Articles | Volume 21, issue 7
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, 2021
https://doi.org/10.5194/nhess-21-2021-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Understanding compound weather and climate events and related...
Research article
06 Jul 2021
Research article
| 06 Jul 2021
Regional analysis of multivariate compound coastal flooding potential around Europe and environs: sensitivity analysis and spatial patterns
Paula Camus et al.
Related authors
Ahmed A. Nasr, Thomas Wahl, Md Mamunur Rashid, Paula Camus, and Ivan D. Haigh
Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, https://doi.org/10.5194/hess-25-6203-2021, 2021
Short summary
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022, https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-397, https://doi.org/10.5194/nhess-2021-397, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Ahmed A. Nasr, Thomas Wahl, Md Mamunur Rashid, Paula Camus, and Ivan D. Haigh
Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, https://doi.org/10.5194/hess-25-6203-2021, 2021
Short summary
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Samuel Tiéfolo Diabaté, Didier Swingedouw, Joël Jean-Marie Hirschi, Aurélie Duchez, Philip J. Leadbitter, Ivan D. Haigh, and Gerard D. McCarthy
Ocean Sci., 17, 1449–1471, https://doi.org/10.5194/os-17-1449-2021, https://doi.org/10.5194/os-17-1449-2021, 2021
Short summary
Short summary
The Gulf Stream and the Kuroshio are major currents of the North Atlantic and North Pacific, respectively. They transport warm water northward and are key components of the Earth climate system. For this study, we looked at how they affect the sea level of the coasts of Japan, the USA and Canada. We found that the inshore sea level
co-varies with the north-to-south shifts of the Gulf Stream and Kuroshio. In the paper, we discuss the physical mechanisms that could explain the agreement.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021, https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
Short summary
A comprehensive assessment of compound flooding potential is missing for China. We investigate dependence, drivers, and impacts of storm surge and precipitation for coastal China. Strong dependence exists between driver combinations, with variations of seasons and thresholds. Sea level rise escalates compound flood potential. Meteorology patterns are pronounced for low and high compound flood potential. Joint impacts from surge and precipitation were much higher than from each individually.
Sepehr Eslami, Piet Hoekstra, Herman W. J. Kernkamp, Nam Nguyen Trung, Dung Do Duc, Hung Nguyen Nghia, Tho Tran Quang, Arthur van Dam, Stephen E. Darby, Daniel R. Parsons, Grigorios Vasilopoulos, Lisanne Braat, and Maarten van der Vegt
Earth Surf. Dynam., 9, 953–976, https://doi.org/10.5194/esurf-9-953-2021, https://doi.org/10.5194/esurf-9-953-2021, 2021
Short summary
Short summary
Increased salt intrusion jeopardizes freshwater supply to the Mekong Delta, and the current trends are often inaccurately associated with sea level rise. Using observations and models, we show that salinity is highly sensitive to ocean surge, tides, water demand, and upstream discharge. We show that anthropogenic riverbed incision has significantly amplified salt intrusion, exemplifying the importance of preserving sediment budget and riverbed levels to protect deltas against salt intrusion.
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021, https://doi.org/10.5194/nhess-21-1461-2021, 2021
Robert Jane, Luis Cadavid, Jayantha Obeysekera, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 20, 2681–2699, https://doi.org/10.5194/nhess-20-2681-2020, https://doi.org/10.5194/nhess-20-2681-2020, 2020
Short summary
Short summary
Full dependence is assumed between drivers in flood protection assessments of coastal water control structures in south Florida. A 2-D analysis of rainfall and coastal water level showed that the magnitude of the conservative assumption in the original design is highly sensitive to the regional sea level rise projection considered. The vine copula and HT04 model outperformed five higher-dimensional copulas in capturing the dependence between rainfall, coastal water level, and groundwater level.
Scott A. Stephens, Robert G. Bell, and Ivan D. Haigh
Nat. Hazards Earth Syst. Sci., 20, 783–796, https://doi.org/10.5194/nhess-20-783-2020, https://doi.org/10.5194/nhess-20-783-2020, 2020
Short summary
Short summary
Extreme sea levels in New Zealand occur in nearby places and at similar times, which means that flooding impacts and losses may be linked in space and time. The most extreme sea levels depend on storms coinciding with very high tides because storm surges are relatively small in New Zealand. The type of storm weather system influences where the extreme sea levels occur, and the annual timing is influenced by the low-amplitude (~10 cm) annual sea-level cycle.
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
Alistair Hendry, Ivan D. Haigh, Robert J. Nicholls, Hugo Winter, Robert Neal, Thomas Wahl, Amélie Joly-Laugel, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, https://doi.org/10.5194/hess-23-3117-2019, 2019
Short summary
Short summary
Flooding can arise from multiple sources, including waves, extreme sea levels, rivers, and severe rainfall. When two or more sources combine, the consequences can be greatly multiplied. We find the potential for the joint occurrence of extreme sea levels and river discharge to be greater on the western coast of the UK compared to the eastern coast. This is due to the weather conditions generating each flood source around the UK. These results will help increase our flood forecasting ability.
