Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-2981-2022
https://doi.org/10.5194/nhess-22-2981-2022
Research article
 | 
09 Sep 2022
Research article |  | 09 Sep 2022

Global assessment and mapping of ecological vulnerability to wildfires

Fátima Arrogante-Funes, Inmaculada Aguado, and Emilio Chuvieco

Related authors

Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system
Elena Aragoneses, Mariano García, Michele Salis, Luís M. Ribeiro, and Emilio Chuvieco
Earth Syst. Sci. Data, 15, 1287–1315, https://doi.org/10.5194/essd-15-1287-2023,https://doi.org/10.5194/essd-15-1287-2023, 2023
Short summary
Operational implementation of the burned area component of the Copernicus Climate Change Service: from MODIS 250 m to OLCI 300 m data
Joshua Lizundia-Loiola, Magí Franquesa, Martin Boettcher, Grit Kirches, M. Lucrecia Pettinari, and Emilio Chuvieco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-399,https://doi.org/10.5194/essd-2020-399, 2021
Preprint withdrawn
Development of a standard database of reference sites for validating global burned area products
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020,https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019,https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies
Emilio Chuvieco, Joshua Lizundia-Loiola, Maria Lucrecia Pettinari, Ruben Ramo, Marc Padilla, Kevin Tansey, Florent Mouillot, Pierre Laurent, Thomas Storm, Angelika Heil, and Stephen Plummer
Earth Syst. Sci. Data, 10, 2015–2031, https://doi.org/10.5194/essd-10-2015-2018,https://doi.org/10.5194/essd-10-2015-2018, 2018
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023,https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023,https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023,https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
A data-driven model for Fennoscandian wildfire danger
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023,https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Equivalent hazard magnitude scale
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022,https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary

Cited articles

Abson, D. J., Dougill, A. J., and Stringer, L. C.: Using Principal Component Analysis for information-rich socio-ecological vulnerability mapping in Southern Africa, Appl. Geogr., 35, 515–524, https://doi.org/10.1016/j.apgeog.2012.08.004, 2012. 
Alcasena, F. J., Salis, M., Nauslar, N. J., Aguinaga, A. E., and Vega-García, C.: Quantifying economic losses from wildfires in black pine afforestations of northern Spain, For. Policy Econ., 73, 153–167, https://doi.org/10.1016/j.forpol.2016.09.005, 2016. 
Aponte, C., de Groot, W. J., and Wotton, B. M.: Forest fires and climate change: causes, consequences and management options, Int. J. Wildland Fire, 25, i–ii, 2016. 
Aretano, R., Semeraro, T., Petrosillo, I., De Marco, A., Pasimeni, M. R., and Zurlini, G.: Mapping ecological vulnerability to fire for effective conservation management of natural protected areas, Ecol. Modell., 295, 163–175, https://doi.org/10.1016/j.ecolmodel.2014.09.017, 2015. 
Arrogante-Funes, P., Bruzón, A. G., Arrogante-Funes, F., Ramos-Bernal, R. N., and Vázquez-Jiménez, R.: Integration of vulnerability and hazard factors for landslide risk assessment, Int. J. Environ. Res. Pub. He., 18, 11987, https://doi.org/10.3390/ijerph182211987, 2021. 
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
Altmetrics
Final-revised paper
Preprint