Articles | Volume 21, issue 4
https://doi.org/10.5194/nhess-21-1279-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1279-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Non-stationary analysis of water level extremes in Latvian waters, Baltic Sea, during 1961–2018
Wave Engineering Laboratory, Department of Cybernetics, School of
Science, Tallinn University of Technology, Akadeemia 21, Tallinn, 12618,
Estonia
Tarmo Soomere
Wave Engineering Laboratory, Department of Cybernetics, School of
Science, Tallinn University of Technology, Akadeemia 21, Tallinn, 12618,
Estonia
Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
Rain Männikus
Wave Engineering Laboratory, Department of Cybernetics, School of
Science, Tallinn University of Technology, Akadeemia 21, Tallinn, 12618,
Estonia
Related authors
No articles found.
Tarmo Soomere, Mikołaj Zbigniew Jankowski, Maris Eelsalu, Kevin Ellis Parnell, and Maija Viška
Ocean Sci., 21, 619–641, https://doi.org/10.5194/os-21-619-2025, https://doi.org/10.5194/os-21-619-2025, 2025
Short summary
Short summary
Seemingly interconnected beaches are often separated by human-made obstacles and natural divergence areas of sediment flux. We decompose the sedimentary shores of the Gulf of Riga into five naturally almost isolated compartments based on the analysis of wave-driven sediment flux. The western, southern, and eastern shores have quite different and fragmented sediment transport regimes. The transport rates along different shore segments show extensive interannual variations but no explicit trends.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Cited articles
Andersson, H. C.: Influence of long-term regional and large-scale
atmospheric circulation on the Baltic Sea level, Tellus A, 54, 76–88,
https://doi.org/10.3402/tellusa.v54i1.12125, 2002.
Astok, V., Otsmann, M., and Suursaar, Ü.: Water exchange as the main
physical process in semi-enclosed marine systems: the Gulf of Riga case,
Hydrobiologia, 393, 11–18, https://doi.org/10.1023/A:1003517110726, 1999.
Averkiev, A. S. and Klevannyy, K. A.: A case study of the impact of cyclonic
trajectories on sea-level extremes in the Gulf of
Finland, Cont. Shelf Res., 30, 707–714, https://doi.org/10.1016/j.csr.2009.10.010, 2010.
Bardet, L., Duluc, C.-M., Rebour, V., and L'Her, J.: Regional frequency analysis of extreme storm surges along the French coast, Nat. Hazards Earth Syst. Sci., 11, 1627–1639, https://doi.org/10.5194/nhess-11-1627-2011, 2011.
Brönnimann, S.: Impact of El Niño–Southern Oscillation on European
climate, Rev. Geophys., 45, RG3003, https://doi.org/10.1029/2006RG000199, 2007.
Coles, S.: An introduction to statistical modeling of extreme values, 3rd
printing, Springer, London, UK, 208 pp., 2004.
Dailidienė, I., Davuliené, L., Tilickis, B., Stankevičius, A.,
and Myrberg, K.: Sea level variability at the Lithuanian coast of the Baltic
Sea, Boreal Environ. Res., 11, 109–121, 2006.
Del-Rosal-Salido, J., Folgueras, P., Ortega-Sanchez, M., and Losada, M. A.:
Beyond flood probability assessment: An integrated approach for
characterizing extreme water levels along transitional environments,
Coast. Eng., 152, 103512, https://doi.org/10.1016/j.coastaleng.2019.103512, 2019.
Dieterich, C., Gröger, M., Arneborg, L., and Andersson, H. C.: Extreme sea levels in the Baltic Sea under climate change scenarios – Part 1: Model validation and sensitivity, Ocean Sci., 15, 1399–1418, https://doi.org/10.5194/os-15-1399-2019, 2019.
Eelsalu, M., Soomere, T., Pindsoo, K., and Lagemaa, P.: Ensemble approach
for projections of return periods of extreme water levels in Estonian
waters, Cont. Shelf Res., 91, 201–210, https://doi.org/10.1016/j.csr.2014.09.012, 2014.
Ekman, M.: Extreme annual means in the Baltic Sea level during 200 years,
Small Publ. Hist. Geophys., 2, available at: https://historicalgeophysics.ax/sp/02.pdf (last access: 15 March 2021), 15 pp., 1996.
Galiatsatou, P., Makris, C., Prinos, P., and Kokkinos, D.: Non-stationary
joint probability analysis of extreme marine variables to assess design
water levels at the shoreline in a changing climate, Nat. Hazards, 98,
1051–1089, https://doi.org/10.1007/s11069-019-03645-w, 2019.