Robert Marsh, Ivan D. Haigh, Stuart A. Cunningham, Mark E. Inall, Marie Porter, and Ben I. Moat
Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, https://doi.org/10.5194/os-13-315-2017, 2017
Short summary
Short summary
To the west of Britain and Ireland, a strong ocean current follows the steep slope that separates the deep Atlantic and the continental shelf. This “Slope Current” exerts an Atlantic influence on the North Sea and its ecosystems. Using a combination of computer modelling and archived data, we find that the Slope Current weakened over 1988–2007, reducing Atlantic influence on the North Sea, due to a combination of warming of the subpolar North Atlantic and weakening winds to the west of Scotland.
M. P. Wadey, J. M. Brown, I. D. Haigh, T. Dolphin, and P. Wisse
Nat. Hazards Earth Syst. Sci., 15, 2209–2225, https://doi.org/10.5194/nhess-15-2209-2015, https://doi.org/10.5194/nhess-15-2209-2015, 2015
M. P. Wadey, I. D. Haigh, and J. M. Brown
Ocean Sci., 10, 1031–1045, https://doi.org/10.5194/os-10-1031-2014, https://doi.org/10.5194/os-10-1031-2014, 2014
Related subject area
Sea, Ocean and Coastal Hazards
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Submarine landslide source modeling using the 3D slope stability analysis method for the 2018 Palu, Sulawesi, tsunami
Characteristics and beach safety knowledge of beachgoers on unpatrolled surf beaches in Australia
Robust uncertainty quantification of the volume of tsunami ionospheric holes for the 2011 Tohoku-Oki earthquake: towards low-cost satellite-based tsunami warning systems
Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions
Multilayer modelling of waves generated by explosive subaqueous volcanism
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Development of damage curves for buildings near La Rochelle during storm Xynthia based on insurance claims and hydrodynamic simulations
Investigating the interaction of waves and river discharge during compound flooding at Breede Estuary, South Africa
Compound flood impact of water level and rainfall during tropical cyclone period in a coastal city: The case of Shanghai
Still normal? Near-real-time evaluation of storm surge events in the context of climate change
The influence of infragravity waves on the safety of coastal defences: a case study of the Dutch Wadden Sea
Assessment of potential beach erosion risk and impact of coastal zone development: a case study on Bongpo–Cheonjin Beach
Characteristics and coastal effects of a destructive marine storm in the Gulf of Naples (southern Italy)
Probabilistic, high-resolution tsunami predictions in northern Cascadia by exploiting sequential design for efficient emulation
Towards using state-of-the-art climate models to help constrain estimates of unprecedented UK storm surges
Review article: Extreme marine events revealed by lagoonal sedimentary records in Ghar El Melh during the last 2500 years in the northeast of Tunisia
Exploring the partial use of the Mo.S.E. system as effective adaptation to rising flood frequency of Venice
Variable-resolution building exposure modelling for earthquake and tsunami scenario-based risk assessment: an application case in Lima, Peru
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea Coast
Historical Tsunamis of Taiwan in the Eighteenth Century: the 1781 Jiateng Harbor Flooding and 1782 Tsunami Event
The Mw 7.5 Tadine (Maré, Loyalty Islands) earthquake and related tsunami of 5 December 2018: seismotectonic context and numerical modeling
Storm surge hazard over Bengal delta: A probabilistic-deterministic modelling approach
Tidal flood area mapping in the face of climate change scenarios: case study in a tropical estuary in the Brazilian semi-arid region
Distribution of coastal high water level during extreme events around the UK and Irish coasts
Occurrence of pressure-forced meteotsunami events in the eastern Yellow Sea during 2010–2019
Characteristics of joint heavy precipitation and high sea level events on the Finnish coast in 1961–2020
Tsunami heights and limits in 1945 along the Makran coast estimated from testimony gathered 7 decades later in Gwadar, Pasni and Ormara
Sea-level rise in Venice: historic and future trends (review article)
Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article)
The prediction of floods in Venice: methods, models and uncertainty (review article)
Venice flooding and sea level: past evolution, present issues, and future projections (introduction to the special issue)
Estimation of the non-exceedance probability of extreme storm surges in South Korea using tidal-gauge data
Towards an efficient storm surge and inundation forecasting system over the Bengal delta: chasing the Supercyclone Amphan
Performance of the Adriatic early warning system during the multi-meteotsunami event of 11–19 May 2020: an assessment using energy banners
Characteristics of building fragility curves for seismic and non-seismic tsunamis: case studies of the 2018 Sunda Strait, 2018 Sulawesi–Palu, and 2004 Indian Ocean tsunamis
Deep uncertainties in shoreline change projections: an extra-probabilistic approach applied to sandy beaches
Tsunami propagation kernel and its applications
A Bayesian network approach to modelling rip-current drownings and shore-break wave injuries
Tsunami damage to ports: cataloguing damage to create fragility functions from the 2011 Tohoku event
Spatially compounded surge events: an example from hurricanes Matthew and Florence
A cross-scale study for compound flooding processes during Hurricane Florence
Reconstruction of flow conditions from 2004 Indian Ocean tsunami deposits at the Phra Thong island using a deep neural network inverse model
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022, https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
Short summary
Deriving reliable estimates of design conditions resulting from tropical cyclones is a challenge of high relevance to coastal engineering. Here, having few historical observations is overcome by using the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) to create thousands of synthetic realizations, representative of 1000 years of tropical cyclone activity for the Bay of Bengal. The use of synthetic tracks is shown to provide more reliable wind speed, storm surge and wave estimates.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022, https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Short summary
The high population settled in coastal regions and the potential damage imposed by coastal floods highlight the need for improving coastal flood hazard assessment techniques. This study introduces a topography-based approach for rapid estimation of flood hazard areas in the Savannah River delta. Our validation results demonstrate that, besides the high efficiency of the proposed approach, the estimated areas accurately overlap with reference flood maps.
