation to Sentinel-3 OLCI data of the FireCCI51 global BA product. The paper shows how C3SBA10 is fully consistent with its predecessor, ensuring an uninterrupted provision of global burned area data from 2001 to present. The product is freely available in two monthly formats: in continental tiles at 300m spatial resolution, and globally at 0.25 degrees.
This article is included in the Encyclopedia of Geosciences
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020, https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abson, D. J., Dougill, A. J., and Stringer, L. C.: Using Principal Component
Analysis for information-rich socio-ecological vulnerability mapping in
Southern Africa, Appl. Geogr., 35, 515–524,
https://doi.org/10.1016/j.apgeog.2012.08.004, 2012.
Alcasena, F. J., Salis, M., Nauslar, N. J., Aguinaga, A. E., and
Vega-García, C.: Quantifying economic losses from wildfires in black
pine afforestations of northern Spain, For. Policy Econ., 73, 153–167,
https://doi.org/10.1016/j.forpol.2016.09.005, 2016.
Aponte, C., de Groot, W. J., and Wotton, B. M.: Forest fires and climate change: causes, consequences and management options, Int. J. Wildland Fire, 25, i–ii, 2016.
Aretano, R., Semeraro, T., Petrosillo, I., De Marco, A., Pasimeni, M. R.,
and Zurlini, G.: Mapping ecological vulnerability to fire for effective
conservation management of natural protected areas, Ecol. Modell., 295,
163–175, https://doi.org/10.1016/j.ecolmodel.2014.09.017, 2015.
Arrogante-Funes, P., Bruzón, A. G., Arrogante-Funes, F., Ramos-Bernal,
R. N., and Vázquez-Jiménez, R.: Integration of vulnerability and
hazard factors for landslide risk assessment, Int. J. Environ. Res. Pub.
He., 18, 11987, https://doi.org/10.3390/ijerph182211987, 2021.
Baeza, A. M. J., Valdecantos, A., Alloza, J. A., Vallejo, V. R., Centro, I.,
Ambientales, D. E., Darwin, C. C. R., and Tecnoldgico, P.: Human Disturbance
and Environmental Factors as Drivers of Long-Term Post-Fire Regeneration
Patterns in Mediterranean Forests, J. Veg. Sci., 18, 243–252, http://www.jstor.org/stable/4499220 (last access: 16 March 2021), 2007.
Bajocco, S., Salvati, L., and Ricotta, C.: Land degradation versus fire: A
spiral process?, Prog. Phys. Geogr., 35, 3–18,
https://doi.org/10.1177/0309133310380768, 2011.
Barrio, M., Loureiro, M., and Chas, M. L.: Aproximación a las
pérdidas económicas ocasionadas a corto plazo por los incendios
forestales en Galicia en 2006, Econ. Agrar. Recur. Nat., 7, 45,
https://doi.org/10.7201/earn.2007.14.03, 2011.
Berry, P. M., Rounsevell, M. D. A., Harrison, P. A., and Audsley, E.:
Assessing the vulnerability of agricultural land use and species to climate
change and the role of policy in facilitating adaptation, Environ. Sci.
Policy, 9, 189–204, https://doi.org/10.1016/j.envsci.2005.11.004, 2006.
Bond, W. J., Woodward, F. I., and Midgley, G. F.: The global distribution of
ecosystems in a world without fire, New Phytol., 165, 525–538,
https://doi.org/10.1111/j.1469-8137.2004.01252.x, 2005.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C.,
Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V.,
Bagarello, V., Oost, K. Van, Montanarella, L., and Panagos, P.: An
assessment of the global impact of 21st century land use change on soil
erosion, Nat. Commun., 8, 2013, https://doi.org/10.1038/s41467-017-02142-7, 2017.
Borrero, S. and Henao, F.: Can managers be really objective? Bias in
multicriteria decision analysis, Acad. Strateg. Manag. J., 16, 244–260,
2017.
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison,
S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A.,
Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C.,
Swetnam, T. W., Van Der Werf, G. R., and Pyne, S. J.: Fire in the earth
system, Science, 324, 481–484, https://doi.org/10.1126/science.1163886, 2009.