Gräwe, U. and Burchard, H.: Storm surges in the Western Baltic Sea: the
present and a possible future, Clim. Dynam., 39, 165–183,
https://doi.org/10.1007/s00382-011-1185-z, 2012.
Hagen, E. and Feistel, R.: Climatic turning points and regime shifts in the
Baltic Sea region: the Baltic winter index (WIBIX), 1659–2002, Boreal
Environ. Res., 10, 211–224, 2005.
Hieronymus, M., Hieronymus, J., and Arneborg, L.: Sea level modelling in the
Baltic and the North Sea: The respective role of different parts of the
forcing, Ocean Model., 118, 59–72, https://doi.org/10.1016/j.ocemod.2017.08.007, 2017.
Hieronymus, M., Dieterich, C., Andersson, H., and Hordoir, R.: The effects
of mean sea level rise and strengthened winds on extreme sea levels in the
Baltic Sea, Theor. Appl. Mech. Lett., 8, 366–371,
https://doi.org/10.1016/j.taml.2018.06.008, 2018.
Hünicke, B., Zorita, E., Soomere, T., Madsen, K. S., Johansson, M., and Suursaar, Ü.: Recent change – sea level and wind waves, in: The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Springer, Berlin, Heidelberg, 155–185, https://doi.org/10.1007/978-3-319-16006-1_9, 2015.
Jaagus, J. and Suursaar, U.: Long-term storminess and sea level variations
on the Estonian Coast of the Baltic Sea in relation to large-scale
atmospheric circulation, Est. J. Earth Sci., 62, 73–92,
https://doi.org/10.3176/earth.2013.07, 2013.
Jevrejeva, S., Moore, J. C., Woodworth, P. L., and Grinsted, A.: Influence
of large-scale atmospheric circulation on European sea level: results based
on the wavelet transform method, Tellus A, 57, 183–193,
https://doi.org/10.3402/tellusa.v57i2.14609, 2005.
Johansson, M., Boman, H., Kahma, K. K., and Launiainen, J.: Trends in sea
level variability in the Baltic Sea, Boreal Environ. Res., 6, 159–179,
2001.
Johansson, M., Pellikka, H., Kahma, K. K., and Ruosteenoja, K.: Global sea
level rise scenarios adapted to the Finnish coast, J. Marine Syst., 129,
35–46, https://doi.org/10.1016/j.jmarsys.2012.08.007, 2014.
Karabil, S., Zorita, E., and Hünicke, B.: Mechanisms of variability in decadal sea-level trends in the Baltic Sea over the 20th century, Earth Syst. Dynam., 8, 1031–1046, https://doi.org/10.5194/esd-8-1031-2017, 2017.
Karabil, S., Zorita, E., and Hünicke, B.: Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea, Earth Syst. Dynam., 9, 69–90, https://doi.org/10.5194/esd-9-69-2018, 2018.
Keevallik, S. and Soomere, T.: Regime shifts in the surface-level average
air flow over the Gulf of Finland during 1981–2010, P. Est. Acad. Sci., 63, 428–437, https://doi.org/10.3176/proc.2014.4.08, 2014.
Kotta, J., Herkül, K., Jaagus, J., Kaasik, A., Raudsepp, U., Alari, V.,
Arula, T., Haberman, J., Järvet, A., Kangur, K., Kont, A., Kull, A.,
Laanemets, J., Maljutenko, I., Männik, A., Nõges, P., Nõges, T.,
Ojaveer, H., Peterson, A., Reihan, A., Rõõm, R., Sepp, M., Suursaar,
Ü., Tamm, O., Tamm, T., and Tõnisson, H.: Linking atmospheric,
terrestrial and aquatic environments: Regime shifts in the Estonian climate
over the past 50 years, PLoS ONE, 13, e0209568,
https://doi.org/10.1371/journal.pone.0209568, 2018.
Kowalewski, M. and Kowalewska-Kalkowska, H.: Sensitivity of the Baltic Sea
level prediction to spatial model resolution, J. Marine Syst., 173, 101–113,
https://doi.org/10.1016/j.jmarsys.2017.05.001, 2017.
Kudryavtseva, N., Pindsoo, K., and Soomere, T.: Non-stationary modeling of
trends in extreme water level changes along the Baltic Sea coast, J. Coastal Res., 85, 586–590, https://doi.org/10.2112/SI85-118.1, 2018.