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022, https://doi.org/10.5194/nhess-22-1267-2022, 2022
Short summary
Short summary
This study presents a novel framework for rapid tsunami force predictions through the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A numerical example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during the Great East Japan Earthquake of 2011.
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022, https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary
Short summary
Tsunami waveforms contain the features of its source, propagation path, and local topography. On 4 March 2021, two tsunamis were generated by earthquakes in the Kermadec Islands, New Zealand, within 2 h. This rare case gives us a valuable opportunity to study the characteristics of two tsunamis. We analyzed the records of two tsunamis at tide gauges with spectral analysis tools. It is found that two tsunamis superpose during the few hours after the arrival of the second tsunami.
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022, https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Short summary
Mesoscale simulation provides a general approach that could be implemented to fulfill the purpose of planning and has relatively low requirements for computation time and data while still providing reasonable accuracy. The method is generally applicable to all coastal cities around the world for examining the effect of future climate change on typhoon-generated storm surge even where historical observed data are inadequate or not available.
Chatuphorn Somphong, Anawat Suppasri, Kwanchai Pakoksung, Tsuyoshi Nagasawa, Yuya Narita, Ryunosuke Tawatari, Shohei Iwai, Yukio Mabuchi, Saneiki Fujita, Shuji Moriguchi, Kenjiro Terada, Cipta Athanasius, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 22, 891–907, https://doi.org/10.5194/nhess-22-891-2022, https://doi.org/10.5194/nhess-22-891-2022, 2022
Short summary
Short summary
The majority of past research used hypothesized landslides to simulate tsunamis, but they were still unable to properly explain the observed data. In this study, submarine landslides were simulated by using a slope-failure-theory-based numerical model for the first time. The findings were verified with post-event field observational data. They indicated the potential presence of submarine landslide sources in the southern part of the bay and were consistent with the observational tsunamis.
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022, https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Short summary
Beachgoers at unpatrolled Australian beaches were surveyed to gain an understanding of their demographics, beach safety knowledge, and behaviour. Most visited unpatrolled beaches out of convenience and because they wanted to visit a quiet location. Despite being infrequent beachgoers, with poor swimming and hazard identification skills, most intended to enter the water. Authorities should go beyond the
swim between the flagssafety message, as people will always swim at unpatrolled beaches.
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 22, 849–868, https://doi.org/10.5194/nhess-22-849-2022, https://doi.org/10.5194/nhess-22-849-2022, 2022
Short summary
Short summary
The air pressure created by a tsunami causes a depression in the electron density in the ionosphere. The depression is measured at sparsely distributed, moving GPS satellite locations. We provide an estimate of the volume of the depression. When applied to the 2011 Tohoku-Oki earthquake in Japan, our method can warn of a tsunami event within 15 min of the earthquake, even when using only 5 % of the data. Thus satellite-based warnings could be implemented across the world with our approach.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022, https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
Short summary
We investigate the importance of morphodynamics on flooding estimation during storms with sea level rise conditions on a microtidal beach. XBeach and SWAN were the numerical models used to test several case studies. The results indicate that numerical modeling of flooding should be approached by considering morphodynamics; ignoring them can underestimate flooding by ~ 15 %. Moreover, beach erosion and flooding are intensified by sea level rise and high tides in ~ 69 % and ~ 65 %, respectively.
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022, https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Short summary
Characterizing extreme wave environments caused by tropical cyclones in the Caribbean Sea near Guadeloupe is difficult because cyclones rarely pass near the location of interest. STM-E (space-time maxima and exposure) model utilizes wave data during cyclones on a spatial neighbourhood. Long-duration wave data generated from a database of synthetic tropical cyclones are used to evaluate the performance of STM-E. Results indicate STM-E provides estimates with small bias and realistic uncertainty.
Manuel Andres Diaz Loaiza, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe, and Sebastiaan N. Jonkman
Nat. Hazards Earth Syst. Sci., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022, https://doi.org/10.5194/nhess-22-345-2022, 2022
Short summary
Short summary
Extratropical cyclones are one of the major causes of coastal floods in Europe and the world. Understanding the development process and the flooding of storm Xynthia, together with the damages that occurred during the storm, can help to forecast future losses due to other similar storms. In the present paper, an analysis of shallow water variables (flood depth, velocity, etc.) or coastal variables (significant wave height, energy flux, etc.) is done in order to develop damage curves.
Sunna Kupfer, Sara Santamaria-Aguilar, Lara van Niekerk, Melanie Lück-Vogel, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 22, 187–205, https://doi.org/10.5194/nhess-22-187-2022, https://doi.org/10.5194/nhess-22-187-2022, 2022
Short summary
Short summary
In coastal regions, flooding can occur from combined tides, storms, river discharge, and waves. Effects of waves are commonly neglected when assessing flooding, although these may strongly contribute to extreme water levels. We find that waves combined with tides and river discharge at Breede Estuary, South Africa, increased flood extent and depth and caused earlier flooding than when waves were neglected. This highlights the need to consider all major flood drivers in future flood assessments.
