Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-139-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-139-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic
Icelandic Meteorological Office (IMO), Reykjavík, Iceland
Beatriz Martínez Montesinos
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Sara Barsotti
Icelandic Meteorological Office (IMO), Reykjavík, Iceland
Laura Sandri
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Arnau Folch
Barcelona Supercomputing Center (BSC), Barcelona, Spain
Geociencias Barcelona, Consejo Superior Investigaciones Científicas (CSIC), Barcelona, Spain
Leonardo Mingari
Barcelona Supercomputing Center (BSC), Barcelona, Spain
Giovanni Macedonio
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Sezione di Napoli, Naples, Italy
Antonio Costa
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Related authors
Manuel Titos, Carmen Benítez, Milad Kowsari, and Jesús M. Ibáñez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-102, https://doi.org/10.5194/nhess-2024-102, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Developing seismo-volcanic monitoring tools is crucial for Volcanic Observatories. Our study reviews current methods using Transfer Learning techniques and finds that while these systems identify nearly 90 % of seismic events, they miss other important volcanic data due to the catalogue-learning bias. We propose a weakly supervised technique to reduce bias and uncover new volcanic information. This method can improve existing databases and create new ones efficiently using machine learning.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 25, 1943–1962, https://doi.org/10.5194/nhess-25-1943-2025, https://doi.org/10.5194/nhess-25-1943-2025, 2025
Short summary
Short summary
By considering the quantification of tephra mass deposited on roads following an eruption (or a series of explosive volcanic eruptions), in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Mt Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis that could be reused, converting in this way a potential problem into an opportunity.
Rachel C. W. Whitty, Evgenia Ilyinskaya, Melissa A. Pfeffer, Ragnar H. Thrastarson, Þorsteinn Johannsson, Sara Barsotti, Tjarda J. Roberts, Guðni M. Gilbert, Tryggvi Hjörvar, Anja Schmidt, Daniela Fecht, and Grétar G. Sæmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-937, https://doi.org/10.5194/egusphere-2025-937, 2025
Short summary
Short summary
Our work focuses on volcanic emissions, a poorly understood air pollution hazard in populated areas. We present a large dataset of reference-grade measurements of sulfur dioxide gas and aerosol particulate matter (PM1, PM2.5 and PM10) collected during a recent episode of eruptions in Iceland, which is still ongoing at the time of writing. We identified fine-scale fluctuations in ground-level concentrations of these pollutants and we discuss the implications of these for population exposures.
Anita Grezio, Damiano Delrosso, Marco Anzidei, Marco Bianucci, Giovanni Chiodini, Antonio Costa, Antonio Guarnieri, Marina Locritani, Silvia Merlino, Filippo Muccini, Marco Paterni, Dmitri Rouwet, Giancarlo Tamburello, and Georg Umgiesser
EGUsphere, https://doi.org/10.5194/egusphere-2025-286, https://doi.org/10.5194/egusphere-2025-286, 2025
Short summary
Short summary
Volcanic lakes have been recognized as a rare but devastating source of disasters after the limnic eruption of Lake Nyos in 1986. The potential risk of Lake Albano (20 km southeast of the centre of Rome, Italy) is due to exposed elements (people presence, economic and touristic activities). The 3D modelling of the lake dynamics is crucial to investigate the lake stratification and degassing and the current and future behavior and stability of Lake Albano.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
Laura Sandri, Alexander Garcia, Cristina Proietti, Stefano Branca, Gaetana Ganci, and Annalisa Cappello
Nat. Hazards Earth Syst. Sci., 24, 4431–4455, https://doi.org/10.5194/nhess-24-4431-2024, https://doi.org/10.5194/nhess-24-4431-2024, 2024
Short summary
Short summary
In this paper we propose a probability map that shows where most likely future flank eruptions will occur at Etna volcano (in Sicily, Italy). The map updates previous studies since it is based on a much longer record of past flank eruption fissures that opened in the last 4000 years on Etna. We also propose sensitivity tests to evaluate how much the assumptions made change the final probability evaluation.
