Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2643-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2643-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea-level rise in Venice: historic and future trends (review article)
Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
Sara Bruni
Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 8, 40127 Bologna, Italy
now at: PosiTim UG, Seeheim-Jugenheim, Germany
Fabio Raicich
ISMAR – Marine Sciences Institute, CNR – National Research Council of Italy, AREA Science Park Q2 bldg, SS14 km 163.5, Basovizza, 34149 Trieste, Italy
Piero Lionello
Deptartment of Biological and Environmental Sciences and Technologies, Unversità del Salento, Centro Ecotekne Pal. M – S.P. 6, Lecce Monteroni, Italy
Fanny Adloff
National Centre for Atmospheric Science, University of Reading, Reading, UK
Alexey Androsov
Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Postfach 12-01-61, 27515, Bremerhaven, Germany
The St. Petersburg Department of the P.P. Shirshov Institute of Oceanology, RAS, 30, Pervaya Liniya, 199053, St. Petersburg, Russia
Fabrizio Antonioli
Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605, 00143 Rome, Italy
Vincenzo Artale
ENEA C.R. Frascati, SSPT-MET, Via Enrico Fermi 45, 00044 Frascati, Italy
Eugenio Carminati
Department of Earth Sciences, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
Christian Ferrarin
ISMAR – Marine Sciences Institute, CNR – National Research Council of Italy, Castello 2737/F, 30122 Venice, Italy
Vera Fofonova
Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Postfach 12-01-61, 27515, Bremerhaven, Germany
Robert J. Nicholls
Tyndall Centre for Climate Change Research, University of East Anglia, Norwich NR4 7TJ, United Kingdom
Sara Rubinetti
Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
Angelo Rubino
Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
Gianmaria Sannino
ENEA Casaccia, Climate and Impact Modeling Lab, SSPT-MET-CLIM, Via Anguillarese 301, 00123 Rome, Italy
Giorgio Spada
Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 8, 40127 Bologna, Italy
Rémi Thiéblemont
Bureau de Recherches Géologiques et Minières “BRGM”, French Geological Survey, 3 Avenue, Claude Guillemin, CEDEX, 45060 Orléans, France
Michael Tsimplis
School of Law, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Georg Umgiesser
ISMAR – Marine Sciences Institute, CNR – National Research Council of Italy, Castello 2737/F, 30122 Venice, Italy
Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
Stefano Vignudelli
Institute of Biophysics, CNR, AREA Ricerca, Via Moruzzi 1, 56127 Pisa, Italy
Guy Wöppelmann
LIENSs, CNRS–La Rochelle University, 2 rue Olympe de Gouges, 17000 La Rochelle, France
Susanna Zerbini
Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 8, 40127 Bologna, Italy
Related authors
Hera Guðlaugsdóttir, Yannick Peings, Davide Zanchettin, and Gudrun Magnusdottir
Atmos. Chem. Phys., 25, 3961–3980, https://doi.org/10.5194/acp-25-3961-2025, https://doi.org/10.5194/acp-25-3961-2025, 2025
Short summary
Short summary
Here we use an Earth system model to simulate a long-lasting volcanic eruption at 65° N and investigate its impact on the stratospheric circulation. We show a polar vortex strengthening in winter 1, followed by a weakening in winters 2–3 due to surface cooling, where ocean–atmosphere interactions play a major role in the detected response. This weakening appears to trigger sudden stratospheric warming events that can cause severe cold spells throughout the Northern Hemisphere.
Matteo Mastropierro, Daniele Peano, and Davide Zanchettin
EGUsphere, https://doi.org/10.5194/egusphere-2024-823, https://doi.org/10.5194/egusphere-2024-823, 2024
Short summary
Short summary
We address how different ESMs represent vegetation productivity, in terms of carbon fluxes, within the Amazon basin. By statistically assessing the role of climatological and model specific factors that influence vegetation, we showed that surface energy fluxes and the implementation of Phosphorous limitation resulted to be the main drivers of model uncertainties in a future scenario. Reducing these uncertainties allows to increase the reliability of tropical land carbon and climate projections
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Floris R. Calkoen, Arjen P. Luijendijk, Susan Hanson, Robert J. Nicholls, Antonio Moreno-Rodenas, Hugo De Heer, and Fedor Baart
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-388, https://doi.org/10.5194/essd-2025-388, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents the first global, high-resolution (100 m) coastal classification dataset derived from Earth observation data using deep learning. It offers a consistent view of coastal landforms, sediment types, and human modifications across nearly 10 million transects—covering one million kilometers of coastline. The dataset supports a wide range of applications, from coastal change monitoring and erosion risk assessment to climate adaptation planning, conservation, and coastal geology.
Susan E. Hanson, Robert J. Nicholls, Floris R. Calkoen, Gonéri Le Cozannet, and Arjen P. Luijendijk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2371, https://doi.org/10.5194/egusphere-2025-2371, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The CoasTER geographic database provides erosion relevant characteristics for Europe’s coastal floodplains. It builds on earlier erosion research and includes a coastal geomorphological typology incorporating modification in the form of hard engineering and infrastructure. Analysis shows 27 % of coastal floodplains have shown significant erosion over the last 40 years. Nearly 3,500 km will require additional or new management to protect developed areas and infrastructure if the trend continues.
Marco Chericoni, Giorgia Fosser, Emmanouil Flaounas, Gianmaria Sannino, and Alessandro Anav
Weather Clim. Dynam., 6, 627–643, https://doi.org/10.5194/wcd-6-627-2025, https://doi.org/10.5194/wcd-6-627-2025, 2025
Short summary
Short summary
This study explores how sea surface energy influences both the atmosphere and ocean at various vertical levels during extreme Mediterranean cyclones. It focuses on cyclones' precipitation and wind speed response, as well as on ocean temperature variation. The findings highlight the regional coupled model's ability to coherently represent the thermodynamic and dynamic processes of the cyclones across both the atmosphere and the ocean.
Gaziza Konyssova, Vera Sidorenko, Alexey Androsov, Sabine Horn, Sara Rubinetti, Ivan Kuznetsov, Karen Helen Wiltshire, and Justus van Beusekom
EGUsphere, https://doi.org/10.5194/egusphere-2025-2135, https://doi.org/10.5194/egusphere-2025-2135, 2025
Short summary
Short summary
This study explores how winds, tides, and biological activity influence suspended particle concentrations in a tidal basin of the Wadden Sea. Combining long-term measurements, ocean modelling, and machine learning, we found that wind dominates in winter, while biological processes like algae growth gain importance in spring and summer. The results also reveal contrasting short-term dynamics at shallow and deep stations, identifying the drivers of variability in coastal waters.
Marie-Françoise Lalancette, Guy Wöppelmann, Sylvain Lucas, Roger Bayer, Jean-Daniel Bernard, Jean-Paul Boy, Nicolas Florsch, Jacques Hinderer, Nicolas Le Moigne, Muriel Llubes, Bernard Luck, and Didier Rouxel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-211, https://doi.org/10.5194/essd-2025-211, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents 25 years of carefully processed gravity measurements from western France, offering a unique dataset to support investigations of long-term land motion and sea level change. The data are consistent with satellite-based observations and are made available for use in future geophysical and climate-related research.
Hera Guðlaugsdóttir, Yannick Peings, Davide Zanchettin, and Gudrun Magnusdottir
Atmos. Chem. Phys., 25, 3961–3980, https://doi.org/10.5194/acp-25-3961-2025, https://doi.org/10.5194/acp-25-3961-2025, 2025
Short summary
Short summary
Here we use an Earth system model to simulate a long-lasting volcanic eruption at 65° N and investigate its impact on the stratospheric circulation. We show a polar vortex strengthening in winter 1, followed by a weakening in winters 2–3 due to surface cooling, where ocean–atmosphere interactions play a major role in the detected response. This weakening appears to trigger sudden stratospheric warming events that can cause severe cold spells throughout the Northern Hemisphere.
Gianluca Pappaccogli, Andrea Zonato, Alberto Martilli, Riccardo Buccolieri, and Piero Lionello
EGUsphere, https://doi.org/10.5194/egusphere-2025-219, https://doi.org/10.5194/egusphere-2025-219, 2025
Short summary
Short summary
We present the MLUCM BEP+BEM model that bridges mesoscale and microscale phenomena within the urban canopy, capturing scale interactions and feedback. The accuracy and low computational cost of this one-dimensional model makes it ideal for offline climate projections to assess urban climate impacts under different emission scenarios. The model's features allow analyzing urban overheating, energy demands, and evaluating the efficiency of strategies like green/cool roofs, and photovoltaic panels.
Anita Grezio, Damiano Delrosso, Marco Anzidei, Marco Bianucci, Giovanni Chiodini, Antonio Costa, Antonio Guarnieri, Marina Locritani, Silvia Merlino, Filippo Muccini, Marco Paterni, Dmitri Rouwet, Giancarlo Tamburello, and Georg Umgiesser
EGUsphere, https://doi.org/10.5194/egusphere-2025-286, https://doi.org/10.5194/egusphere-2025-286, 2025
Short summary
Short summary
Volcanic lakes have been recognized as a rare but devastating source of disasters after the limnic eruption of Lake Nyos in 1986. The potential risk of Lake Albano (20 km southeast of the centre of Rome, Italy) is due to exposed elements (people presence, economic and touristic activities). The 3D modelling of the lake dynamics is crucial to investigate the lake stratification and degassing and the current and future behavior and stability of Lake Albano.