Hanqing Xu, Zhan Tian, Laixiang Sun, Qinghua Ye, Elisa Ragno, Jeremy Bricker, Ganquan Mao, Jinkai Tan, Jun Wang, Qian Ke, Shuai Wang, and Ralf Toumi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-26, https://doi.org/10.5194/nhess-2022-26, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Taking a hydrodynamic model and copula methodology to set up joint distribution of peak water level and inland rainfall during the TC period, and to calculate the marginal contribution of the individual drivers. It indicates the relative sea level rise has significantly amplified the peak water level. The astronomic tide is the leading driver, followed by the contribution of storm surge.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Christopher H. Lashley, Sebastiaan N. Jonkman, Jentsje van der Meer, Jeremy D. Bricker, and Vincent Vuik
Nat. Hazards Earth Syst. Sci., 22, 1–22, https://doi.org/10.5194/nhess-22-1-2022, https://doi.org/10.5194/nhess-22-1-2022, 2022
Short summary
Short summary
Many coastlines around the world have shallow foreshores (e.g. salt marshes and mudflats) that reduce storm waves and the risk of coastal flooding. However, most of the studies that tried to quantify this effect have excluded the influence of very long waves, which often dominate in shallow water. Our newly developed framework addresses this oversight and suggests that safety along these coastlines may be overestimated, since these very long waves are largely neglected in flood risk assessments.
Changbin Lim, Tae Kon Kim, Sahong Lee, Yoon Jeong Yeon, and Jung Lyul Lee
Nat. Hazards Earth Syst. Sci., 21, 3827–3842, https://doi.org/10.5194/nhess-21-3827-2021, https://doi.org/10.5194/nhess-21-3827-2021, 2021
Short summary
Short summary
This study aimed to quantitatively assess erosion risk. Methods for assessing each potential were proposed, and the corresponding erosion risk was calculated by introducing a combined potential erosion risk curve presenting the erosion consequence. In addition the method for verifying the risk was examined for the east coast of South Korea. We believe that our study makes a significant contribution to the literature and plays a key role in identifying methods that prevent erosion.
Gaia Mattei, Diana Di Luccio, Guido Benassai, Giorgio Anfuso, Giorgio Budillon, and Pietro Aucelli
Nat. Hazards Earth Syst. Sci., 21, 3809–3825, https://doi.org/10.5194/nhess-21-3809-2021, https://doi.org/10.5194/nhess-21-3809-2021, 2021
Short summary
Short summary
This study examines the characteristics of a destructive marine storm in the strongly inhabited coastal area of the Gulf of Naples, along the Italian coast of the Tyrrhenian Sea, which is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.
Dimitra M. Salmanidou, Joakim Beck, Peter Pazak, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 21, 3789–3807, https://doi.org/10.5194/nhess-21-3789-2021, https://doi.org/10.5194/nhess-21-3789-2021, 2021
Short summary
Short summary
The potential of large-magnitude earthquakes in Cascadia poses a significant threat over a populous region of North America. We use statistical emulation to assess the probabilistic tsunami hazard from such events in the region of the city of Victoria, British Columbia. The emulators are built following a sequential design approach for information gain over the input space. To predict the hazard at coastal locations of the region, two families of potential seabed deformation are considered.
Tom Howard and Simon David Paul Williams
Nat. Hazards Earth Syst. Sci., 21, 3693–3712, https://doi.org/10.5194/nhess-21-3693-2021, https://doi.org/10.5194/nhess-21-3693-2021, 2021
Short summary
Short summary
We use a computer model to simulate storm surges around the coast of the United Kingdom. The model is based on the physics of the atmosphere and oceans. We hope that this will help us to better quantify extreme events: even bigger than those that have been seen in the tide gauge record. Our model simulates events which are comparable to the catastrophic 1953 storm surge. Model simulations have the potential to reduce the uncertainty in inferences of the most extreme surge return levels.
Balkis Samah Kohila, Laurent Dezileau, Soumaya Boussetta, Tarek Melki, and Nejib Kallel
Nat. Hazards Earth Syst. Sci., 21, 3645–3661, https://doi.org/10.5194/nhess-21-3645-2021, https://doi.org/10.5194/nhess-21-3645-2021, 2021
Short summary
Short summary
The Tunisian coast has been historically affected by extreme marine submersion events resulting from storms or tsunamis. To establish adaptation and mitigation strategies, it is essential to study these events in terms of spatial and temporal variability. Using a geological archive (sediment cores and surface sediments) retrieved from this coastal area of Tunisia, we present a reconstruction of past marine submersion events over the last 2500 years.
Riccardo A. Mel
Nat. Hazards Earth Syst. Sci., 21, 3629–3644, https://doi.org/10.5194/nhess-21-3629-2021, https://doi.org/10.5194/nhess-21-3629-2021, 2021
Short summary
Short summary
The present study investigates the hydrodynamics of the Venice lagoon if a partial use of the Mo.S.E. system (i.e. by closing the Lido inlet only) will be adopted.
A linear relationship is obtained between the seaward tidal amplitude and the reduction of the sea level peak at Venice, Burano, and Chioggia. Tidal period and wind have been accounted for. Two-thirds of the flood events can be effectively mitigated by such an operation under relative sea level rise scenarios up to +0.4 m.