Manuel Titos, Carmen Benítez, Milad Kowsari, and Jesús M. Ibáñez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-102, https://doi.org/10.5194/nhess-2024-102, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Developing seismo-volcanic monitoring tools is crucial for Volcanic Observatories. Our study reviews current methods using Transfer Learning techniques and finds that while these systems identify nearly 90 % of seismic events, they miss other important volcanic data due to the catalogue-learning bias. We propose a weakly supervised technique to reduce bias and uncover new volcanic information. This method can improve existing databases and create new ones efficiently using machine learning.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Gro B. M. Pedersen, Melissa A. Pfeffer, Sara Barsotti, Simone Tarquini, Mattia de'Michieli Vitturi, Bergrún A. Óladóttir, and Ragnar Heiðar Þrastarson
Nat. Hazards Earth Syst. Sci., 23, 3147–3168, https://doi.org/10.5194/nhess-23-3147-2023, https://doi.org/10.5194/nhess-23-3147-2023, 2023
Short summary
Short summary
The lava eruption at Fagradalsfjall in 2021 was the most visited eruption in Iceland, with thousands of visitors per day for 6 months. To address the short- and long-term danger of lava inundating infrastructure and hiking paths, we used the lava flow model MrLavaLoba before and during the eruption. These simulations helped communicate lava hazards to stakeholders and can be used as a case study for lava hazard assessment for future eruptions in the area, which are likely to be more destructive.
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Cited articles
Akaike, H.: Information theory and an extension of the maximum likelihood
principle, in: Selected papers of hirotugu akaike, Springer,
199–213, https://doi.org/10.1007/978-1-4612-1694-0_15, 1998. a
Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model: procedures, data sources and analysis, NOAA technical memorandum NESDIS NGDC-24, NOAA, https://doi.org/10.7289/V5C8276M, 2009. a
Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., and
Karlsdóttir, S.: Assessing impact to infrastructures due to tephra
fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model, Front. Earth Sci., 6,
196, https://doi.org/10.3389/feart.2018.00196, 2018. a
Blischke, A., Gaina, C., Hopper, J., Péron-Pinvidic, G., Brandsdóttir, B., Guarnieri, P., Erlendsson, Ö., and Gunnarsson, K.: The Jan Mayen microcontinent: an update of its architecture, structural development and role during the transition from the Ægir Ridge to the mid-oceanic Kolbeinsey Ridge, Geol. Soc. Lond. Spec. Publ., 447, 299–337, 2017. a
Bonadonna, C., Connor, C. B., Houghton, B., Connor, L., Byrne, M., Laing, A.,
and Hincks, T.: Probabilistic modeling of tephra dispersal: Hazard assessment
of a multiphase rhyolitic eruption at Tarawera, New Zealand, J. Geophys. Res.-Solid, 110, B03203, https://doi.org/10.1029/2003JB002896, 2005. a
Bozdogan, H.: Model selection and Akaike's information criterion (AIC): The
general theory and its analytical extensions, Psychometrika, 52, 345–370,
1987. a
Budd, L., Griggs, S., Howarth, D., and Ison, S.: A fiasco of volcanic
proportions? Eyjafjallajökull and the closure of European airspace,
Mobilities, 6, 31–40, 2011. a
Budnitz, R., Apostolakis, G., and Boore, D. M.: Recommendations for
probabilistic seismic hazard analysis: guidance on uncertainty and use of
experts, Tech. rep., Nuclear Regulatory Commission, Washington, DC, USA; Div. of Engineering Technology; Lawrence Livermore National Lab., CA, USA; Electric Power Research Inst., Palo Alto, CA, USA; USDOE, Washington, DC, USA, available at: https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6372/vol1/index.html (last access: 24 January 2022), 1997. a
Clarkson, R. J., Majewicz, E. J., and Mack, P.: A re-evaluation of the 2010 quantitative understanding of the effects volcanic ash has on gas turbine engines, Proc. Inst. Mech. Eng. Pt. G, 230, 2274–2291, 2016. a
Elefante, L., Jalayer, F., Iervolino, I., and Manfredi, G.:
Disaggregation-based response weighting scheme for seismic risk assessment of
structures, Soil Dynam. Earthq. Eng., 30, 1513–1527, 2010. a
Elissondo, M., Baumann, V., Bonadonna, C., Pistolesi, M., Cioni, R., Bertagnini, A., Biass, S., Herrero, J.-C., and Gonzalez, R.: Chronology and impact of the 2011 Cordón Caulle eruption, Chile, Nat. Hazards Earth Syst. Sci., 16, 675–704, https://doi.org/10.5194/nhess-16-675-2016, 2016. a
Ellis, M., Bojdo, N., Filippone, A., and Clarkson, R.: Monte Carlo Predictions of Aero-Engine Performance Degradation Due to Particle Ingestion, Aerospace, 8, 146, https://doi.org/10.3390/aerospace8060146, 2021. a
Folch, A. and Sulpizio, R.: Evaluating long-range volcanic ash hazard using
supercomputing facilities: application to Somma-Vesuvius (Italy), and
consequences for civil aviation over the Central Mediterranean Area, Bull.
