Articles | Volume 21, issue 8
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, 2021
https://doi.org/10.5194/nhess-21-2523-2021
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, 2021
https://doi.org/10.5194/nhess-21-2523-2021
Research article
25 Aug 2021
Research article | 25 Aug 2021

Towards an efficient storm surge and inundation forecasting system over the Bengal delta: chasing the Supercyclone Amphan

Md. Jamal Uddin Khan et al.

Related authors

Bangladesh's vulnerability to cyclonic coastal flooding
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022,https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Storm surge hazard over Bengal delta: A probabilistic-deterministic modelling approach
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-329,https://doi.org/10.5194/nhess-2021-329, 2021
Revised manuscript accepted for NHESS
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022,https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022,https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022,https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022,https://doi.org/10.5194/nhess-22-1267-2022, 2022
Short summary
Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022,https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary

Cited articles

Ahsan, M. N., Khatun, A., Islam, M. S., Vink, K., Ohara, M., and Fakhruddin, B. S.: Preferences for improved early warning services among coastal communities at risk in cyclone prone south-west region of Bangladesh, Progress in Disaster Science, 5, 100065, https://doi.org/10.1016/j.pdisas.2020.100065, 2020. a
Alam, E. and Dominey-Howes, D.: A new catalogue of tropical cyclones of the northern Bay of Bengal and the distribution and effects of selected landfalling events in Bangladesh, Int. J. Climatol., 35, 801–835, https://doi.org/10.1002/joc.4035, 2014. a, b
Ali, A.: Climate change impacts and adaptation assessment in Bangladesh, Clim. Res., 12, 109–116, https://doi.org/10.3354/cr012109, 1999. a, b
Antony, C. and Unnikrishnan, A. S.: Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal, Estuar. Coast. Shelf S., 131, 6–11, https://doi.org/10.1016/j.ecss.2013.08.004, 2013. a, b
Antony, C., Unnikrishnan, A., Krien, Y., Murty, P., Samiksha, S., and Islam, A.: Tide–surge interaction at the head of the Bay of Bengal during Cyclone Aila, Regional Studies in Marine Science, 35, 101133, https://doi.org/10.1016/j.rsma.2020.101133, 2020. a
Download
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Altmetrics
Final-revised paper
Preprint