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
Short summary
We present variable-resolution boundaries based on central Voronoi tessellations (CVTs) to spatially aggregate building exposure models and physical vulnerability assessment. Their geo-cell sizes are inversely proportional to underlying distributions that account for the combination between hazard intensities and exposure proxies. We explore their efficiency and associated uncertainties in risk–loss estimations and mapping from decoupled scenario-based earthquakes and tsunamis in Lima, Peru.
Elke M. I. Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-325, https://doi.org/10.5194/nhess-2021-325, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
The severe storm tide of 13.03.1906 is still one of the most severe storm events for the region of the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-346, https://doi.org/10.5194/nhess-2021-346, 2021
Revised manuscript under review for NHESS
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor Flooding and the 1782 Tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 Jiateng Harbor Flooding while the existence of the 1782 Tsunami remains doubtful. Together with the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 Tsunami caused by storm surges could not be ignored.
Jean Roger, Bernard Pelletier, Maxime Duphil, Jérôme Lefèvre, Jérôme Aucan, Pierre Lebellegard, Bruce Thomas, Céline Bachelier, and David Varillon
Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021, https://doi.org/10.5194/nhess-21-3489-2021, 2021
Short summary
Short summary
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern Pacific) triggered by a Mw 7.5 earthquake that occurred southeast of Maré, Loyalty Islands, and was widely felt in the region. Numerical modeling results of the tsunami using a non-uniform and a uniform slip model compared to real tide gauge records and observations are globally well correlated for the uniform slip model, especially in far-field locations.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-329, https://doi.org/10.5194/nhess-2021-329, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
Storm-surge induced coastal inundation constitutes a substantial threat to lives and properties along the vast coastline of the Bengal delta. We present here a robust probabilistic estimate of the storm surge hazard from a combination of numerical storm and storm-surge modelling. The estimated water level extremes vary with well-defined regional patterns. Our assessment shows that one-tenth of the coastal population in the Bengal delta is exposed to a once in a 50-year flooding.
Paulo Victor N. Araújo, Venerando E. Amaro, Leonlene S. Aguiar, Caio C. Lima, and Alexandre B. Lopes
Nat. Hazards Earth Syst. Sci., 21, 3353–3366, https://doi.org/10.5194/nhess-21-3353-2021, https://doi.org/10.5194/nhess-21-3353-2021, 2021
Short summary
Short summary
The approach of this work is a tidal flood risk mapping methodology for climate change scenarios in a semi-arid region with a strong environmental and social appeal. The study area has been suffering severe consequences from flooding by tides in recent years. High-geodetic-precision data, together with tidal return period statistics and data from current sea level rise scenarios, were used. This case study can serve as a basis for future management actions and as a model to be copied.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Myung-Seok Kim, Seung-Buhm Woo, Hyunmin Eom, and Sung Hyup You
Nat. Hazards Earth Syst. Sci., 21, 3323–3337, https://doi.org/10.5194/nhess-21-3323-2021, https://doi.org/10.5194/nhess-21-3323-2021, 2021
Short summary
Short summary
We present spatial and temporal trends of meteotsunami occurrence in the eastern Yellow Sea over the past decade (2010–2019). Also, the improved meteotsunami monitoring/warning system was proposed based on occurrence characteristics of an air pressure disturbance and meteotsunami on the classified meteotsunami events. The guidance regarding the operation period, potential hot spot, and risk level of the meteotsunamis will be helpful to monitoring/warning system operators.
Mika Rantanen, Kirsti Jylhä, Jani Särkkä, Jani Räihä, and Ulpu Leijala
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-314, https://doi.org/10.5194/nhess-2021-314, 2021
Revised manuscript not accepted
Short summary
Short summary
Using sea level and precipitation observations, we analysed the meteorological characteristics of days when heavy precipitation and high sea level occur simultaneously in Finland. We found that around 5 % of all heavy precipitation and high sea level events on the Finnish coast are so called compound events when they both occur simultaneously, and these events were associated with close passages of mid-latitude cyclones. Our results act as a basis for compound flooding research in Finland.
Hira Ashfaq Lodhi, Shoaib Ahmed, and Haider Hasan
Nat. Hazards Earth Syst. Sci., 21, 3085–3096, https://doi.org/10.5194/nhess-21-3085-2021, https://doi.org/10.5194/nhess-21-3085-2021, 2021
Short summary
Short summary
The study summarizes historical accounts, eyewitness accounts and newspaper items to report the impact of the 1945 tsunami along the Makran coast of Pakistan. A field survey conducted in Gwadar, Pasni and Ormara quantifies inundation parameters in the three cities, using the landmarks reported in eyewitness accounts and newspaper items. The quantification of runup and inundation extents is based either on the field survey or on old maps.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Sang-Guk Yum, Hsi-Hsien Wei, and Sung-Hwan Jang
Nat. Hazards Earth Syst. Sci., 21, 2611–2631, https://doi.org/10.5194/nhess-21-2611-2021, https://doi.org/10.5194/nhess-21-2611-2021, 2021
Short summary
Short summary
Developed statistical models to predict the non-exceedance probability of extreme storm surge-induced typhoons. Various probability distribution models were applied to find the best fitting to empirical storm-surge data.