Kudryavtseva, N., Räämet, A., and Soomere, T.: Coastal flooding: Joint probability of extreme water levels and waves along the Baltic Sea coast, J. Coastal Res., 95, 1146–1151, https://doi.org/10.2112/SI95-222.1, 2020.
Lazarenko, N. N.: Variations of mean level and water volume of the Baltic Sea, in: Water Balance of the Baltic Sea, edited by: Falkenmark, M., Baltic Sea Environment Proceedings, 16, Baltic Marine Environment Protection Commission – Helsinki Commission, Helsinki, 64–80, 1986.
Lehmann, A. and Post, P.: Variability of atmospheric circulation patterns associated with large volume changes of the Baltic Sea, Adv. Sci. Res., 12, 219–225, https://doi.org/10.5194/asr-12-219-2015, 2015.
Lehmann, A., Krauss, W., and Hinrichsen, H.-H.: Effects of remote and local
atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus
A, 54, 299–316, https://doi.org/10.1034/j.1600-0870.2002.00289.x, 2002.
Lehmann, A., Höflich, K., Post, P., and Myrberg, K.: Pathways of deep
cyclones associated with large volume changes (LVCs) and major Baltic
inflows (MBIs), J. Marine Syst., 167, 11–18, https://doi.org/10.1016/j.jmarsys.2016.10.014, 2017.
Leppäranta, M. and Myrberg, K.: Physical Oceanography of the Baltic Sea,
Springer, Berlin, Germany, 2009.
Maritime Administration of Latvia: Hydrography services, Baltijas jūras
locija, Latvijas piekraste, (The Baltic Sea, Coast of Latvia), 3rd edition, Maritime Administration of Latvia, Riga, Latvia, available at: https://www.lja.lv/sites/default/files/page_attachments/locija_2015_09.pdf (last access: 15 March 2021), 115 pp., 2014.
Männikus, R., Soomere, T., and Kudryavtseva, N.: Identification of
mechanisms that drive water level extremes from in situ measurements in the
Gulf of Riga during 1961–2017, Cont. Shelf Res., 182, 201–210,
https://doi.org/10.1016/j.csr.2019.05.014, 2019.
Männikus, R., Soomere, T., and Viška, M.: Variations in the mean,
seasonal and extreme water level on the Latvian coast, the eastern Baltic
Sea, during 1961–2018, Estuar. Coast. Shelf S., 245, 106827,
https://doi.org/10.1016/j.ecss.2020.106827, 2020.
Marcos, M. and Woodworth, P. L.: Spatiotemporal changes in extreme sea levels
along the coasts of the North Atlantic and the Gulf of Mexico, J. Geophys.
Res.-Oceans, 122, 7031–7048, https://doi.org/10.1002/2017JC013065, 2017.
Meier, H. E. M.: Baltic Sea climate in the late twenty-first century: a
dynamical downscaling approach using two global models and two emission
scenarios, Clim. Dynam., 27, 39–68, https://doi.org/10.1007/s00382-006-0124-x, 2006.
Meier, H. E. M., Broman, B., and Kjellström, E.: Simulated sea level in
past and future climates of the Baltic Sea, Clim. Res., 27, 59–75,
https://doi.org/10.3354/cr027059, 2004.
Méndez, F. J., Menéndez, M., Luceño, A., and Losada, I. J.:
Analyzing Monthly Extreme Sea Levels with a Time-Dependent GEV Model, J. Atmos. Ocean. Tech., 24, 894–911, https://doi.org/10.1175/JTECH2009.1, 2007.
Mudersbach, C. and Jensen, J.: Nonstationary extreme value analysis of
annual maximum water levels for designing coastal structures on the German
North Sea coastline, J. Flood Risk Manag., 3, 52–62,
https://doi.org/10.1111/j.1753-318X.2009.01054.x, 2010.
Pindsoo, K. and Soomere, T.: Basin-wide variations in trends in water level
maxima in the Baltic Sea, Cont. Shelf Res., 193, 104029,
https://doi.org/10.1016/j.csr.2019.104029, 2020.
Post, P. and Kõuts, T.: Characteristics of cyclones causing extreme sea
levels in the northern Baltic Sea, Oceanologia, 56, 241–258,
https://doi.org/10.5697/oc.56-2.241, 2014.
Samuelsson, M. and Stigebrandt, A.: Main characteristics of the long-term
sea level variability in the Baltic Sea, Tellus A, 48, 672–683,
https://doi.org/10.1034/j.1600-0870.1996.t01-4-00006.x, 1996.
Schmitt, F. G., Crapoulet, A., Hequette, A., and Huang, Y.: Nonlinear
dynamics of the sea level time series in the eastern English Channel, Nat.