Christian Ferrarin, Debora Bellafiore, Alejandro Paladio Hernandez, Irina Dinu, and Adrian Stanica
EGUsphere, https://doi.org/10.5194/egusphere-2025-606, https://doi.org/10.5194/egusphere-2025-606, 2025
Short summary
Short summary
We implemented a hydrodynamic model to the entire Danube Delta region consisting of the river network, coastal lagoons and part of the prodelta coastal sea. The model was applied to investigate the water distribution among the river branches, the dynamics of the coastal sea in front of the delta, the renewal capacity of the lagoons, the processes regulating the water exchange among the different water bodies and the potential impacts of lagoon-sea reconnection solutions.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Beatrice Giambenedetti, Nadia Lo Bue, and Vincenzo Artale
Ocean Sci., 20, 1209–1228, https://doi.org/10.5194/os-20-1209-2024, https://doi.org/10.5194/os-20-1209-2024, 2024
Short summary
Short summary
We used a simplified model to investigate how changes in abyssal stratification can impact the propagation of vortices in the ocean. Although abyssal stratification is typically considered stable, observations have shown that this is not always a good approximation. We found that changes in deep stratification can introduce variability into the patterns of the vortices. Despite the assumptions made in our model, our results are supported by seafloor observations in the Ionian Sea.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024, https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Short summary
Two numerical codes are used in a comparative analysis of the calculation of the tsunami wave due to an earthquake along the Peruvian coast. The comparison primarily evaluates the flow velocity fields in flooded areas. The relative importance of the various parts of the equations is determined, focusing on the nonlinear terms. The influence of the nonlinearity on the degree and volume of flooding, flow velocity, and small-scale fluctuations is determined.
Matteo Mastropierro, Daniele Peano, and Davide Zanchettin
EGUsphere, https://doi.org/10.5194/egusphere-2024-823, https://doi.org/10.5194/egusphere-2024-823, 2024
Short summary
Short summary
We address how different ESMs represent vegetation productivity, in terms of carbon fluxes, within the Amazon basin. By statistically assessing the role of climatological and model specific factors that influence vegetation, we showed that surface energy fluxes and the implementation of Phosphorous limitation resulted to be the main drivers of model uncertainties in a future scenario. Reducing these uncertainties allows to increase the reliability of tropical land carbon and climate projections
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023, https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Short summary
We propose a discrete multilayer shallow water model based on z-layers which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is based on a two-step procedure used in numerical simulations with moving boundaries (grid movement followed by a grid topology change, that is, the insertion/removal of surface layers), which avoids the appearance of very thin surface layers.
Michele Livani, Lorenzo Petracchini, Christoforos Benetatos, Francesco Marzano, Andrea Billi, Eugenio Carminati, Carlo Doglioni, Patrizio Petricca, Roberta Maffucci, Giulia Codegone, Vera Rocca, Francesca Verga, and Ilaria Antoncecchi
Earth Syst. Sci. Data, 15, 4261–4293, https://doi.org/10.5194/essd-15-4261-2023, https://doi.org/10.5194/essd-15-4261-2023, 2023
Short summary
Short summary
This paper presents subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy). We collected and digitized data from 160 deep wells (including geophysical logs), 61 geological cross-sections, and 10 isobath maps. Furthermore, after a data accuracy analysis, we generated a simplified 3D geological model with several gridded surfaces separating units with different lithological properties. All data are available in delimited text files in ASCII format.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Rasa Idzelytė, Natalja Čerkasova, Jovita Mėžinė, Toma Dabulevičienė, Artūras Razinkovas-Baziukas, Ali Ertürk, and Georg Umgiesser
Ocean Sci., 19, 1047–1066, https://doi.org/10.5194/os-19-1047-2023, https://doi.org/10.5194/os-19-1047-2023, 2023
Short summary
Short summary
This work is focused on the impacts of climate change on a complex water flow system in the southeastern (SE) Baltic Sea, covering the Nemunas river basin and Curonian Lagoon. The results show that lagoon and sea will receive more water coming from the Nemunas. This will lead to a decreased frequency of saltwater inflow to the lagoon, and water will take less time to renew. Water temperatures in the entire lagoon and the SE Baltic Sea will increase steadily, and salinity values will decrease.
Roberto Ingrosso, Piero Lionello, Mario Marcello Miglietta, and Gianfausto Salvadori
Nat. Hazards Earth Syst. Sci., 23, 2443–2448, https://doi.org/10.5194/nhess-23-2443-2023, https://doi.org/10.5194/nhess-23-2443-2023, 2023
Short summary
Short summary
Tornadoes represent disruptive and dangerous weather events. The prediction of these small-scale phenomena depends on the resolution of present weather forecast and climatic projections. This work discusses the occurrence of tornadoes in terms of atmospheric variables and provides analytical expressions for their conditional probability. These formulas represent a tool for tornado alert systems and for estimating the future evolution of tornado frequency and intensity in climate projections.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Marco Bajo, Christian Ferrarin, Georg Umgiesser, Andrea Bonometto, and Elisa Coraci
Ocean Sci., 19, 559–579, https://doi.org/10.5194/os-19-559-2023, https://doi.org/10.5194/os-19-559-2023, 2023
Short summary
Short summary
This work uses a hydrodynamic model which assimilates in situ data to reproduce tides, surges, and seiches in the Mediterranean basin. Furthermore, we study the periods of the barotropic modes of the Mediterranean and Adriatic basins. This research aims to improve the forecasting and reanalysis for operational warning and climatological studies. It aims also to reach a better knowledge of these sea level components in this area.
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023, https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
Short summary
The newly developed ChemicalDrift model can simulate the transport and fate of chemicals in the ocean and in coastal regions. The model combines ocean physics, including transport due to currents, turbulence due to surface winds and the sinking of particles to the sea floor, with ocean chemistry, such as the partitioning, the degradation and the evaporation of chemicals. The model will be utilized for risk assessment of ocean and sea-floor contamination from pollutants emitted from shipping.
Fabio Raicich
Earth Syst. Sci. Data, 15, 1749–1763, https://doi.org/10.5194/essd-15-1749-2023, https://doi.org/10.5194/essd-15-1749-2023, 2023
Short summary
Short summary
In the changing climate, long sea level time series are essential for studying the variability of the mean sea level and the occurrence of extreme events on different timescales. This work summarizes the rescue and quality control of the ultra-centennial sea level data set of Trieste, Italy. The whole time series is characterized by a linear trend of about 1.4 mm yr−1, the period corresponding to the altimetry coverage by a trend of about 3.0 mm yr−1, similarly to the global ocean.
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from land ice components, we apply the machine-learning-based
SHapley Additive exPlanationsapproach to a subset of a multi-model ensemble study for the Greenland ice sheet. This allows us to quantify the influence of particular modelling decisions (related to numerical implementation, initial conditions, or parametrisation of ice-sheet processes) directly in terms of sea-level change contribution.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021, https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Fabio Raicich and Renato R. Colucci
Earth Syst. Sci. Data, 13, 3363–3377, https://doi.org/10.5194/essd-13-3363-2021, https://doi.org/10.5194/essd-13-3363-2021, 2021
Short summary
Short summary
To understand climate change, it is essential to analyse long time series of atmospheric data. Here we studied the atmospheric pressure observed at Trieste (Italy) from 1841 to 2018. We examined the available information on the characteristics and elevations of the barometers and on the data sampling. A basic data quality control was also applied. As a result, we built a homogeneous time series of daily mean pressures at mean sea level, from which a trend of 0.5 hPa per century was estimated.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Alessandro Anav, Adriana Carillo, Massimiliano Palma, Maria Vittoria Struglia, Ufuk Utku Turuncoglu, and Gianmaria Sannino
Geosci. Model Dev., 14, 4159–4185, https://doi.org/10.5194/gmd-14-4159-2021, https://doi.org/10.5194/gmd-14-4159-2021, 2021
Short summary
Short summary
The Mediterranean Basin is a complex region, characterized by the presence of pronounced topography and a complex land–sea distribution including a considerable number of islands and straits; these features generate strong local atmosphere–sea interactions.
Regional Earth system models have been developed and used to study both present and future Mediterranean climate systems. The main aims of this paper are to present and evaluate the newly developed regional Earth system model ENEA-REG.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Gonéri Le Cozannet, Déborah Idier, Marcello de Michele, Yoann Legendre, Manuel Moisan, Rodrigo Pedreros, Rémi Thiéblemont, Giorgio Spada, Daniel Raucoules, and Ywenn de la Torre
Nat. Hazards Earth Syst. Sci., 21, 703–722, https://doi.org/10.5194/nhess-21-703-2021, https://doi.org/10.5194/nhess-21-703-2021, 2021
Short summary
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 14, 645–659, https://doi.org/10.5194/gmd-14-645-2021, https://doi.org/10.5194/gmd-14-645-2021, 2021
Short summary
Short summary
The problem of the optimization of ocean monitoring networks is tackled through the implementation of data assimilation techniques in a numerical model. The methodology has been applied to the tide gauge network in the Lagoon of Venice (Italy). The data assimilation methods allow identifying the minimum number of stations and their distribution that correctly represent the lagoon's dynamics. The methodology is easily exportable to other environments and can be extended to other variables.