Md. Jamal Uddin Khan, Fabien Durand, Xavier Bertin, Laurent Testut, Yann Krien, A. K. M. Saiful Islam, Marc Pezerat, and Sazzad Hossain
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, https://doi.org/10.5194/nhess-21-2523-2021, 2021
Short summary
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Elisa Lahcene, Ioanna Ioannou, Anawat Suppasri, Kwanchai Pakoksung, Ryan Paulik, Syamsidik Syamsidik, Frederic Bouchette, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 21, 2313–2344, https://doi.org/10.5194/nhess-21-2313-2021, https://doi.org/10.5194/nhess-21-2313-2021, 2021
Short summary
Short summary
In Indonesia, tsunamis represent a significant risk to coastal communities and buildings. Therefore, it is fundamental to deeply understand the tsunami source impact on buildings and infrastructure. This work provides a novel understanding of the relationship between wave period, ground shaking, liquefaction events, and potential building damage using tsunami fragility curves. This study represents the first investigation of colossal impacts increasing building damage.
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021, https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
Takenori Shimozono
Nat. Hazards Earth Syst. Sci., 21, 2093–2108, https://doi.org/10.5194/nhess-21-2093-2021, https://doi.org/10.5194/nhess-21-2093-2021, 2021
Short summary
Short summary
Tsunamis are a major threat to low-lying coastal communities. Suddenly generated from their sources in deep water, tsunamis occasionally undergo tremendous amplification in shallow water. There is a need for efficient ways of predicting coastal tsunami transformation during different disaster management phases. The study proposed a novel and rigorous method based on kernel convolution for fast prediction of onshore tsunami waveforms from the observed/simulated wave data away from the coast.
Elias de Korte, Bruno Castelle, and Eric Tellier
Nat. Hazards Earth Syst. Sci., 21, 2075–2091, https://doi.org/10.5194/nhess-21-2075-2021, https://doi.org/10.5194/nhess-21-2075-2021, 2021
Short summary
Short summary
We use a statistical model to address the controls and interactions of environmental (wave, tide, weather, beach morphology) data on surf zone injuries along a sandy coast where shore-break and rip-current hazards co-exist. Although fair but limited predictive life-risk skill is found, the approach provides new insight into the environmental controls, their interactions and their respective contribution to hazard and exposure, with implications for the development of public education messaging.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Scott Curtis, Kelley DePolt, Jamie Kruse, Anuradha Mukherji, Jennifer Helgeson, Ausmita Ghosh, and Philip Van Wagoner
Nat. Hazards Earth Syst. Sci., 21, 1759–1767, https://doi.org/10.5194/nhess-21-1759-2021, https://doi.org/10.5194/nhess-21-1759-2021, 2021
Short summary
Short summary
Storm surge flooding can challenge rescue and recovery operations, especially over large estuaries and populated barrier islands. Understanding the relationship between storm and tidal characteristics and surge timing is important for proper resourcing prior to an event. Here we compare the concurrency of maximum observed surge and areal extent of effective hazard operations for hurricanes Matthew and Florence in eastern North Carolina, USA. Matthew was a more spatially compounded surge event.
Fei Ye, Wei Huang, Yinglong J. Zhang, Saeed Moghimi, Edward Myers, Shachak Pe'eri, and Hao-Cheng Yu
Nat. Hazards Earth Syst. Sci., 21, 1703–1719, https://doi.org/10.5194/nhess-21-1703-2021, https://doi.org/10.5194/nhess-21-1703-2021, 2021
Short summary
Short summary
Compound flooding is caused by multiple mechanisms contributing to elevated water level simultaneously, which poses higher risks than conventional floods. This study uses a holistic approach to simulate the processes on a wide range of spatial and temporal scales that contributed to the compound flooding during Hurricane Florence in 2018. Sensitivity tests are used to isolate the contribution from each mechanism and identify the region experiencing compound effects, thus supporting management.
Rimali Mitra, Hajime Naruse, and Shigehiro Fujino
Nat. Hazards Earth Syst. Sci., 21, 1667–1683, https://doi.org/10.5194/nhess-21-1667-2021, https://doi.org/10.5194/nhess-21-1667-2021, 2021
Short summary
Short summary
A case study on the 2004 Indian Ocean tsunami was conducted at the Phra Thong island, Thailand, using a deep neural network (DNN) inverse model. The model estimated tsunami characteristics from the deposits at Phra Thong island. The uncertainty quantification of the result was evaluated. The predicted flow conditions and the depositional characteristics were compared with the reported observed values. This DNN model can serve as an essential tool for tsunami hazard mitigation at coastal cities.
Cited articles
Aucan, J., Hoeke, R. K., Storlazzi, C. D., Stopa, J., Wandres, M., and Lowe, R.: Waves do not contribute to global sea-level rise,
Nat. Clim. Change, 9, 2, https://doi.org/10.1038/s41558-018-0377-5,
2019.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009.
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, 2017.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change,
Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding, Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, 2020.
Bidlot, J.-R.: Present Status of Wave Forecasting at ECMWF, in: ECMWF Workshop
on Ocean Waves, Shinfield Park, Reading RG2 9AX, UK, 25–27 June 2012, 2012.
Camus, P., Méndez, F. J., Medina, R., and Cofiño, A. S.: Analysis of clustering and selection algorithms for the study of multivariate wave climate, Coast. Eng., 58, 453–462, 2011.
Coles, S.: An introduction to statistical modeling of extreme values, I Springer series in statistics, London, UK, Springer‐Verlag, 2001.