Buhk, C., Meyn, A., and Jentsch, A.: The challenge of plant regeneration
after fire in the Mediterranean Basin: Scientific gaps in our knowledge on
plant strategies and evolution of traits, Plant Ecol., 192, 1–19,
https://doi.org/10.1007/s11258-006-9224-2, 2007.
Burgess, N., Hales, J. D. A., Ricketts, T. H., and Dinerstein, E.: Factoring
species, non-species values and threats into biodiversity prioritisation
across the ecoregions of Africa and its islands, Biol. Conserv., 127,
383–401, https://doi.org/10.1016/j.biocon.2005.08.018, 2006.
Burgess, N., de Lima, M. G., Kingston, N., Blythe, S., Tompkins, I., Coad, L., and Leverington, F.: Protected Area Management Effectiveness in WWF Global Priority Places, Cambridge, UNEP-WCMC. Así, está citado en otros artículos, 2014.
Caprio, A. C. and Graber, D. M.: Returning fire to the mountains: can we
successfully restore the ecological role of pre-Euroamerican fire regimes to
the Sierra Nevada, edited by: Cole, D., McCool, S., and O'Loughlin, J., in:
Wilderness science in a time of change conference, Ogden, UT, USA, Department of Agriculture, Forest Service, Rocky Mountain Research Station, Proceedings RMRS, 5, 233–241, 2000.
Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Martín, M. P., Vilar,
L., Martínez, J., Padrón, D., Martín, S., and Salas, J.:
Cartografía del peligro de incendios forestales mediante
Teledetección y SIG, Teledetección – Hacia un Mejor entendimiento la
dinámica global y regional, Madrid, Editorial Martín, Glob. Reg., 19–26, 2007.
Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M.
P., Vilar, L., Martínez, J., Martín, S., Ibarra, P., de la Riva,
J., Baeza, J., Rodríguez, F., Molina, J. R., Herrera, M. A., and
Zamora, R.: Development of a framework for fire risk assessment using remote
sensing and geographic information system technologies, Ecol. Model., 221,
46–58, https://doi.org/10.1016/j.ecolmodel.2008.11.017, 2010.
Chuvieco, E., Martínez, S., Román, M. V., Hantson, S., and
Pettinari, M. L.: Integration of ecological and socio-economic factors to
assess global vulnerability to wildfire, Glob. Ecol. Biogeogr., 23,
245–258, https://doi.org/10.1111/geb.12095, 2014.
Cinner, J. E., McClanahan, T. R., Graham, N. A. J., Daw, T. M., Maina, J.,
Stead, S. M., Wamukota, A., Brown, K., and Bodin, O.: Vulnerability of
coastal communities to key impacts of climate change on coral reef
fisheries, Global Environ. Chang., 22, 12–20,
https://doi.org/10.1016/j.gloenvcha.2011.09.018, 2012.
Clavijo, A. U., Delgado, M. G., and González, P. B.: Análisis de
Sensibilidad aplicado a modelos de crecimiento urbano basados en
autómatas celulares de estructura irregular, Cuad. Geográficos, 58,
326–348, 2019.
Cochrane, M. A. and Laurance, W. F.: Fire as a large-scale edge effect in
Amazonian forests, J. Trop. Ecol., 18, 311–325,
https://doi.org/10.1017/S0266467402002237, 2002.
Collinge, S. K.: Ecological consequences of habitat fragmentation:
Implications for landscape architecture and planning, Landscape Urban Plan.,
36, 59–77, https://doi.org/10.1016/S0169-2046(96)00341-6, 1996.
Cutter, S. L., Boruff, B. J., and Shirley, W. L.: Social vulnerability to
environmental hazards, Soc. Sci. Q., 84, 242–261,
https://doi.org/10.1111/1540-6237.8402002, 2003.
De Groot, W. J. B., Goldammer, J. G., Keenan, T., Brady, M. A., Lynham, T.
J., Justice, C. O., Csiszar, I. A., and O'Loughlin, K.: Developing a global
early warning system for wildland fire, V Int. Conf. For. Fire Res., 234, S10, https://doi.org/10.1016/j.foreco.2006.08.025, 2006.
Díaz-Delgado, R., Lloret, F., Pons, X., and Terradas, J.: Satellite
evidence of decreasing resilience in mediterranean plant communities after
recurrent wildfires, Ecology, 83, 2293–2303,
https://doi.org/10.1890/0012-9658(2002)083[2293:SEODRI]2.0.CO;2, 2002.