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, https://doi.org/10.5194/os-17-17-2021, 2021
Short summary
Short summary
We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges. We found that M2 variations are consistent at all the stations in the North-East Atlantic, whereas some discrepancies appear in the North-West Atlantic. The similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide.
Cited articles
Ablain, M., Becker, M., Benveniste, J., Cazenave, A., Champollion, N.,
Ciccarelli, S., Jevrejeva, S., Le Cozannet, G., Nicoletta, L., Loisel, H., Long, N., Maisongrande, P., Mallet, C., Marcos, M., Menendez, M., Meyssignac, B., Plater, A., Raucoules, D., Taramelli, A., Vignudelli, S., Valentini, E., Woodworth, P., and Woppelmann, G.: White paper: Monitoring the evolution of coastal zones under various
forcing factors using space-based observing systems, International Space
Science Institute (ISS), Bern, Switzerland,
available at: https://hal-brgm.archives-ouvertes.fr/hal-01413107 (last access: 5 August 2021), 2016. a
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué,
M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alvarez-Fanjul, E., and Gomis, D.: Mediterranean
Sea response to climate change in an ensemble of twenty first century
scenarios, Clim. Dynam., 45, 2775–2802, https://doi.org/10.1007/s00382-015-2507-3,
2015. a
Alessio, S. M.: Digital signal processing and spectral analysis for scientists:
concepts and applications, Springer, Cham, Switzerland, 2016. a
Allen, M. and Smith, L.: Monte Carlo SSA: Detecting irregular oscillations in
the presence of colored noise, J. Climate, 9, 3373–3404,
https://doi.org/10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2, 1996. a
Amitai, Y., Ashkenazy, Y., and Gildor, H.: Multiple equilibria and overturning
variability of the Aegean-Adriatic Seas, Global Planet. Change, 151,
49–59, https://doi.org/10.1016/j.gloplacha.2016.05.004, 2017. a
Amorosi, A., Colalongo, M., Fiorini, F., Fusco, F., Pasini, G., Vaiani, S., and
Sarti, G.: Palaeogeographic and palaeoclimatic evolution of the Po Plain from
150-ky core records, Global Planet. Change, 40, 55–78,
https://doi.org/10.1016/S0921-8181(03)00098-5, 2004. a
Androsov, A., Fofonova, V., Kuznetsov, I., Danilov, S., Rakowsky, N., Harig, S., Brix, H., and Wiltshire, K. H.: FESOM-C v.2: coastal dynamics on hybrid unstructured meshes, Geosci. Model Dev., 12, 1009–1028, https://doi.org/10.5194/gmd-12-1009-2019, 2019. a
Antonioli, F., Ferranti, L., Fontana, A., Amorosi, A., Bondesan, A.,
Braitenberg, C., Dutton, A., Fontolan, G., Furlani, S., Lambeck, K., Mastronuzzi, G., Monaco, C., Spada, G., and Stocchi, P.:
Holocene relative sea-level changes and vertical movements along the Italian
and Istrian coastlines, Quaternary Int., 206, 102–133,
https://doi.org/10.1016/j.quaint.2008.11.008, 2009. a, b, c, d, e, f, g, h, i, j
Antonioli, F., Anzidei, M., Amorosi, A., Presti, V. L., Mastronuzzi, G.,
Deiana, G., De Falco, G., Fontana, A., Fontolan, G., Lisco, S., Marsico, A., Moretti, M., Orrù, P. E., Sannino, G., Serpelloni, E., and Vecchio, A.:
Sea-level rise and potential drowning of the Italian coastal plains: Flooding
risk scenarios for 2100, Quat. Sci. Rev., 158, 29–43,
https://doi.org/10.1016/j.quascirev.2016.12.021, 2017. a, b, c, d
Arca, S. and Beretta, G.: Prima sintesi geodetico-geologica sui movimenti
verticali del suolo nell'Italia Settentrionale (1897–1957), Bollettino di
Geodesia e scienze affini, 44, 125–156, 1985. a
Armi, L. and Farmer, D. M.: The flow of Mediterranean water through the strait
of Gibraltar. The flow of Atlantic water through the Strait of Gibraltar,
Prog. Oceanogr., 21, 1–105, 1988. a
Artale, V., Calmanti, S., Malanotte-Rizzoli, P., Pisacane, G., Rupolo, V., and
Tsimplis, M.: The Atlantic and Mediterranean Sea as connected systems, Developments in Earth and Environmental Sciences, 4,
283–323, https://doi.org/10.1016/S1571-9197(06)80008-X, 2006. a
Artale, V., Calmanti, S., Carillo, A., Dell'Aquila, A., Herrmann, M., Pisacane,
G., Ruti, P. M., Sannino, G., Struglia, M. V., Giorgi, F., Bi, X., Pal, J. S., Rauscher, S., and The PROTHEOUS Group: An
atmosphere–ocean regional climate model for the Mediterranean area:
assessment of a present climate simulation, Clim. Dynam., 35, 721–740,
https://doi.org/10.1007/s00382-009-0691-8, 2010. a
Bakker, A. M., Wong, T. E., Ruckert, K. L., and Keller, K.: Sea-level
projections representing the deeply uncertain contribution of the West
Antarctic ice sheet, Sci. Rep., 7, 1–7,
https://doi.org/10.1038/s41598-017-04134-5, 2017. a
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea
level rise from the ice sheets, Nat. Clim. Change, 3, 424–427,
https://doi.org/10.1038/nclimate1778, 2013. a
Barriopedro, D., García-Herrera, R., Lionello, P., and Pino, C.: A
discussion of the links between solar variability and high-storm-surge events
in Venice, J. Geophys. Res.-Atmos., 115, D13101, https://doi.org/10.1029/2009JD013114, 2010. a
Benveniste, J., Cazenave, A., Vignudelli, S., Fenoglio-Marc, L., Shah, R.,
Almar, R., Andersen, O. B., Birol, F., Bonnefond, P., Bouffard, J., Calafat, F., Cardellach, E., Cipollini P., Le Cozannet, G., Dufau, C.,
Fernandes, M. J., Frappart, F., Garrison, J., Gommenginger, C., Han, G., Høyer, J. L., Kourafalou, V., Leuliette, E., Li, Z., Loisel, H., Madsen, K. S., Marcos, M.,
Melet, A., Meyssignac, B., Pascual, A., Passaro, M., Ribó, S., Scharroo, R., Song, Y. T., Speich, S., Wilkin, J.,
Woodworth, P., and Wöppelmann, G.:
Requirements for a coastal hazards observing system,
Front. Mar. Sci., 6, 348, https://doi.org/10.3389/fmars.2019.00348, 2019. a
Birol, F., Fuller, N., Lyard, F., Cancet, M., Nino, F., Delebecque, C., Fleury,
S., Toublanc, F., Melet, A., Saraceno, M., and Léger, F.: Coastal applications from
nadir altimetry: Example of the X-TRACK regional products, Adv. Space Res., 59, 936–953, https://doi.org/10.1016/j.asr.2016.11.005, 2017. a, b
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data explosion
for interdisciplinary science, Eos, 99, 1–2, https://doi.org/10.1029/2018EO104623,
2018. a, b
Bonaduce, A., Pinardi, N., Oddo, P., Spada, G., and Larnicol, G.: Sea-level
variability in the Mediterranean Sea from altimetry and tide gauges, Clim. Dynam., 47, 2851–2866, https://doi.org/10.1007/s00382-016-3001-2, 2016. a, b
Bondesan, M., Cibin, U., Colalongo, M., Pugliese, N., Stefani, M., Tsakiridis,
E., Vaiani, S., and Vincenzi, S.: Benthic communities and sedimentary facies
recording late Quaternary environmental fluctuations in a Po Delta subsurface
succession (Northern Italy), Proceedings of the 2nd and 3rd Italian Meeting on Environmental Micropaleontology, 11, 21–31, edited by: Coccioni, R., Lirer, F. and Marsili, A., The Grzybowski Foundation Special Publication, 2006. a
Brambati, A., Carbognin, L., Quaia, T., Teatini, P., and Tosi, L.: The Lagoon
of Venice: geological setting, evolution and land subsidence, Episodes, 26,
264–268, https://doi.org/10.18814/epiiugs/2003/v26i3/020, 2003. a, b
Brandt, P., Rubino, A., Sein, D. V., Baschek, B., Izquierdo, A., and Backhaus,
J. O.: Sea level variations in the western Mediterranean studied by a
numerical tidal model of the Strait of Gibraltar, J. Phys. Oceanogr., 34, 433–443,
https://doi.org/10.1175/1520-0485(2004)034<0433:SLVITW>2.0.CO;2, 2004. a
Camuffo, D. and Sturaro, G.: Use of proxy-documentary and instrumental data to
assess the risk factors leading to sea flooding in Venice, Glob. Planet Change, 40, 93–103, https://doi.org/10.1016/S0921-8181(03)00100-0, 2004. a
Carbognin, L., Gatto, P., Mozzi, G., Gambolati, G., and Ricceri, G.: New trend
in the subsidence of Venice, in: Proceedings of the Second International Symposium on Land Subsidence, held at Anaheim, California, 13–17 December 1976, IAHS
Publication, vol. 121, 65–81, edited by: Rodda, J. C., 1976. a, b, c
Carbognin, L., Teatini, P., and Tosi, L.: Eustacy and land subsidence in the
Venice Lagoon at the beginning of the new millennium, J. Marine Syst., 51, 345–353, https://doi.org/10.1016/j.jmarsys.2004.05.021, 2004. a, b
Carbognin, L., Teatini, P., and Tosi, L.: The impact of relative sea level rise