Couasnon, A., Sebastian, A., and Morales-Nápoles, O.: A Copula-based
bayesian network for modeling compound flood hazard from riverine and coastal
interactions at the catchment scale: An application to the houston ship
channel, Texas, Water-Sui, 10, 1190, https://doi.org/10.3390/w10091190, 2018.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
Davies, D. L. and Bouldin, D. W.: A Cluster Separation Measure, IEEE T. Pattern Anal., PAMI-1, 224–227, 1979.
Dodet, G., Melet, A., Ardhuin, F., Bertin, X., Idier, D., and Almar, R.: The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes, Surv. Geophys., 40, 1563–1601, 2019.
Eilander, D., Couasnon, A., Ikeuchi, H., Muis, S., Yamazaki, D., Winsemius, H. C., and Ward, P. J.: The effect of surge on riverine flood hazard and impact in deltas globally, Environ. Res. Lett., 15, 104007, https://doi.org/10.1088/1748-9326/ab8ca6, 2020.
European Environment Agency: Economic losses from climate-related extremes in
Europe, available at: https://www.eea.europa.eu/data-and-maps/indicators/direct-losses-from-weather-disasters-4/assessment (last access: 29 June 2021), 2019.
Ganguli, P. and Merz, B.: Trends in Compound Flooding in Northwestern Europe
during 1901–2014, Geophys. Res. Lett., 46, 10810–10820, https://doi.org/10.1029/2019gl084220,
2019.
Ganguli, P., Paprotny, D., Hasan, M., Güntner, A., and Merz, B.: Projected
changes in compound flood hazard from riverine and coastal floods in
Northwestern Europe, Earths Future, 8, e2020EF001752, https://doi.org/10.1029/2020EF001752, 2020.
Gilleland, E. and Katz, R. W.: 320 extRemes 2.0: An Extreme Value Analysis Package in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08, 2016.
Guza, R. T. and Feddersen, F.: Effect of wave frequency and directional
spread on shoreline runup, Geophys. Res. Lett., 39, L11607, https://doi.org/10.1029/2012GL051959,
2012.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning, Springer, New York, 2001.
Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, 2019.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47T, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A.,
Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Hirpa, F. A., Salamon, P., Beck, H. E., Lorini, V., Alfieri, L., Zsoter, E., and Dadson, S. J.: Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data, J. Hydrol., 566, 595–606, https://doi.org/10.1016/j.jhydrol.2018.09.052, 2018.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: The TRMM
Multi-satellite Precipitation Analysis (TMPA), Chapt. 1, in: Satellite
Rainfall Applications for Surface Hydrology, edited by: Gebremichael, M. and Hossain, F., Springer, Berlin, 2010.
Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Muis, S., Ward, P. J.,
Winsemius, H. C., Verlaan, M., and Kanae, S.: Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh, J. Adv. Model. Earth Sy., 9, 1847–1862, 2017.
Kernkamp, H. W. J., Van Dam, A., Stelling, G. S., and de Goede, E. D.: Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf, Ocean Dynam., 61, 1175–1188, 2011.
Kohonen, T.: Self-organizing Maps, 3rd edn. Springer-Verlag, Berlin, 2000.
Kumbier, K., Carvalho, R. C., Vafeidis, A. T., and Woodroffe, C. D.: Investigating compound flooding in an estuary using hydrodynamic modelling: a case study from the Shoalhaven River, Australia, Nat. Hazards Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/nhess-18-463-2018, 2018.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrograhy derived from spaceborne elevation data, EOS T. Am. Geophys. Un., 89, 93–94, 2008.
Marcos, M., Rohmer, J., Vousdoukas, M., Mentaschi, L., Le Cozannet, G., and
Amores, A.: Increased extreme coastal water levels due to the combined action
of storm surges and wind-waves, Geophys. Res. Lett., 46, 4356–4364,
https://doi.org/10.1029/2019GL082599, 2019.
Mazas, F., Kergadallan, X., Garat, P., and Hamm, L.: Applying POT methods to the Revised Joint Probability Method for determining extreme sea levels, Coast. Eng., 91, 140–150, 2014.
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated wave contribution to coastal sea-level rise, Nat. Clim. Change, 8, 234–239. https://doi.org/10.1038/s41558-018-0088-y, 2018.
Méndez, F. J., Menéndez, M., Luceño, A., and Losada, I. J.:
Estimation of the long-term variability of extreme significant wave height
using a time-dependent peak over threshold (pot) model, J. Geophys. Res.-Oceans, 111, C07024, https://doi.org/10.1029/2005JC003344,
2006.
Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., and
Matthew, R. A.: Compounding effects of sea level rise and fluvial flooding, P. Natl. Acad. Sci. USA, 114, 9785–9790, 2017.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.:
A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7,
11969, https://doi.org/10.1038/ncomms11969, 2016.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S.,
Su, J., Yan, K., and Verlaan, M.: A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections, Frontiers in Marine Science, 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020 (data available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.8c59054f?tab=overview, last access: 30 June 2021).
NOAA: 2-Minute Gridded Global Relief Data (ETOPO2) v2,
National Geophysical Data Center, NOAA, Asheville, NC, 2006.
Paprotny, D., Morales-Nápoles, O., and Jonkman, S. N.: HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870, Earth Syst. Sci. Data, 10, 565–581, https://doi.org/10.5194/essd-10-565-2018, 2018.