Dinerstein, E., Olson, D., Graham, D., Webster, A., Pimm, S., Bookbinder,
M., and Ledec, G.: A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean, World Wildlife Fund and World Bank, Washington, DCFAO (2003), USA, FAOs global estimate of mangroves, https://www.fao.org/home/en/ (last access: 20 January 2021), 1995.
Duguy, B. and Vallejo, V. R.: Land-use and fire history effects on post-fire
vegetation dynamics in eastern Spain, J. Veg. Sci., 19, 97–108, 2008.
Duguy, B., Alloza, J. A., Baeza, M. J., De La Riva, J., Echeverría, M.,
Ibarra, P., Llovet, J., Cabello, F. P., Rovira, P., and Vallejo, R. V.:
Modelling the ecological vulnerability to forest fires in mediterranean
ecosystems using geographic information technologies, Environ. Manage., 50,
1012–1026, https://doi.org/10.1007/s00267-012-9933-3, 2012.
Duro, D. C., Coops, N. C., Wulder, M. A., and Han, T.: Development of a
large area biodiversity monitoring system driven by remote sensing, Prog.
Phys. Geogr., 31, 235–260, https://doi.org/10.1177/0309133307079054, 2007.
FAO/UNEP/UNESCO (Food and Agriculture Organization of the United Nations): A provisional methodology for soil degradation assessment, United Nations, Rome, Food Agric. Organ., 75, 1979.
Flannigan, M. D., Krawchuk, M. A., De Groot, W. J., Wotton, B. M., and
Gowman, L. M.: Implications of changing climate for global wildland fire,
Int. J. Wildland Fire, 18, 483–507, https://doi.org/10.1071/WF08187, 2009.
Freudenberger, L., Hobson, P. R., Schluck, M., and Ibisch, P. L.: A global
map of the functionality of terrestrial ecosystems, Ecol. Complex., 12,
13–22, https://doi.org/10.1016/j.ecocom.2012.08.002, 2012.
El Gibari, S., Gómez, T., and Ruiz, F.: Building composite indicators
using multicriteria methods: a review, J. Bus. Econ., 89, 1–24,
https://doi.org/10.1007/s11573-018-0902-z, 2019.
Giovannini, G. and Lucchesi, S.: Modifications induced in soil
physico-chemical parameters by experimental fires at different intensities,
Soil Sci., 162, 479–486, 1997.
Gómez-Delgado, M. and Tarantola, S.: GLOBAL sensitivity analysis, GIS
and multi-criteria evaluation for a sustainable planning of a hazardous
waste disposal site in Spain, Int. J. Geogr. Inf. Sci., 20, 449–466,
https://doi.org/10.1080/13658810600607709, 2006.
González, J. R., Kolehmainen, O., and Pukkala, T.: Using expert
knowledge to model forest stand vulnerability to fire, Comput. Electron.
Agric., 55, 107–114, https://doi.org/10.1016/j.compag.2006.12.005, 2007.
Gonzalez, P. B., Aguilera-Benavente, F., and Gomez-Delgado, M.: Partial
validation of cellular automata based model simulations of urban growth: An
approach to assessing factor influence using spatial methods, Environ.
Model. Softw., 69, 77–89, https://doi.org/10.1016/j.envsoft.2015.03.008, 2015.
Goodchild, M. F., Steyaert, L. T., Parks, B. O., Johnston, C., Maidment, D., Crane, M., and Glendinning, S.: GIS and environmental modeling: progress and research issues, Oxford Univ. Press, New York, 318–331, ISBN 9780470236772, 1996.
Gouveia, C., DaCamara, C. C., and Trigo, R. M.: Post-fire vegetation recovery in Portugal based on spot/vegetation data, Nat. Hazards Earth Syst. Sci., 10, 673–684, https://doi.org/10.5194/nhess-10-673-2010, 2010.
Guyette, R. P., Muzika, R. M., and Dey, D. C.: Dynamics of an Anthropogenic
Fire Regime, Ecosystems, 6, 326–335, https://doi.org/10.1007/s10021-002-0115-7, 2002.