on the Northern Adriatic Sea coast, Italy, WIT Trans. Ecol. Envir., 127, 137–148, https://doi.org/10.2495/RAV090121, 2009. a
Carbognin, L., Teatini, P., Tomasin, A., and Tosi, L.: Global change and
relative sea level rise at Venice: what impact in term of flooding, Clim. Dynam., 35, 1039–1047, https://doi.org/10.1007/s00382-009-0617-5, 2010. a, b, c
Carillo, A., Sannino, G., Artale, V., Ruti, P., Calmanti, S., and Dell'Aquila,
A.: Steric sea level rise over the Mediterranean Sea: present climate and
scenario simulations, Clim. Dynam., 39, 2167–2184,
https://doi.org/10.1007/s00382-012-1369-1, 2012. a
Carminati, E., Doglioni, C., and Scrocca, D.: Apennines subduction-related
subsidence of Venice (Italy), Geophys. Res. Lett., 30, 1717, https://doi.org/10.1029/2003GL017001, 2003. a, b, c
Carminati, E., Enzi, S., and Camuffo, D.: A study on the effects of seismicity
on subsidence in foreland basins: An application to the Venice area, Global Planet. Change, 55, 237–250, https://doi.org/10.1016/j.gloplacha.2006.03.003,
2007. a
Carrère, L. and Lyard, F.: Modeling the barotropic response of the global
ocean to atmospheric wind and pressure forcing-comparisons with observations,
Geophys. Res. Lett., 30, 8–8, https://doi.org/10.1029/2002GL016473, 2003. a
Cazenave, A., Hamlington, B., Horwath, M., Barletta, V. R., Benveniste, J.,
Chambers, D., Döll, P., Hogg, A. E., and Legeais, J. F., Merrifield, M., Meyssignac, B., Mitchum, G., Nerem, S., Pail, R., Palanisamy, H., Paul, F., von Schuckmann, K., and Thompson, P.: Observational requirements for long-term monitoring of the global
mean sea level and its components over the altimetry era, Front. Mar. Sci., 6, 582, https://doi.org/10.3389/fmars.2019.00582, 2019. a, b
Chambers, D. P.: Evaluation of empirical mode decomposition for quantifying multi-decadal variations and acceleration in sea level records, Nonlin. Processes Geophys., 22, 157–166, https://doi.org/10.5194/npg-22-157-2015, 2015. a
Chen, C., Gao, G., Zhang, Y., Beardsley, R. C., Lai, Z., Qi, J., and Lin, H.:
Circulation in the Arctic Ocean: Results from a high-resolution coupled
ice-sea nested Global-FVCOM and Arctic-FVCOM system, Prog. Oceanogr., 141, 60–80, https://doi.org/10.1016/j.pocean.2015.12.002, 2016. a
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea level change, Tech. rep., Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA,
available at: http://drs.nio.org/drs/handle/2264/4605 (last access: 5 August 2021), 2013. a, b
Cipollini, P., Vignudelli, S., Lyard, F., and Roblou, L.: 15 years of altimetry
at various scales over the Mediterranean, 295–306, in: Remote Sensing of the European Seas, edited by: Barale, V. and Gade, M., Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-6772-3_22, 2008. a
Cipollini, P., Passaro, M., and Vignudelli, S.: Validation of Total Water Level
Envelope data from the eSurge processor for Envisat in the North Adriatic
Sea, available at: http://www.storm-surge.info/project-docs (last access: 5 August 2021), 2013. a
Cipollini, P., Benveniste, J., Birol, F., Fernandes, M., Obligis, E., Passaro,
M., Strub, P., Valladeau, G., Vignudelli, S., and Wlikin, J.: Satellite
altimetry in coastal regions, CRC Press, Boca Raton, https://doi.org/10.1201/9781315151779, 2017. a
CNR: Relazione sul pozzo Venezia 1-CNR. 1a fase: Operazioni di cantiere e
analisi delle carote. Laboratorio Dinamica Grandi Masse, Consiglio Nazionale
delle Ricerche, Venice, 1971. a
Criado-Aldeanueva, F., Soto-Navarro, F. J., and García-Lafuente, J.:
Large-scale atmospheric forcing influencing the long-term variability of
Mediterranean heat and freshwater budgets: climatic indices, J. Hydrometeorol., 15, 650–663, https://doi.org/10.1175/JHM-D-13-04.1, 2014. a
Cuffaro, M., Riguzzi, F., Scrocca, D., Antonioli, F., Carminati, E., Livani,
M., and Doglioni, C.: On the geodynamics of the northern Adriatic plate,
Rend. Lincei, 21, 253–279, https://doi.org/10.1007/s12210-010-0098-9, 2010. a, b, c, d
Cusinato, E., Zanchettin, D., Sannino, G., and Rubino, A.: Mediterranean
Thermohaline Response to Large-Scale Winter Atmospheric Forcing in a
High-Resolution Ocean Model Simulation, PApGe, 175, 4083–4110,
https://doi.org/10.1007/s00024-018-1859-0, 2018. a, b
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T.,
and Riva, R.: Reassessment of 20th century global mean sea level rise,
P. Natl. Acad. Sci. USA, 114, 5946–5951,
https://doi.org/10.1073/pnas.1616007114, 2017. a, b
De Biasio, F., Baldin, G., and Vignudelli, S.: Revisiting Vertical Land Motion
and Sea Level Trends in the Northeastern Adriatic Sea Using Satellite
Altimetry and Tide Gauge Data, Journal of Marine Science and Engineering, 8,
949, https://doi.org/10.3390/jmse8110949, 2020. a
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016. a
Dodge, Y., Cox, D., Commenges, D., Davison, A., Solomon, P., and Wilson, S. (Eds.): International Statistical Institute, The Oxford dictionary of
statistical terms, Oxford University Press on demand, New York, ISBN 0198509944, 506 pp., 2003. a
Dorigo, L.: Le osservazioni mareografiche in Laguna di Venezia, Ist. Veneto
Sc., Lett. Arti, Commissione di studio dei provvedimenti per la conservazione
e difesa della Laguna e della città di Venezia, Rapporti preliminari,
available at: https://www.beic.it (last access: 5 August 2021), 1961. a, b, c, d
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019. a
Environment Agency: Policy paper: Thames Estuary 2100: 10-Year Review
monitoring key findings, Tech. rep., Environment Agency, UK,
available at: https://www.gov.uk/government/publications/thames-estuary-2100-te2100/thames-estuary-2100-key-findings-from-the-monitoring-review, last access: 23 March 2021. a
Erkens, G., Bucx, T., Dam, R., De Lange, G., and Lambert, J.: Sinking coastal
cities, P. Int. Ass. Hydrol. Sci., 372, 189–198, https://doi.org/10.5194/piahs-372-189-2015, 2015. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Ezer, T., Haigh, I. D., and Woodworth, P. L.: Nonlinear sea-level trends and
long-term variability on western European coasts, J. Coast. Res., 32, 744–755, https://doi.org/10.2112/JCOASTRES-D-15-00165.1, 2016. a
Farrell, W. and Clark, J. A.: On postglacial sea level, Geophys. J. Int., 46, 647–667,
https://doi.org/10.1111/j.1365-246X.1976.tb01252.x, 1976. a
Favero, V., Alberotanza, L., and Serandrei Barbero, R.: Aspetti paleoecologici,
sedimentologici e geochimici dei sedimenti attraversati dal pozzo VE 1 bis
CNR Laboratorio per lo Studio della Dinamica delle Grandi Masse, Tech. rep.,
CNR Technical Report 63, Venice, 1973. a
Fernandes, M. J. and Lázaro, C.: GPD+ wet tropospheric corrections for
CryoSat-2 and GFO altimetry missions, Remote Sens., 8, 851,
https://doi.org/10.3390/rs8100851, 2016. a
Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G., Mastronuzzi,
G., Monaco, C., Orrù, P., Pappalardo, M., Radtke, U., Renda, P., Romano, P., Sansò, P., and Verrubbi, V.: Markers of
the last interglacial sea-level high stand along the coast of Italy: tectonic
implications, Quatern. Int., 145, 30–54,
https://doi.org/10.1016/j.quaint.2005.07.009, 2006. a, b, c
Ferrarin, C., Bellafiore, D., Sannino, G., Bajo, M., and Umgiesser, G.: Tidal
dynamics in the inter-connected Mediterranean, Marmara, Black and Azov seas,
Prog. Oceanogr., 161, 102–115, https://doi.org/10.1016/j.pocean.2018.02.006,
2018. a
Flemming, N. C.: Predictions of relative coastal sea-level change in the
Mediterranean based on archaeological, historical and tide-gauge data,
chap. 8, 247–281, in: Climate Change and the Mediterrenean, edited by: Jeftic, L., Millman, J. D., and Sestini, G., 247–281, Edward Arnold, London, 1992. a
Fontana, A., Vinci, G., Tasca, G., Mozzi, P., Vacchi, M., Bivi, G., Salvador,
S., Rossato, S., Antonioli, F., Asioli, A., Bresolin, M., Di Mario, F., and Hajdas, I.: Lagoonal settlements and
relative sea level during Bronze Age in Northern Adriatic: Geoarchaeological
evidence and paleogeographic constraints, Quaternary Int., 439,
17–36, https://doi.org/10.1016/j.quaint.2016.12.038, 2017. a
Fu, L.-L. and Cazenave, A.: Satellite altimetry and earth sciences: a handbook