Paprotny, D., Vousdoukas, M. I., Morales-Nápoles, O., Jonkman, S. N., and Feyen, L.: Pan-European hydrodynamic models and their ability to identify compound floods, Nat. Hazards, 101, 933–957, https://doi.org/10.1007/s11069-020-03902-3, 2020.
Petroliagkis, T. I.: Estimations of statistical dependence as joint return
period modulator of compound events – Part 1: Storm surge and wave height, Nat. Hazards Earth Syst. Sci., 18, 1937–1955, https://doi.org/10.5194/nhess-18-1937-2018, 2018.
Ridder, N. N., Pitman, A. J., Westra, S., Ukkola, A., Hong, X. D., Bador, M.,
Hirsch, A. L., Evans, J. P., Di Luca, A., and Zscheischler, J.: Global
hotspots for the occurrence of compound events, Nat. Commun., 11, 5956, https://doi.org/10.1038/s41467-020-19639-3,
2020.
Rueda, A., Camus, P., Tomás, A., Vitousek, S., and Méndez, F. J.: A multivariate extreme wave and storm surge climate emulator based on weather patterns, Ocean Model., 104, 242–251, https://doi.org/10.1016/j.ocemod.2016.06.008, 2016.
Rueda, A., Vitousek, S., Camus, P., Tomás, A., Espejo, A., Losada, I. J.,
Barnard, P. L., Erikson, L. H., Ruggiero, P., Reguero, B. G., and
Mendez, F. J.: A global classification of coastal flood hazard climates
associated with large-scale oceanographic forcing, Sci. Rep.-UK, 7, 5038, https://doi.org/10.1038/s41598-017-05090-w,
2017.
Sebastian, A., Gori, A., Blessing, R. B., Van Der Wiel, K., and Bass, B.: Disentangling the impacts of human and environmental change on catchment response during Hurricane Harvey, Environ. Res. Lett., 14, 124023, https://doi.org/10.1088/1748-9326/ab5234, 2019.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their impacts on the naturalphysical environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., A Special Report of Working Groups I and II of the Intergovernmental Panel on ClimateChange (IPCC), Cambridge University Press, Cambridge, UK, and New York, NY, USA, available at: https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/changes-in-climate-extremes-and-their-impacts-on-the-natural-physical-environment/ (last access: 29 June 2021), 109–230, 2012.
Solari, S., Egüen, M., Polo, M. J., and Losada, M. A.: Peaks Over Threshold (POT): A methodology for automatic threshold estimation using goodness of fit p-value, Water Resour. Res., 53, 2833–2849, 2017.
Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger, A. H.: Empirical parameterization of setup, swash, and runup, Coast. Eng., 53, 573–588, https://doi.org/10.1016/j.coastaleng.2005.12.005, 2006.
Tibshirani, R., Walther, G., and Hastie, T.: Estimating the number of clusters
in a data set via the gap statistic, J. Roy. Stat. Soc. B Met., 63, 411–423, 2001.
van den Hurk, B., van Meijgaard, E., de Valk, P., van Heeringen, K.-J., and Gooijer, J.: Analysis of a compounding surge and precipitation event in the Netherlands, Environ. Res. Lett., 10, 035001, https://doi.org/10.1088/1748-9326/10/3/035001, 2015.
van der Knijff, J. M., Younis, J., and de Roo, A. P. J. D.: LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation, Int. J. Geogr. Inf. Sci., 24, 189–212, https://doi.org/10.1080/13658810802549154, 2010.
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and
Storlazzi, C. D.: Doubling of coastal flooding frequency within decades due to
sea-level rise, Sci. Rep.-UK, 7, 1399, https://doi.org/10.1038/s41598-017-01362-7, 2017.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen, L.: Extreme sea levels on the rise along Europe's coasts, Earths Future, 5, 304–323, 2017.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding from storm surge and rainfall for major US cities, Nat. Clim. Change, 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015.
Wang, Y., Xie, X., Liang, S., Zhu, B., Yao, Y., Meng, S., and Lu, C.:
Quantifying the response of potential flooding risk to urban growth in
Beijing, Sci. Total Environ., 705, 135868, https://doi.org/10.1016/j.scitotenv.2019.135868,
2020.
Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S.,
and Veldkamp, T. I. E., Winsemius, H. C. and Wahl, T.: Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries, Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-9326/aad400, 2018.
Wu, W., McInnes, K., O'Grady, J., Hoeke, R., Leonard, M., and Westra, S.: Mapping Dependence Between Extreme Rainfall and Storm Surge, J. Geophys. Res.-Oceans, 123, 2461–2474, https://doi.org/10.1002/2017JC013472, 2018.
Yamazaki, D., O'Loughlin, F., Trigg, M. A., Miller, Z. F., Pavelsky, T. M.,
and Bates, P. D.: Development of the Global Width Database for Large Rivers, Water Resour. Res., 50, 3467–3480, 2014.
Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and storm surge in the coastal zone, J. Hydrol., 505, 172–187, https://doi.org/10.1016/j.jhydrol.2013.09.054, 2013.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S.,
Bevacqua, E., Raymond, C., Horton, R. M.,
van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D.,
Ramos, A. M., Ridder, N. N., Thiery, W., and
Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Zscheischler, J., Naveau, P., Martius, O., Engelke, S., and Raible, C. C.: Evaluating the dependence structure of compound precipitation and wind speed extremes, Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, 2021.
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river...
Altmetrics
Final-revised paper
Preprint