Hämäläinen, R. P. and Alaja, S.: The threat of weighting biases
in environmental decision analysis, Ecol. Econ., 68, 556–569,
https://doi.org/10.1016/j.ecolecon.2008.05.025, 2008.
Heuvelink, G. B.: Error propagation in environmental modelling with GIS, CRC
Press, 105 p., ISBN 9780748407439, 1998.
Heuvelink, G. B., Burrough, P. A., and Stein, A.: Propagation of errors in
spatial modelling with GIS, Int. J. Geogr. Inf. Syst., 3, 303–322, 1989.
Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S., and Brown, T.
A.: Vegetation mediated the impacts of postglacial climate change on fire
regimes in the south-central Brooks Range, Alaska, Ecol. Monogr., 79,
201–219, https://doi.org/10.1890/07-2019.1, 2009.
Hilton-Taylor, C. and Brackett, D.: 2000 IUCN Red List of Threatened Species, IUCN, Gland,
Switzerland and Cambridge, UK, xviii, 61 p., ISBN 9782831705644, 2000.
Hobson, K. A. and Schieck, J.: Changes in bird communities in boreal
mixedwood forest: Harvest and wildfire effects over 30 years, Ecol. Appl.,
9, 849–863,
https://doi.org/10.1890/1051-0761(1999)009[0849:CIBCIB]2.0.CO;2, 1999.
Hoekstra, J. M., Molnar, J. L., Jennings, M., Revenga, C., Spalding, M. D.,
Boucher, T. M., Robertson, J. C., Heibel, T. J., and Ellison, K.: The Atlas
of global conservation: changes, challenges, and opportunities to make a
difference, J. L. Molnar. Berkeley: University of California Press,
1–272, https://doi.org/10.5860/choice.48-0280, 2010.
Houghton, J. T., Ding, Y. D. J. G., Griggs, D. J., Noguer, M., van der
Linden, P. J. Dai, X., and Johnson, C. A.: Climate change 2001: the
scientific basis, The Press Syndicate of the University of Cambridge, Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, United Kingdom and New York, USA, 881 pp., ISBN 0521807670, 2001.
Ippolito, A., Sala, S., Faber, J. H., and Vighi, M.: Ecological
vulnerability analysis: A river basin case study, Sci. Total Environ., 408,
3880–3890, https://doi.org/10.1016/j.scitotenv.2009.10.002, 2010.
IUCN and UNEP-WCMC: The World Database on Protected Areas (WDPA), Ambridge (UK): UNEP 826 World Conservation Monitoring Centre, https://data.unep-wcmc.org/datasets/12 (last access: 27 January 2021), 2020.
Kier, G., Mutke, J., Dinerstein, E., Ricketts, T. H., Küper, W., Kreft,
H., and Barthlott, W.: Global patterns of plant diversity and floristic
knowledge, J. Biogeogr., 32, 1107–1116,
https://doi.org/10.1111/j.1365-2699.2005.01272.x, 2005.
Kier, G., Kreft, H., Tien, M. L., Jetz, W., Ibisch, P. L., Nowicki, C.,
Mutke, J., and Barthlott, W.: A global assessment of endemism and species
richness across island and mainland regions, P. Natl. Acad. Sci. USA, 106, 9322–9327, https://doi.org/10.1073/pnas.0810306106, 2009.
Kirkman, L. K., Mitchell, R. J., Helton, R. C., and Drew, M. B.:
Productivity and species richness across an environmental gradient in a
fire-dependent ecosystem, Am. J. Bot., 88, 2119–2128,
https://doi.org/10.2307/3558437, 2001.
Kodandapani, N., Cochrane, M. A., and Sukumar, R.: A comparative analysis of
spatial, temporal, and ecological characteristics of forest fires in
seasonally dry tropical ecosystems in the Western Ghats, India, For. Ecol.
Manage., 256, 607–617, https://doi.org/10.1016/j.foreco.2008.05.006, 2008.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, 1–33,
https://doi.org/10.1029/2003GB002199, 2005.
Landesmann, J. B., Gowda, J. H., Garibaldi, L. A., and Kitzberger, T.:
Survival, growth and vulnerability to drought in fire refuges: implications
for the persistence of a fire-sensitive conifer in northern Patagonia,
Oecologia, 179, 1111–1122, https://doi.org/10.1007/s00442-015-3431-2, 2015.