of techniques and applications, Academic Press, London, 2001. a
Galassi, G. and Spada, G.: Sea-level rise in the Mediterranean Sea by 2050:
Roles of terrestrial ice melt, steric effects and glacial isostatic
adjustment, Global Planet. Change, 123, 55–66,
https://doi.org/10.1016/j.gloplacha.2014.10.007, 2014. a
Galloway, D. and Riley, F. S.: San Joaquin Valley, California, Land subsidence in the United States, Circular 1182, US Geological Survey, 1182, 23–34, 1999. a
Galloway, D. L., Erkens, G., Kuniansky, E. L., and Rowland, J. C.: Preface:
Land subsidence processes, Hydrogeol. J., 24, 547–550,
https://doi.org/10.1007/s10040-016-1386-y, 2016. a
Gambolati, G. and Gatto, P.: Simulazione della subsidenza di Venezia, Venezia
ei problemi dell'ambiente, Il Mulino, Bologna, 299–360, 1975. a
Gambolati, G., Gatto, P., and Freeze, R. A.: Mathematical simulation of the
subsidence of Venice: 2. Results, Water Resour. Res., 10, 563–577,
https://doi.org/10.1029/WR010i003p00563, 1974. a, b, c
Gambolati, G., Teatini, P., and Ferronato, M.: Anthropogenic land subsidence, 2443–2459, in: Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G., John Wiley & Sons, New Jersey, https://doi.org/10.1002/0470848944.hsa164b,
2006. a
García Lafuente, J., Bruque Pozas, E., Sánchez Garrido, J. C., Sannino,
G., and Sammartino, S.: The interface mixing layer and the tidal dynamics at
the eastern part of the Strait of Gibraltar, J. Marine Syst.,
117–118, 31–42, https://doi.org/10.1016/j.jmarsys.2013.02.014, 2013. a
Gómez-Enri, J., González, C., Passaro, M., Vignudelli, S., Álvarez,
O., Cipollini, P., Mañanes, R., Bruno, M., López-Carmona, M., and
Izquierdo, A.: Wind-induced cross-strait sea level variability in the Strait
of Gibraltar from coastal altimetry and in-situ measurements, Remote Sens. Environ., 221, 596–608, https://doi.org/10.1016/j.rse.2018.11.042, 2019. a
Gomis, D., Ruiz, S., Sotillo, M. G., Álvarez-Fanjul, E., and Terradas, J.:
Low frequency Mediterranean sea level variability: the contribution of
atmospheric pressure and wind, Global Planet. Change, 63, 215–229,
https://doi.org/10.1016/j.gloplacha.2008.06.005, 2008. a, b, c
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118,
6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Le Cozannet, G., Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.:
Concepts and terminology for sea level: mean, variability and change, both
local and global, Surv. Geophys., 40, 1251–1289,
https://doi.org/10.1007/s10712-019-09525-z, 2019. a, b, c, d, e, f, g, h
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004. a, b, c
Haasnoot, M., Kwadijk, J., Van Alphen, J., Le Bars, D., Van Den Hurk, B.,
Diermanse, F., Van Der Spek, A., Essink, G. O., Delsman, J., and Mens, M.:
Adaptation to uncertain sea-level rise; how uncertainty in Antarctic
mass-loss impacts the coastal adaptation strategy of the Netherlands,
Environ. Res. Lett., 15, 034007, https://doi.org/10.1088/1748-9326/ab666c,
2020. a
Han, W., Stammer, D., Thompson, P., Ezer, T., Palanisamy, H., Zhang, X.,
Domingues, C. M., Zhang, L., and Yuan, D.: Impacts of basin-scale climate
modes on coastal sea level: a review, Surv. Geophys., 40, 1493–1541,
https://doi.org/10.1007/s10712-019-09562-8, 2019. a
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.: Probabilistic
reanalysis of twentieth-century sea-level rise, Nature, 517, 481–484,
https://doi.org/10.1038/nature14093, 2015. a, b
Hinkel, J., Church, J. A., Gregory, J. M., Lambert, E., Le Cozannet, G., Lowe,
J., McInnes, K. L., Nicholls, R. J., van der Pol, T. D., and van de Wal, R.:
Meeting user needs for sea level rise information: A decision analysis
perspective, Earth's Future, 7, 320–337, https://doi.org/10.1029/2018EF001071, 2019. a
Holt, J., Hyder, P., Ashworth, M., Harle, J., Hewitt, H. T., Liu, H., New, A. L., Pickles, S., Porter, A., Popova, E., Allen, J. I., Siddorn, J., and Wood, R.: Prospects for improving the representation of coastal and shelf seas in global ocean models, Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, 2017. a
Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., and Sato, K.:
Accuracy of global upper ocean heat content estimation expected from present
observational data sets, Sola, 13, 163–167, https://doi.org/10.2151/sola.2017-030,
2017. a
ISPRA: Manuale di mareografia e linee guida per i processi di validazione dei
dati mareografici, Manuali e linee guida 77/2012, ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale, Roma, ISBN 978-88-448-0532-6,
2012. a
Jones, P., Jonsson, T., and Wheeler, D.: Extension to the North Atlantic
Oscillation using early instrumental pressure observations from Gibraltar and
South-West Iceland, Int. J. Climatol., 17, 1433–1450,
https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P,
1997. a
Jordà, G.: Detection time for global and regional sea level trends and
accelerations, J. Geophys. Res.-Oceans, 119, 7164–7174,
https://doi.org/10.1002/2014JC010005, 2014. a, b
Jordà, G. and Gomis, D.: On the interpretation of the steric and mass
components of sea level variability: The case of the Mediterranean basin,
J. Geophys. Res.-Oceans, 118, 953–963,
https://doi.org/10.1002/jgrc.20060, 2013. a, b, c, d
Jordà, G., Gomis, D., and Álvarez-Fanjul, E.: The VANI2-ERA hindcast of
sea-level residuals: atmospheric forcing of sea-level variability in the
Mediterranean Sea (1958–2008), Sci. Mar., 76, 133–146,
https://doi.org/10.3989/scimar.03612.19C, 2012a. a
Jordà, G., Gomis, D., Álvarez-Fanjul, E., and Somot, S.: Atmospheric
contribution to Mediterranean and nearby Atlantic sea level variability under
different climate change scenarios, Global Planet. Change, 80,
198–214, https://doi.org/10.1016/j.gloplacha.2011.10.013, 2012b. a, b
Josey, S. A., Somot, S., and Tsimplis, M.: Impacts of atmospheric modes of
variability on Mediterranean Sea surface heat exchange, J. Geophys. Res.-Oceans, 116, C02032, https://doi.org/10.1029/2010JC006685, 2011. a
Kent, D. V., Rio, D., Massari, F., Kukla, G., and Lanci, L.: Emergence of
Venice during the Pleistocene, Quat. Sci. Rev., 21, 1719–1727,
https://doi.org/10.1016/S0277-3791(01)00153-6, 2002. a, b, c, d
King, M. A., Altamimi, Z., Boehm, J., Bos, M., Dach, R., Elosegui, P., Fund,
F., Hernández-Pajares, M., Lavallee, D., Cerveira, P. J. M., Penna, N., Riva, R. E. M., Steigenberger, P., van Dam, T., Vittuari, L., Williams, S., and Willis, P.:
Improved constraints on models of glacial isostatic adjustment: a review of
the contribution of ground-based geodetic observations, Surv. Geophys., 31, 465–507, https://doi.org/10.1007/s10712-010-9100-4, 2010. a
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M.,
Rasmussen, D., Strauss, B. H., and Tebaldi, C.: Probabilistic 21st and 22nd
century sea-level projections at a global network of tide-gauge sites,
Earth's future, 2, 383–406, https://doi.org/10.1002/2014EF000239, 2014. a, b, c, d, e, f, g, h, i
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp, S.,
Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving understanding of
Antarctic ice-sheet physics and ambiguity in probabilistic sea-level
projections, Earth's Future, 5, 1217–1233, https://doi.org/10.1002/2017EF000663, 2017. a
Lambeck, K., Antonioli, F., Purcell, A., and Silenzi, S.: Sea-level change
along the Italian coast for the past 10,000 yr, Quat. Sci. Rev.,
23, 1567–1598, https://doi.org/10.1016/j.quascirev.2004.02.009, 2004. a, b
Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano,
G., and Silenzi, S.: Sea level change along the Italian coast during the
Holocene and projections for the future, Quaternary Int., 232,
250–257, https://doi.org/10.1016/j.quaint.2010.04.026, 2011. a, b, c
Landerer, F. W. and Volkov, D. L.: The anatomy of recent large sea level
fluctuations in the Mediterranean Sea, Geophys. Res. Lett., 40,
553–557, https://doi.org/10.1002/grl.50140, 2013. a, b, c, d
Landerer, F. W., Gleckler, P. J., and Lee, T.: Evaluation of CMIP5 dynamic sea
surface height multi-model simulations against satellite observations,
Clim. Dynam., 43, 1271–1283, https://doi.org/10.1007/s00382-013-1939-x, 2014. a
Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A., Scharffenberg, M. G., Fenoglio-Marc, L., Fernandes, M. J., Andersen, O. B., Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., and Benveniste, J.: An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative, Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, 2018. a, b
Lempert, R.: Robust Decision Making (RDM) BT–Decision Making under Deep
Uncertainty: From Theory to Practice, edited by:
Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M., and Popper, S. W., Springer, Berlin, 23–51, 2019. a
Lezziero, A.: Indagini paleoambientali nel sottosuolo dell’isola di Burano,
Quaderni di Insula, Venezia, 10, 63–70, 2002. a
Lionello, P.: Extreme storm surges in the gulf of venice: Present and future
climate, Flooding and Environmental Challenges for Venice and its Lagoon:
State of Knowledge, in: Flooding and Environmental Challenges for Venice and its Lagoon: State of Knowledge, edited by: Fletcher, C. A. and Spencer, T., 59–69, Cambridge Univ. Press, New York, 2005. a
Lionello, P., Nicholls, R. J., Umgiesser, G., and Zanchettin, D.: Venice flooding and sea level: past evolution, present issues, and future projections (introduction to the special issue), Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, 2021a. a, b, c
Lionello, P., Barriopedro, D., Ferrarin, C., Nicholls, R. J., Orlić, M., Raicich, F., Reale, M., Umgiesser, G., Vousdoukas, M., and Zanchettin, D.: Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article), Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, 2021b. a, b, c
Magrini, G. P., De Marchi, L., and Gnesotto, T.: Impianti mareografici eseguiti,
Ricerche Lagunari, available at: https://www.beic.it (last access: 5 August 2021), 1908. a
Marcos, M., Jordà, G., and Le Cozannet, G.: Sea level rise and its impacts
on the Mediterranean, The Mediterranean region under climate change. A
scientific update, IRD Éditions, Marseille, 265–275,
https://doi.org/10.4000/books.irdeditions.22908, 2016. a, b, c
Mariotti, A. and Dell'Aquila, A.: Decadal climate variability in the
Mediterranean region: roles of large-scale forcings and regional processes,
Clim. Dynam., 38, 1129–1145, https://doi.org/10.1007/s00382-011-1056-7, 2012. a
Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickson, R.,
Hurrell, J., McCartney, M., Saravanan, R., and Visbeck, M.: North Atlantic
climate variability: phenomena, impacts and mechanisms, Int. J. Climatol., 21,
1863–1898, https://doi.org/10.1002/joc.693, 2001. a, b
Marti, F., Cazenave, A., Birol, F., Passaro, M., Léger, F., Niño, F.,
Almar, R., Benveniste, J., and Legeais, J. F.: Altimetry-based sea level
trends along the coasts of western Africa, Adv. Space Res., 68, 504–522, https://doi.org/10.1016/j.asr.2019.05.033, 2019. a
Martínez-Asensio, A., Marcos, M., Tsimplis, M. N., Gomis, D., Josey, S.,
and Jordà, G.: Impact of the atmospheric climate modes on Mediterranean
sea level variability, Global Planet. Change, 118, 1–15,
https://doi.org/10.1016/j.gloplacha.2014.03.007, 2014. a
Martínez-Asensio, A., Tsimplis, M. N., and Calafat, F. M.: Decadal
variability of European sea level extremes in relation to the solar activity,
Geophys. Res. Lett., 43, 11–744, https://doi.org/10.1002/2016GL071355, 2016. a
Maslova, V. N., Voskresenskaya, E. N., and Lubkov, A. S.: Multidecadal change
of winter cyclonic activity in the Mediterranean associated with AMO and
PDO, Terr. Atmos. Ocean. Sci., 28, 965–977, https://doi.org/10.3319/TAO.2017.04.23.01, 2017. a
Massari, F., Rio, D., Barbero, R. S., Asioli, A., Capraro, L., Fornaciari, E.,
and Vergerio, P.: The environment of Venice area in the past two million
years, Palaeogeogr. Palaeocl., 202, 273–308,
https://doi.org/10.1016/S0031-0182(03)00640-0, 2004. a, b
Melini, D. and Spada, G.: Some remarks on Glacial Isostatic Adjustment
modelling uncertainties, Geophys. J. Int., 218, 401–413,
https://doi.org/10.1093/gji/ggz158, 2019. a
Menemenlis, D., Fukumori, I., and Lee, T.: Atlantic to Mediterranean sea level
difference driven by winds near Gibraltar Strait, J. Phys. Oceanogr., 37, 359–376, https://doi.org/10.1175/JPO3015.1, 2007. a
Meyssignac, B., Slangen, A. A., Melet, A., Church, J., Fettweis, X., Marzeion,
B., Agosta, C., Ligtenberg, S., Spada, G., Richter, K., Palmer, M. D., Roberts, C. D., and Champollion, N.: Evaluating
model simulations of twentieth-century sea-level rise. Part II: Regional
sea-level changes, J. Climate, 30, 8565–8593,
https://doi.org/10.1175/JCLI-D-17-0112.1, 2017. a
Milne, G. A., Gehrels, W. R., Hughes, C. W., and Tamisiea, M. E.: Identifying
the causes of sea-level change, Nat. Geosci., 2, 471–478,
https://doi.org/10.1038/ngeo544, 2009. a
Mitrovica, J. X., Gomez, N., and Clark, P. U.: The sea-level fingerprint of
West Antarctic collapse, Science, 323, 753–753,
https://doi.org/10.1126/science.1166510, 2009. a
Naranjo, C., Garcia-Lafuente, J., Sannino, G., and Sanchez-Garrido, J.: How
much do tides affect the circulation of the Mediterranean Sea? From local
processes in the Strait of Gibraltar to basin-scale effects, Prog. Oceanogr., 127, 108–116, https://doi.org/10.1016/j.pocean.2014.06.005, 2014. a
Nicholls, R. J., Hanson, S. E., Lowe, J. A., Warrick, R. A., Lu, X., and Long,
A. J.: Sea-level scenarios for evaluating coastal impacts, WIRES Clim. Change, 5, 129–150,
https://doi.org/10.1002/wcc.253, 2014. a, b
Nicholls, R. J., Hanson, S. E., Lowe, J. A., Slangen, A. B., Wahl, T., Hinkel,
J., and Long, A. J.: Integrating new sea-level scenarios into coastal risk
and adaptation assessments: An ongoing process, WIRES Clim. Change, 12, e706, https://doi.org/10.1002/wcc.706, 2021. a, b
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Deconto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea level rise and implications for low lying islands, coasts and
communities, in: IPCC Special Report on the
Ocean and Cryosphere in a Changing Climate, edited by: Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press,
Cambridge, UK, 2019. a, b, c, d
Palma, M., Iacono, R., Sannino, G., Bargagli, A., Carillo, A., Fekete, B. M.,
Lombardi, E., Napolitano, E., Pisacane, G., and Struglia, M. V.: Short-term,
linear, and non-linear local effects of the tides on the surface dynamics in
a new, high-resolution model of the Mediterranean Sea circulation, Ocean
Dynam., 70, 935–963, https://doi.org/10.1007/s10236-020-01364-6, 2020. a
Parras-Berrocal, I. M., Vazquez, R., Cabos, W., Sein, D., Mañanes, R., Perez-Sanz, J., and Izquierdo, A.: The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model, Ocean Sci., 16, 743–765, https://doi.org/10.5194/os-16-743-2020, 2020. a
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth:
the ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sci., 32,
111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004. a
Piecuch, C. G., Dangendorf, S., Gawarkiewicz, G. G., Little, C. M., Ponte,
R. M., and Yang, J.: How is New England coastal sea level related to the
Atlantic meridional overturning circulation at 26∘ N?, Geophys. Res. Lett., 46, 5351–5360, https://doi.org/10.1029/2019GL083073, 2019. a, b
Pirazzoli, P.: Sea level changes. The last 2000 years, John Wiley & Sons, Chichester, 211 pp., 1996. a
Pisacane, G., Artale, V., Calmanti, S., and Rupolo, V.: Decadal oscillations in
the Mediterranean Sea: a result of the overturning circulation variability in
the eastern basin?, Clim. Res., 31, 257–271, https://doi.org/10.3354/cr031257,
2006. a
Polli, S.: Il graduale aumento del livello del mare lungo le coste italiane,
Geofisica pura e applicata, 25, 123–129, https://doi.org/10.1007/BF02014061, 1953. a
Polyakov, I. V., Pnyushkov, A. V., and Timokhov, L. A.: Warming of the
Intermediate Atlantic Water of the Arctic Ocean in the 2000s, J. Climate, 25, 8362–8370, https://doi.org/10.1175/JCLI-D-12-00266.1, 2012. a
Ponte, R. M., Carson, M., Cirano, M., Domingues, C. M., Jevrejeva, S., Marcos,
M., Mitchum, G., van de Wal, R. S. W., Woodworth, P. L., Ablain, M., Ardhuin,
F., Ballu, V., Becker, M., Benveniste, J., Birol, F., Bradshaw, E., Cazenave,
A., De Mey-Frémaux, P., Durand, F., Ezer, T., Fu, L.-L., Fukumori, I.,
Gordon, K., Gravelle, M., Griffies, S. M., Han, W., Hibbert, A., Hughes,
