Articles | Volume 21, issue 7
Nat. Hazards Earth Syst. Sci., 21, 2245–2256, 2021
https://doi.org/10.5194/nhess-21-2245-2021
Nat. Hazards Earth Syst. Sci., 21, 2245–2256, 2021
https://doi.org/10.5194/nhess-21-2245-2021

Research article 29 Jul 2021

Research article | 29 Jul 2021

Formation, evolution, and drainage of short-lived glacial lakes in permafrost environments of the northern Teskey Range, Central Asia

Mirlan Daiyrov and Chiyuki Narama

Related authors

Daily water-level variations of supraglacial lakes in the southern Inylchek Glacier, Central Asia
Naoki Sakurai, Chiyuki Narama, Mirlan Daiyrov, Muhammed Esenamanov, Zarylbek Usekov, and Hiroshi Inoue
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-62,https://doi.org/10.5194/tc-2020-62, 2020
Revised manuscript not accepted
Short summary
Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia
Chiyuki Narama, Mirlan Daiyrov, Murataly Duishonakunov, Takeo Tadono, Hayato Sato, Andreas Kääb, Jinro Ukita, and Kanatbek Abdrakhmatov
Nat. Hazards Earth Syst. Sci., 18, 983–995, https://doi.org/10.5194/nhess-18-983-2018,https://doi.org/10.5194/nhess-18-983-2018, 2018
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021,https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry
Xuguo Shi, Shaocheng Zhang, Mi Jiang, Yuanyuan Pei, Tengteng Qu, Jinhu Xu, and Chen Yang
Nat. Hazards Earth Syst. Sci., 21, 2285–2297, https://doi.org/10.5194/nhess-21-2285-2021,https://doi.org/10.5194/nhess-21-2285-2021, 2021
Short summary
ABWiSE v1.0: Toward and Agent-Based Approach to Simulating Wildfire Spread
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-179,https://doi.org/10.5194/nhess-2021-179, 2021
Revised manuscript accepted for NHESS
Short summary
Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021,https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Impact of information presentation on interpretability of spatial hazard information: Lessons from a study in avalanche safety
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-147,https://doi.org/10.5194/nhess-2021-147, 2021
Revised manuscript accepted for NHESS
Short summary

Cited articles

Aizen, V. B., Kuzmichenok, V. A., Surazakov, A. B., and Aizen, E. M.: Glacier changes in the central and northern Tien Shan during the last 140years based on surface and remote-sensing data, Ann. Glaciol., 43, 202–213, 2006. 
Ageta, Y., Iwata, S., Yabuki, H., Naito, N., Sakai, A., Narama, C., and Karma: Expansion of glacier lakes in recent decades in the Bhutan Himalayas, Debris-Covered Glaciers, edited by: Nakawo, M., Raymond, C. F., and Fountain, A., IAHS Publication, 264: Wallingford, UK, 165–175, ISBN 978-1-901502-31-2, 2000. 
Bajracharya, S. R., Mool, P. K., and Shrestha, B. R.: Impact of Climate Change on Himalayan Glaciers and Glacial Lakes: Case Studies on GLOF and Associated Hazards in Nepal and Bhutan, ICIMOD: Kathmandu, Nepal, 133 pp., ISBN 978-92-9115-032-8, 2007. 
Benn, D. I., Wiseman, S., and Warren, C. R.: Rapid growth of a supraglacial lake, Ngozumpa Glacier, Khumbu Himal, Nepal, Debris-Covered Glaciers, edited by: Nakawo, M., Raymond, C. F., and Fountain, A., IAHS Publication, 264: Wallingford, UK, 177–185, ISBN 978-1-901502-31-2, 2000. 
Benn, D. I., Thompson, S., Gulley, J., Mertes, J., Luckman, A., and Nicholson, L.: Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss, The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, 2017. 
Download
Short summary
In the Teskey Range of the Tien Shan (Kyrgyz Republic), four outburst flood disasters from short-lived glacial lakes in 2006, 2008, 2013, and 2014 caused severe damages in the downstream part. Short-lived glacial lakes grow rapidly and drain within a few months, due to closure and opening of an outlet ice tunnel in an ice-cored moraine complex at the glacier front. We investigated how short-lived glacial lakes store and drain water over short periods based on field survey and satellite data.
Altmetrics
Final-revised paper
Preprint