Hazards, 91, 267–285, https://doi.org/10.1007/s11069-017-3125-7, 2018.
Soomere, T.: Anisotropy of wind and wave regimes in the Baltic Proper,
J. Sea Res., 49, 305–316, https://doi.org/10.1016/S1385-1101(03)00034-0, 2003.
Soomere, T. and Pindsoo, K.: Spatial variability in the trends in extreme
storm surges and weekly-scale high water levels in the eastern Baltic Sea,
Cont. Shelf Res., 115, 53–64, https://doi.org/10.1016/j.csr.2015.12.016, 2016.
Soomere, T., Bishop, S. R., Viška, M., and Räämet, A.: An abrupt
change in winds that may radically affect the coasts and deep sections of
the Baltic Sea, Clim. Res., 62, 163–171, https://doi.org/10.3354/cr01269, 2015a.
Soomere, T., Eelsalu, M., Kurkin, A., and Rybin, A.: Separation of the
Baltic Sea water level into daily and multi-weekly components, Cont. Shelf
Res., 103, 23–32, https://doi.org/10.1016/j.csr.2015.04.018, 2015b.
Soomere, T., Eelsalu, M., and Pindsoo, K.: Variations in parameters of
extreme value distributions of water level along the eastern Baltic Sea
coast, Estuar. Coast. Shelf S., 215, 59–68,
https://doi.org/10.1016/j.ecss.2018.10.010, 2018.
Suursaar, Ü. and Sooäär, J.: Decadal variations in mean
and extreme sea level values along the Estonian coast of the Baltic Sea,
Tellus A, 59, 249–260, https://doi.org/10.1111/j.1600-0870.2006.00220.x, 2007.
Suursaar, Ü., Kullas, T., and Otsmann, M.: A model study of the sea level
variations in the Gulf of Riga and the Väinameri Sea, Cont. Shelf Res.,
22, 2001–2019, https://doi.org/10.1016/S0278-4343(02)00046-8, 2002.
Tsimplis, M. N., Woolf, D. K., Osborn, T. J., Wakelin, S., Wolf, J.,
Flather, R., Shaw, A. G. P., Woodworth, P., Challenor, P., Blackman, D.,
Pert, F., Yan, Z., and Jevrejeva, S.: Towards a vulnerability assessment of
the UK and northern European coasts: the role of regional climate
variability, Philos. T. Roy. Soc. A, 363, 1329–1358,
https://doi.org/10.1098/rsta.2005.1571, 2005.
Ūdeņu monitoringa programma: 3.redakcija [Water monitoring program, 3rd edition], Technical report, Riga, available at: https://www.meteo.lv/fs/CKFinderJava/userfiles/files/Noverojumi/Monitorings/2015-2020/II_UDENS_100316_3_red.pdf (last access: 8 March 2021), 197 pp., 2020 (in Latvian).
Ūdeņu monitoringa programma: 3. redakcija [Water monitoring program, 3rd edition], Technical report, Riga, 197 pp., available at: https://www.meteo.lv/fs/CKFinderJava/userfiles/files/Noverojumi/Monitorings/2015-2020/II_UDENS_100316_3_red.pdf (last access: 8 March 2021), 2020.
Ūdeņu monitoringa programma: https://www.meteo.lv/hidrologija-datu-pieejamiba/ (last access: 1 July 2020), 2021.
Votier, S. C., Birkhead, T. R., Oro, D., Trinder, M., Grantham, M. J.,
Clark, J. A., McCleery, R. H., and Hatchwell, B. J.: Recruitment and
survival of immature seabirds in relation to oil spills and climate
variability, J. Anim. Ecol., 77, 974–983,
https://doi.org/10.1111/j.1365-2656.2008.01421.x, 2008.
Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R.
J., Umgiesser, G., and Willems, P.: Changing extreme sea levels along
European coasts, Coast. Eng., 87, 4–14,
https://doi.org/10.1016/j.coastaleng.2013.10.017, 2014.
Short summary
We demonstrate a finding of a very sudden change in the nature of water level extremes in the Gulf of Riga which coincides with weakening of correlation with North Atlantic Oscillation. The shape of the distribution is variable with time; it abruptly changed for several years and was suddenly restored. If similar sudden changes happen in other places in the world, not taking into account the non-stationarity can lead to significant underestimation of future risks from extreme-water-level events.
We demonstrate a finding of a very sudden change in the nature of water level extremes in the...
Altmetrics
Final-revised paper
Preprint