Volcanol., 72, 1039–1059, 2010. a
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, 2020. a, b
Ganser, G. H.: A rational approach to drag prediction of spherical and
nonspherical particles, Powder Technol., 77, 143–152, 1993. a
Gernigon, L., Blischke, A., Nasuti, A., and Sand, M.: Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new
high-resolution aeromagnetic surveys in the Norway Basin, Tectonics, 34,
907–933, 2015. a
Harvey, N. J., Huntley, N., Dacre, H. F., Goldstein, M., Thomson, D., and Webster, H.: Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters, Nat. Hazards Earth Syst. Sci., 18, 41–63, https://doi.org/10.5194/nhess-18-41-2018, 2018. a
Hill, L., Sparks, R., and Rougier, J.: Risk assessment and uncertainty in
natural hazards, in: Risk and uncertainty assessment for natural hazards, edited by: Rougier, J. C., Sparks, R. S. J., and Hill, L. J., Cambridge University Press, 1–18, https://doi.org/10.1017/CBO9781139047562, 2013. a
ICAO: Volcanic Ash Contingency Plan – European And North Atlantic Regions, available at:
https://www.icao.int/EURNAT/EUR and NAT Documents/EUR+NAT VACP v2.0.1-Corrigendum.pdf (last access: 21 January 2022), 2021. a
Imsland, P.: The geology of the volcanic island Jan Mayen, Arctic Ocean, Nordic Volcanological Institute, available at: http://nordvulk.hi.is/sites/nordvulk.hi.is/files/NVI_Reports_pdf/nvi_report_7813_low_text.pdf (last access: 21 January 2022), 1978. a
Isavia: Annual report, available at:
https://www.isavia.is/annualreport2019/economy/flight-statistics (last access: 21 January 2022), 2019. a
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatheral, P.: The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012. a
Kandilarov, A., Mjelde, R., Pedersen, R.-B., Hellevang, B., Papenberg, C.,
Petersen, C.-J., Planert, L., and Flueh, E.: The northern boundary of the Jan
Mayen microcontinent, North Atlantic determined from ocean bottom seismic,
multichannel seismic, and gravity data, Mar. Geophys. Res., 33, 55–76, 2012. a
Karlsdóttir, S., Gylfason, Á. G., Höskuldsson, Á.,
Brandsdóttir, B., Ilyinskaya, E., Gudmundsson, M. T.,
Högnadóttir, Þ., and Þorkelsson, B.: The 2010 Eyjafjallajökull eruption, Iceland, Report to ICAO, p. 209, available at: https://www.vedur.is/media/vedurstofan/utgafa/skyrslur/2012/ICAOreport_web_lr.pdf
(last access: 21 January 2022), 2012. a
Kristiansen, N., Stohl, A., Prata, A., Bukowiecki, N., Dacre, H., Eckhardt, S., Henne, S., Hort, M., Johnson, B., Marenco, F., Neininger, B., Reitebuch, O., Seibert, P., Thomson, D. J., Webster, H. N., and Weinzierl, B.: Performance assessment of a volcanic ash transport model mini-ensemble used for inverse modeling of the 2010 Eyjafjallajökull eruption, J. Geophys. Res.-Atmos., 117, D00U11, https://doi.org/10.1029/2011JD016844, 2012. a
Larsen, E., Lyså, A., Höskuldsson, Á., Davidsen, J. G., Nadeau,
M. J., Power, M., Tassis, G., and Wastegård, S.: A dated volcano-tectonic
deformation event in Jan Mayen causing landlocking of Arctic charr, J.