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A.,
Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M.,
Lexer, M. J., and Marchetti, M.: Climate change impacts, adaptive capacity,
and vulnerability of European forest ecosystems, Forest Ecol. Manage., 259,
698–709, https://doi.org/10.1016/j.foreco.2009.09.023, 2010.
Mace, G. M. and Lande, R.: Assessing extinction threats: towards a
reassessment of IUCN endangered species categories, Conserv. Biol., 5,
148–157, 1991.
Martínez Vega, J., Romero Calcerrada, R., and Echavarría, P.:
Valoración paisajística y ecológica de la Comunidad de Madrid:
su integración en un índice sintético de riesgo de incendios
forestales, Rev. Teledetección, 28, 43–60, 2007.
Midgley, G. F. and Bond, W. J.: Future of African terrestrial biodiversity
and ecosystems under anthropogenic climate change, Nat. Clim. Change, 5,
823–829, https://doi.org/10.1038/nclimate2753, 2015.
Moreira, F., Viedma, O., Arianoutsou, M., Curt, T., Koutsias, N., Rigolot,
E., Barbati, A., Corona, P., Vaz, P., Xanthopoulos, G., Mouillot, F., and
Bilgili, E.: Landscape – wildfire interactions in southern Europe:
Implications for landscape management, J. Environ. Manage., 92, 2389–2402,
https://doi.org/10.1016/j.jenvman.2011.06.028, 2011.
Moreno, A. and Becken, S.: A climate change vulnerability assessment
methodology for coastal tourism, J. Sustain. Tour., 17, 473–488,
https://doi.org/10.1080/09669580802651681, 2009.
Moreno-Martínez, Á., Camps-Valls, G., Kattge, J., Robinson, N.,
Reichstein, M., van Bodegom, P., Kramer, K., Cornelissen, J. H. C., Reich,
P., Bahn, M., Niinemets, Ü., Peñuelas, J., Craine, J. M.,
Cerabolini, B. E. L., Minden, V., Laughlin, D. C., Sack, L., Allred, B.,
Baraloto, C., Byun, C., Soudzilovskaia, N. A., and Running, S. W.: A
methodology to derive global maps of leaf traits using remote sensing and
climate data, Remote Sens. Environ., 218, 69–88,
https://doi.org/10.1016/j.rse.2018.09.006, 2018.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., and
Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 468,
895, https://doi.org/10.1038/468895a, 2010.
Nagendra, H. and Rocchini, D.: High resolution satellite imagery for
tropical biodiversity studies: The devil is in the detail, Biodivers.
Conserv., 17, 3431–3442, https://doi.org/10.1007/s10531-008-9479-0, 2008.
Nitschke, C. R. and Innes, J. L.: Potential effect of climate change on
observed fire regimes in the Cordilleran forests of South-Central Interior,
British Columbia, Clim. Change, 116, 579–591,
https://doi.org/10.1007/s10584-012-0522-5, 2013.
Olson, D. M. and Dinerstein, E.: The Global 200: Priority Ecoregions for
Global Conservation, Ann. Missouri Bot. Gard., 89, 199,
https://doi.org/10.2307/3298564, 2002.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E.,
Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y.,
Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial
Ecoregions of the World: A New Map of Life on Earth, Bioscience, 51, 933,
https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2, 2001.
Pausas, J. G. and Ribeiro, E.: Fire and plant diversity at the global scale,
Glob. Ecol. Biogeogr., 26, 889–897, https://doi.org/10.1111/geb.12596,
2017.
Pausas, J. G., Carreras, J., Ferré, A., and Font, X.: Coarse-scale plant
species richness in relation to environmental heterogeneity, J. Veg. Sci.,
14, 661–668, https://doi.org/10.1111/j.1654-1103.2003.tb02198.x, 2003.
Pereira, H. M., Rosa, I. M. D., Martins, I. S., and Al, E.: Supplementary
Materials for “Global trends in biodiversity and ecosystem services from 1900
to 2050”, BioRxiv, Science, 1, 1–5, 2020.
Poos, M. S., Walker, S. C., and Jackson, D. A.: Functional-diversity indices
can be driven by methodological choices and species richness, Ecology, 90,
341–347, https://doi.org/10.1890/08-1638.1, 2009.