C. W., Idier, D., Kourafalou, V. H., Little, C. M., Matthews, A., Melet, A.,
Merrifield, M., Meyssignac, B., Minobe, S., Penduff, T., Picot, N., Piecuch,
C., Ray, R. D., Rickards, L., Santamaría-Gómez, A., Stammer, D., Staneva,
J., Testut, L., Thompson, K., Thompson, P., Vignudelli, S., Williams, J.,
Williams, S. D. P., Wöppelmann, G., Zanna, L., and Zhang, X.: Towards
comprehensive observing and modeling systems for monitoring and predicting
regional to coastal sea level, Front. Mar. Sci., 6, 437, https://doi.org/10.3389/fmars.2019.00437, 2019. a
Quartly, G. D., Legeais, J.-F., Ablain, M., Zawadzki, L., Fernandes, M. J., Rudenko, S., Carrère, L., García, P. N., Cipollini, P., Andersen, O. B., Poisson, J.-C., Mbajon Njiche, S., Cazenave, A., and Benveniste, J.: A new phase in the production of quality-controlled sea level data, Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, 2017. a
Ranger, N., Reeder, T., and Lowe, J.: Addressing “deep” uncertainty over
long-term climate in major infrastructure projects: four innovations of the
Thames Estuary 2100 Project, EURO Journal on Decision Processes, 1, 233–262,
https://doi.org/10.1007/s40070-013-0014-5, 2013. a
Roy, K. and Peltier, W. R.: Relative sea level in the Western Mediterranean
basin: a regional test of the ICE-7G_NA (VM7) model and a constraint on late
Holocene Antarctic deglaciation, Quat. Sci. Rev., 183, 76–87,
https://doi.org/10.1016/j.quascirev.2017.12.021, 2018. a
Rubino, A., Zanchettin, D., Androsov, A., and Voltzinger, N. E.: Tidal Records
as Liquid Climate Archives for Large-Scale Interior Mediterranean
Variability, Sci. Rep., 8, 1–8, https://doi.org/10.1038/s41598-018-30930-8,
2018. a
Rusconi, A.: Il Comune Marino a Venezia: ricerche e ipotesi sulle sue
variazioni altimetriche e sui fenomeni naturali che le determinano, Ufficio Idrografico Magistrato Acque, Venice, Italy, Pubbl., 157, 39, 1983. a
Salvioni, G.: I movimenti del suolo nell'Italia centro-settentrionale,
Bollettino di geodesia e scienze affini, 16, 325–366, 1957. a
Sánchez, L., Völksen, C., Sokolov, A., Arenz, H., and Seitz, F.: Present-day surface deformation of the Alpine region inferred from geodetic techniques, Earth Syst. Sci. Data, 10, 1503–1526, https://doi.org/10.5194/essd-10-1503-2018, 2018. a
Sannino, G., Pratt, L., and Carillo, A.: Hydraulic criticality of the exchange
flow through the Strait of Gibraltar, J. Phys. Oceanogr., 39,
2779–2799, https://doi.org/10.1175/2009JPO4075.1, 2009. a
Sannino, G., Carillo, A., Pisacane, G., and Naranjo, C.: On the relevance of
tidal forcing in modelling the Mediterranean thermohaline circulation,
Prog. Oceanogr., 134, 304–329, https://doi.org/10.1016/j.pocean.2015.03.002,
2015. a
Santamaría-Gómez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada,
G., and Wöppelmann, G.: Uncertainty of the 20th century sea-level rise
due to vertical land motion errors, Earth Planet. Sci. Lett., 473,
24–32, https://doi.org/10.1016/j.epsl.2017.05.038, 2017. a, b, c
Scafetta, N.: Multi-scale dynamical analysis (MSDA) of sea level records versus
PDO, AMO, and NAO indexes, Clim. Dynam., 43, 175–192,
https://doi.org/10.1007/s00382-013-1771-3, 2014. a
Scharroo, R., Leuliette, E., Lillibridge, J., Byrne, D., Naeije, M., and
Mitchum, G.: RADS: Consistent Multi-Mission Products, ESASP, in Proceedings
of the Symposium on 20 Years of Progress in Radar Altimetry, 24–29 September
2012, Special Publication SP-710, p. 69, European Space Agency, Venice,
Italy, 2013. a
Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto,
J. G., Hagemann, S., Semmler, T., Izquierdo, A., and Jacob, D.: Regionally
coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1.
Description and validation, J. Adv. Model. Earth Sy., 7,
268–304, https://doi.org/10.1002/2014MS000357, 2015. a
Serandrei Barbero, R., Lezziero, A., Albani, A., and Zoppi, U.: Depositi
tardo-pleistocenici ed olocenici nel sottosuolo veneziano: paleoambienti e
cronologia, Il Quaternario, 14, 9–22, 2001. a
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., and Oddo,
P.: Mediterranean Sea physical reanalysis (MEDREA 1987–2017) (Version 1),
Copernicus Monitoring Environment Marine Service (CMEMS) [data set],
https://doi.org/10.25423/medsea_reanalysis_phys_006_004, 2014. a
Slangen, A., Katsman, C., Van de Wal, R., Vermeersen, L., and Riva, R.: Towards
regional projections of twenty-first century sea-level change based on IPCC
SRES scenarios, Clim. Dynam., 38, 1191–1209,
https://doi.org/10.1007/s00382-011-1057-6, 2012. a, b
Slangen, A., Carson, M., Katsman, C., Van de Wal, R., Köhl, A., Vermeersen,
L., and Stammer, D.: Projecting twenty-first century regional sea-level
changes, Clim. Change, 124, 317–332, https://doi.org/10.1007/s10584-014-1080-9,
2014. a
Slangen, A., Adloff, F., Jevrejeva, S., Leclercq, P., Marzeion, B., Wada, Y.,
and Winkelmann, R.: A review of recent updates of sea-level projections at
global and regional scales, Surv. Geophys., 38, 385–406,
https://doi.org/10.1007/s10712-016-9374-2, 2017. a, b
Slangen, A. B., Church, J. A., Agosta, C., Fettweis, X., Marzeion, B., and
Richter, K.: Anthropogenic forcing dominates global mean sea-level rise since
1970, Nat. Clim. Change, 6, 701–705, https://doi.org/10.1038/nclimate2991, 2016. a
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese,
B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J., Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman, J. E., Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan, A., Kubota, H., Le Blancq, F., Lee, T.-C., Lorrey, A., Luterbacher, J., Maugeri, M., Mock, C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason, C., Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang, X. L., Wilkinson, C., Wood, K., and Wyszyński, P.:
Towards a more reliable historical reanalysis: Improvements for version 3 of
the Twentieth Century Reanalysis system, Q. J. Roy. Meteor. Soc., 145, 2876–2908, https://doi.org/10.1002/qj.3598, 2019. a
Somot, S., Sevault, F., Déqué, M., and Crépon, M.: 21st century
climate change scenario for the Mediterranean using a coupled
atmosphere–ocean regional climate model, Global Planet. Change, 63,
112–126, https://doi.org/10.1016/j.gloplacha.2007.10.003, 2008. a
Spada, G.: Glacial isostatic adjustment and contemporary sea level rise: An
overview, Surv. Geophys., 38, 153–185,
https://doi.org/10.1007/s10712-016-9379-x, 2017. a
Spada, G. and Melini, D.: On Some Properties of the Glacial Isostatic
Adjustment Fingerprints, Water, 11, 1844, https://doi.org/10.3390/w11091844, 2019. a
Spada, G., Stocchi, P., and Colleoni, F.: Glacio–isostatic adjustment in the
po plain and in the northern adriatic region, Pure Appl. Geophys.,
166, 1303–1318, https://doi.org/10.1007/s00024-004-0498-9, 2009. a
Spada, G., Bamber, J., and Hurkmans, R.: The gravitationally consistent
sea-level fingerprint of future terrestrial ice loss, Geophys. Res. Lett., 40, 482–486, https://doi.org/10.1029/2012GL053000, 2013. a
Stammer, D. and Cazenave, A.: Satellite altimetry over oceans and land
surfaces, CRC Press, Boca Raton, https://doi.org/10.1201/9781315151779, 2017. a
Stocchi, P. and Spada, G.: Influence of glacial isostatic adjustment upon
current sea level variations in the Mediterranean, Tectonophysics, 474,
56–68, https://doi.org/10.1016/j.tecto.2009.01.003, 2009. a
Stocchi, P., Spada, G., and Cianetti, S.: Isostatic rebound following the
Alpine deglaciation: impact on the sea level variations and vertical
movements in the Mediterranean region, Geophys. J. Int.,
162, 137–147, https://doi.org/10.1111/j.1365-246X.2005.02653.x, 2005. a
Tambroni, N. and Seminara, G.: Are inlets responsible for the morphological
degradation of Venice Lagoon?, J. Geophys. Res.-Earth, 111, F03013, https://doi.org/10.1029/2005JF000334, 2006. a
Taricco, C., Alessio, S., Rubinetti, S., Zanchettin, D., Cosoli, S.,
Gačić, M., Mancuso, S., and Rubino, A.: Marine Sediments Remotely
Unveil Long-Term Climatic Variability Over Northern Italy, Sci. Rep., 5, 12111, https://doi.org/10.1038/srep12111, 2015. a
Teatini, P., Ferronato, M., Gambolati, G., Bertoni, W., and Gonella, M.: A