Quaternary Sci., 36, 180–190, 2021. a
Larsen, G., Gudmundsson, M., and Oladottir, B.: Catalogue of Icelandic
Volcanoesn, Report, IMO, UI and CPD-NCIP, available at: http://icelandicvolcanoes.is/ (last access: 21 January 2022), 2017. a
Macedonio, G., Costa, A., and Folch, A.: Ash fallout scenarios at Vesuvius:
numerical simulations and implications for hazard assessment, J. Volcanol. Geoth. Res., 178, 366–377, 2008. a
Marzocchi, W., Sandri, L., and Furlan, C.: A quantitative model for volcanic
hazard assessment, Statistics in Volcanology, Special Publications of IAVCEI,
1, 31–37, 2006. a
Mastin, L. G., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean,
K., Durant, A., Ewert, J. W., Neri, A., Rose, W. I., Schneider, D., Siebert, L., Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C. F.: A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geoth. Res., 186, 10–21, 2009. a, b
Mazzocchi, M., Hansstein, F., and Ragona, M.: The 2010 volcanic ash cloud and
its financial impact on the European airline industry, in: CESifo Forum,
vol. 11, ifo Institut für Wirtschaftsforschung an der Universität München, München, 92–100, 2010. a
NavCanada: Polar routes – past, present and future, available at:
https://www.navcanada.ca/en/news/blog/polar-routes--past-present-and-future.aspx
(last access: 21 January 2022), 2017. a
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI) an estimate
of explosive magnitude for historical volcanism, J. Geophys. Res.-Oceans, 87, 1231–1238, 1982. a
Oxford-economics: The economics impacts of air travel restrictions due to
volcanic ash, available at:
https://www.oxfordeconomics.com/my-oxford/projects/129051
(last access: 21 January 2022), 2010. a
Peron-Pinvidic, G., Gernigon, L., Gaina, C., and Ball, P.: Insights from the
Jan Mayen system in the Norwegian–Greenland sea – I. Mapping of a
microcontinent, Geophys. J. Int., 191, 385–412, 2012. a
Prata, A. T., Dacre, H. F., Irvine, E. A., Mathieu, E., Shine, K. P., and
Clarkson, R. J.: Calculating and communicating ensemble-based volcanic ash
dosage and concentration risk for aviation, Meteorol. Appl., 26, 253–266, 2019. a
Pyle, D. M.: Sizes of volcanic eruptions, in: The encyclopedia of volcanoes,
Elsevier, 257–264, https://doi.org/10.1016/B978-0-12-385938-9.00013-4, 2015. a
Siggerud, T.: The volcanic eruption on Jan Mayen 1970, Norsk Polarinstitutt
Arbok, 1970, 5–18, available at: http://nnsn.geo.uib.no/eworkshop/uploads/Main/The-volcanic-eruption-on-Jan-Mayen-1970-by-Thor-Siggerud
-AN_1970_2610.pdf (last access: 21 January 2022), 1972. a, b
Stewart-Green, C.: ANS Planning: NAV CANADA, available at:
https://www.icao.int/NACC/Documents/Meetings/2016/ASBU/ASBUP12.pdf
(last access: 21 January 2022), 2016. a
Sulpizio, R., Folch, A., Costa, A., Scaini, C., and Dellino, P.: Hazard
assessment of far-range volcanic ash dispersal from a violent Strombolian
eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil
aviation, Bull. Volcanol., 74, 2205–2218, 2012. a
Suzuki, T.: A theoretical model for dispersion of tephra, Arc volcanism: physics and tectonics, in: Arc volcanism: physics and tectonics, vol. 95, p. 113, available at: https://pages.mtu.edu/~raman/papers2/Suzuki83.pdf (last access: 21 January 2022), 1983. a
Tesche, M., Glantz, P., Johansson, C., Norman, M., Hiebsch, A., Ansmann, A.,
Althausen, D., Engelmann, R., and Seifert, P.: Volcanic ash over Scandinavia
originating from the Grímsvötn eruptions in May 2011, J. Geophys. Res.-Atmos., 117, D09201, https://doi.org/10.1029/2011JD017090, 2012.
a
Ward, P. L.: What really causes global warming: greenhouse gases or ozone
depletion?, Morgan James Publishing, ISBN 978-1-63047-799-8, ISBN 978-1-63047-798-1, 2015. a
Woodhouse, M. J., Hogg, A. J., Phillips, J. C., and Rougier, J. C.: Uncertainty analysis of a model of wind-blown volcanic plumes, Bull. Volcanol., 77, 1–28, 2015. a
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a...
Altmetrics
Final-revised paper
Preprint