Potapov, P., Yaroshenko, A., Turubanova, S., Dubinin, M., Laestadius, L.,
Thies, C., Aksenov, D., Egorov, A., Yesipova, Y., Glushkov, I.,
Karpachevskiy, M., Kostikova, A., Manisha, A., Tsybikova, E., and
Zhuravleva, I.: Mapping the world's intact forest landscapes by remote
sensing, Ecol. Soc., 13, 51, https://doi.org/10.5751/ES-02670-130251, 2008.
Preston, B. L., Yuen, E. J., and Westaway, R. M.: Putting vulnerability to
climate change on the map: A review of approaches, benefits, and risks,
Sustain. Sci., 6, 177–202, https://doi.org/10.1007/s11625-011-0129-1, 2011.
Richards, D. and Rowe, W. D.: Decision-making with heterogeneous sources of
information, Risk Anal., 19, 69–81, 1999.
Ricketts, T. H., Dinerstein, E., Olson, D., Loucks, C. J., Eichbaum, W.,
DellaSala, D., Kavanagh, K., Hedao, P., Hurley, P. T., Carney, K. M., Abell,
R., and Walters, S.: Terrestrial Ecoregions of North America: A Conservation
Assessment, Island Press, Washington DC, 485 pp., ISBN 9781559637220, 1999a.
Ricketts, T. H., Dinerstein, E., Olson, D. M., and Loucks, C.: Who's Where
in North Patterns of species richness and the utility of indicator taxa,
Bioscience, 49, 369–381, 1999b.
Rosenzweig, M. L.: Species Diversity in Space and Time, Cambridge University
Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511623387, 1995.
Saltelli, A., Chan, K., and Scott, M.: Sensitivity Analysis John Wiley & Sons publishers, LTD, England, Probability and Statistics series, 2000.
Scott, D. F. and Van Wyk, D. B.: The effects of wildfire on soil wettability
and hydrological behaviour of an afforested catchment, J. Hydrol., 121,
239–256, https://doi.org/10.1016/0022-1694(90)90234-O, 1990.
Semeraro, T., Mastroleo, G., Aretano, R., Facchinetti, G., Zurlini, G., and
Petrosillo, I.: GIS Fuzzy Expert System for the assessment of ecosystems
vulnerability to fire in managing Mediterranean natural protected areas, J.
Environ. Manage., 168, 94–103,
https://doi.org/10.1016/j.jenvman.2015.11.053, 2016.
Shlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H.,
Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., Swaty, R., Schmidt,
D., Kaufmann, M., Myers, R., Alencar, A., Kearns, F., Johnson, D., Smith,
J., and Zollner, D.: Fire, ecosystems and people: threats and strategies for global biodiversity conservation, Arlington: The Nature Conservancy, GFI Technical Report 2007-2, Arlington, VA: The Nature Conservancy Glob. Fire Initiat. Tech. Rep., 17, 2007.
Stephens, S. L., Agee, J. K., Fule, P. Z., North, M. P., Romme, W. H., Swetnam, T. W., and Turner, M. G.: Managing forests and fire in changing climates, Science, 342, 41–42, 2013.
Turner, B. L., Kasperson, R. E., Matsone, P. A., McCarthy, J. J., Corell, R.
W., Christensene, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M.
L., Polsky, C., Pulsipher, A., and Schiller, A.: A framework for
vulnerability analysis in sustainability science, P. Natl. Acad. Sci. USA, 100, 8074–8079, https://doi.org/10.1073/pnas.1231335100, 2003.
UNISDIR: Making disaster risk reduction gender sensitive: Policy and practical guidelines, 2009.
Williams, L. R. R. and Kapustka, L. A.: Ecosystem vulnerability: A complex
interface with technical components, Environ. Toxicol. Chem., 19,
1055–1058, https://doi.org/10.1002/etc.5620190435, 2000.
World Wildlife Fund: WildFinder: Online database of species distributions, https://www.worldwildlife.org/pages/wildfinder-database (last access: 20 January 2021), 2006.
Xing, Y., and Ree, R. H.: Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot, P. Natl. Acad. Sci. USA, 114, E3444–E3451, 2017.
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems...
Altmetrics
Final-revised paper
Preprint