century of land subsidence in Ravenna, Italy, Environ. Geol., 47,
831–846, https://doi.org/10.1007/s00254-004-1215-9, 2005. a
Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Cecconi, G., Rosselli, R.,
and Libardo, S.: Resolving land subsidence within the Venice Lagoon by
persistent scatterer SAR interferometry, Phys. Chem. Earth PT A/B/C, 40, 72–79, https://doi.org/10.1016/j.pce.2010.01.002, 2012. a
Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B., and Losada,
I. J.: Likely and High-End Impacts of Regional Sea-Level Rise on the
Shoreline Change of European Sandy Coasts Under a High Greenhouse Gas
Emissions Scenario, Water, 11, 2607, https://doi.org/10.3390/w11122607, 2019. a, b, c, d, e
Torge, W. and Müller, J.: Geodesy, Walter de Gruyter, Berlin, Germany, 1980. a
Tosi, L., Teatini, P., Carbognin, L., and Brancolini, G.: Using high resolution
data to reveal depth-dependent mechanisms that drive land subsidence: The
Venice coast, Italy, Tectonophysics, 1, 271–284,
https://doi.org/10.1016/j.tecto.2009.02.026, 2009. a, b
Tosi, L., Teatini, P., Strozzi, T., Carbognin, L., Brancolini, G., and
Rizzetto, F.: Ground surface dynamics in the northern Adriatic coastland over
the last two decades, Rend. Lincei, 21, 115–129,
https://doi.org/10.1007/s12210-010-0084-2, 2010. a
Troccoli, A., Zambon, F., Hodges, K. I., and Marani, M.: Storm surge frequency
reduction in Venice under climate change, Clim. Change, 113, 1065–1079,
https://doi.org/10.1007/s10584-011-0093-x, 2012. a, b
Tsimplis, M., Álvarez-Fanjul, E., Gomis, D., Fenoglio-Marc, L., and
Pérez, B.: Mediterranean sea level trends: atmospheric pressure and wind
contribution, Geophys. Res. Lett., 32, L20602, https://doi.org/10.1029/2005GL023867,
2005. a
Tsimplis, M., Shaw, A., Flather, R., and Woolf, D.: The influence of the North
Atlantic Oscillation on the sea-level around the northern European coasts
reconsidered: the thermosteric effects, Philos. T. Roy. Soc. A, 364,
845–856, https://doi.org/10.1098/rsta.2006.1740, 2006. a
Tsimplis, M., Calafat, F. M., Marcos, M., Jordá, G., Gomis, D.,
Fenoglio-Marc, L., Struglia, M., Josey, S. A., and Chambers, D.: The effect
of the NAO on sea level and on mass changes in the Mediterranean Sea, J. Geophys. Res.-Oceans, 118, 944–952, https://doi.org/10.1002/jgrc.20078,
2013. a, b, c
Tsimplis, M. N. and Baker, T. F.: Sea level drop in the Mediterranean Sea: an
indicator of deep water salinity and temperature changes?, Geophys. Res. Lett., 27, 1731–1734, https://doi.org/10.1029/1999GL007004, 2000. a, b
Tsimplis, M. N. and Shaw, A. G.: The forcing of mean sea level variability
around Europe, Global Planet. Change, 63, 196–202,
https://doi.org/10.1016/j.gloplacha.2007.08.018, 2008. a, b
Tsimplis, M. N., Marcos, M., and Somot, S.: 21st century Mediterranean sea
level rise: steric and atmospheric pressure contributions from a regional
model, Global Planet. Change, 63, 105–111,
https://doi.org/10.1016/j.gloplacha.2007.09.006, 2008. a, b, c
Turuncoglu, U. U. and Sannino, G.: Validation of newly designed regional earth
system model (RegESM) for Mediterranean Basin, Clim. Dynam., 48,
2919–2947, https://doi.org/10.1007/s00382-016-3241-1, 2017. a
Umgiesser, G., Bajo, M., Ferrarin, C., Cucco, A., Lionello, P., Zanchettin, D., Papa, A., Tosoni, A., Ferla, M., Coraci, E., Morucci, S., Crosato, F., Bonometto, A., Valentini, A., Orlić, M., Haigh, I. D., Nielsen, J. W., Bertin, X., Fortunato, A. B., Pérez Gómez, B., Alvarez Fanjul, E., Paradis, D., Jourdan, D., Pasquet, A., Mourre, B., Tintoré, J., and Nicholls, R. J.: The prediction of floods in Venice: methods, models and uncertainty (review article), Nat. Hazards Earth Syst. Sci., 21, 2679–2704,
https://doi.org/10.5194/nhess-21-2679-2021, 2021. a, b
UNESCO: General Concepts, UNESCO Land Subsidence International Initiative,
available at: https://www.landsubsidence-unesco.org/general-concepts/ (last access: 5 August 2021),
2020. a
Vecchio, A., Anzidei, M., Serpelloni, E., and Florindo, F.: Natural Variability
and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records
over the Last Two Centuries and Projections for 2100, Water, 11, 1480,
https://doi.org/10.3390/w11071480, 2019. a, b, c, d
Vignudelli, S.: Analysis of ERS-1 altimeter collinear passes in the
Mediterranean Sea during 1992–1993, Int. J. Remote Sens.,
18, 573–601, https://doi.org/10.1080/014311697218953, 1997. a
Vignudelli, S., Kostianoy, A. G., Cipollini, P., and Benveniste, J.: Coastal
altimetry, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-12796-0, 2011. a
Vignudelli, S., Birol, F., Benveniste, J., Fu, L.-L., Picot, N., Raynal, M.,
and Roinard, H.: Satellite altimetry measurements of sea level in the coastal
zone, Surv. Geophys., 40, 1319–1349,
https://doi.org/10.1007/s10712-019-09569-1, 2019a. a, b
Whitehouse, P. L.: Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions, Earth Surf. Dynam., 6, 401–429, https://doi.org/10.5194/esurf-6-401-2018, 2018. a
Williams, S. D.: CATS: GPS coordinate time series analysis software, GPS
solutions, 12, 147–153, https://doi.org/10.1007/s10291-007-0086-4, 2008. a, b
Woodworth, P. L., Pouvreau, N., and Wöppelmann, G.: The gyre-scale circulation of the North Atlantic and sea level at Brest, Ocean Sci., 6, 185–190, https://doi.org/10.5194/os-6-185-2010, 2010. a
Woodworth, P. L.: Differences between mean tide level and mean sea level,
J. Geodesy, 91, 69–90, https://doi.org/10.1007/s00190-016-0938-1, 2017. a
Wöppelmann, G. and Marcos, M.: Coastal sea level rise in southern Europe
and the nonclimate contribution of vertical land motion, J. Geophys. Res.-Oceans, 117, C01007, https://doi.org/10.1029/2011JC007469, 2012. a, b, c, d
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability, Rev. Geophys., 54,
64–92, https://doi.org/10.1002/2015RG000502, 2016. a, b, c
Wöppelmann, G., Zerbini, S., and Marcos, M.: Tide gauges and Geodesy: a
secular synergy illustrated by three present-day case studies, C. R. Geosci., 338, 980–991, https://doi.org/10.1016/j.crte.2006.07.006, 2006. a
Wöppelmann, G., Marcos, M., Coulomb, A., Míguez, B. M., Bonnetain, P.,
Boucher, C., Gravelle, M., Simon, B., and Tiphaneau, P.: Rescue of the
historical sea level record of Marseille (France) from 1885 to 1988 and its
extension back to 1849–1851, J. Geodesy, 88, 869–885,
https://doi.org/10.1007/s00190-014-0728-6, 2014. a
Zanchettin, D.: Aerosol and solar irradiance effects on decadal climate
variability and predictability, Current Climate Change Reports, 3, 150–162,
https://doi.org/10.1007/s40641-017-0065-y, 2017. a
Zanchettin, D., Rubino, A., Traverso, P., and Tomasino, M.: Impact of
variations in solar activity on hydrological decadal patterns in northern
Italy, J. Geophys. Res.-Atmos., 113, D12102, https://doi.org/10.1029/2007JD009157, 2008. a
Zanchettin, D., Bothe, O., Rubino, A., and Jungclaus, J. H.: Multi-model
ensemble analysis of Pacific and Atlantic SST variability in unperturbed
climate simulations, Clim. Dynam., 47, 1073–1090,
https://doi.org/10.1007/s00382-015-2889-2, 2016.
a
Zanchettin, D., Bruni, S., Thiéblemont, R., and Rubinetti, S.: Data from article “Sea-level rise in Venice: historic and future trends (review article)”, Zenodo [data set], https://doi.org/10.5281/zenodo.5139890, 2021. a
Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J., and Heimbach, P.: Global
reconstruction of historical ocean heat storage and transport, P. Natl. Acad. Sci. USA, 116, 1126–1131,
https://doi.org/10.1073/pnas.1808838115, 2019. a
Zerbini, S., Raicich, F., Prati, C. M., Bruni, S., Del Conte, S., Errico, M.,
and Santi, E.: Sea-level change in the Northern Mediterranean Sea from
long-period tide gauge time series, Earth-Sci. Rev., 167, 72–87,
https://doi.org/10.1016/j.earscirev.2017.02.009, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Zezza, F.: The sedimentary structure of Upper Pleistocene–Holocene deposits in
Venice and its effects on the stability of the historic centre, Rend.
Lincei, 21, 211–227, https://doi.org/10.1007/s12210-010-0089-x, 2010. a
Download
- Article
(7292 KB) - Full-text XML
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined...
Altmetrics
Final-revised paper
Preprint