Articles | Volume 21, issue 4
Nat. Hazards Earth Syst. Sci., 21, 1279–1296, 2021
https://doi.org/10.5194/nhess-21-1279-2021

Special issue: Advances in extreme value analysis and application to natural...

Nat. Hazards Earth Syst. Sci., 21, 1279–1296, 2021
https://doi.org/10.5194/nhess-21-1279-2021

Research article 26 Apr 2021

Research article | 26 Apr 2021

Non-stationary analysis of water level extremes in Latvian waters, Baltic Sea, during 1961–2018

Nadezhda Kudryavtseva et al.

Related authors

Variability of distributions of wave set-up heights along a shoreline with complicated geometry
Tarmo Soomere, Katri Pindsoo, Nadezhda Kudryavtseva, and Maris Eelsalu
Ocean Sci., 16, 1047–1065, https://doi.org/10.5194/os-16-1047-2020,https://doi.org/10.5194/os-16-1047-2020, 2020
Short summary
Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate
Nadezhda Kudryavtseva and Tarmo Soomere
Earth Syst. Dynam., 8, 697–706, https://doi.org/10.5194/esd-8-697-2017,https://doi.org/10.5194/esd-8-697-2017, 2017
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022,https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022,https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
Multilayer modelling of waves generated by explosive subaqueous volcanism
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022,https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022,https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Development of damage curves for buildings near La Rochelle during storm Xynthia based on insurance claims and hydrodynamic simulations
Manuel Andres Diaz Loaiza, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe, and Sebastiaan N. Jonkman
Nat. Hazards Earth Syst. Sci., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022,https://doi.org/10.5194/nhess-22-345-2022, 2022
Short summary

Cited articles

Andersson, H. C.: Influence of long-term regional and large-scale atmospheric circulation on the Baltic Sea level, Tellus A, 54, 76–88, https://doi.org/10.3402/tellusa.v54i1.12125, 2002. 
Astok, V., Otsmann, M., and Suursaar, Ü.: Water exchange as the main physical process in semi-enclosed marine systems: the Gulf of Riga case, Hydrobiologia, 393, 11–18, https://doi.org/10.1023/A:1003517110726, 1999. 
Averkiev, A. S. and Klevannyy, K. A.: A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland, Cont. Shelf Res., 30, 707–714, https://doi.org/10.1016/j.csr.2009.10.010, 2010. 
Bardet, L., Duluc, C.-M., Rebour, V., and L'Her, J.: Regional frequency analysis of extreme storm surges along the French coast, Nat. Hazards Earth Syst. Sci., 11, 1627–1639, https://doi.org/10.5194/nhess-11-1627-2011, 2011. 
Brönnimann, S.: Impact of El Niño–Southern Oscillation on European climate, Rev. Geophys., 45, RG3003, https://doi.org/10.1029/2006RG000199, 2007. 
Download
Short summary
We demonstrate a finding of a very sudden change in the nature of water level extremes in the Gulf of Riga which coincides with weakening of correlation with North Atlantic Oscillation. The shape of the distribution is variable with time; it abruptly changed for several years and was suddenly restored. If similar sudden changes happen in other places in the world, not taking into account the non-stationarity can lead to significant underestimation of future risks from extreme-water-level events.
Altmetrics
Final-revised paper
Preprint