Articles | Volume 21, issue 4
https://doi.org/10.5194/nhess-21-1179-2021
https://doi.org/10.5194/nhess-21-1179-2021
Research article
 | 
06 Apr 2021
Research article |  | 06 Apr 2021

Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text

Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024,https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
AscDAMs: Advanced SLAM-based channel detection and mapping system
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
EGUsphere, https://doi.org/10.48550/arXiv.2401.13877,https://doi.org/10.48550/arXiv.2401.13877, 2024
Short summary
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149,https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024,https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024,https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary

Cited articles

Anselmo, V., Galeati, G., Palmieri, S., Rossi, U., and Todini, E.: Flood risk assessment using an integrated hydrological and hydraulic modelling approach: a case study, J. Hydrol., 175, 533–554, https://doi.org/10.1016/S0022-1694(96)80023-0, 1996. 
Barker, J., Barker, J. L. P., and Macleod, C. J. A.: Development of a national-scale real-time Twitter data mining pipeline for social geodata on the potential impacts of flooding on communities, Environ. Model. Softw., 115, 213–227, https://doi.org/10.1016/j.envsoft.2018.11.013, 2019. 
Chawla, N., Japkowicz, N., and Kolcz, A.: Editorial: Special issue on learning from imbalanced data sets, ACM SIGKDD Explor., 6, 1–6, https://doi.org/10.1145/1007730.1007733, 2004. 
Cheng, X., Han, G. F., Zhao, Y. F., and Li, L.: Evaluating social media response to urban flood disaster: Case study on an East Asian City (Wuhan, China), Sustainability, 11, 1–18, https://doi.org/10.3390/su11195330, 2019. 
de Bruijn, J. A., de Model, H., Jongman, B., Wagemaker, J., and Aerts, J. C. J. H.: TAGGS: Grouping tweets to improve global geoparsing for disaster response, J. Geovisual. Spat. Anal., 2, 2, https://doi.org/10.1007/s41651-017-0010-6, 2018. 
Download
Short summary
We trained a recurrent neural network model to classify microblogging posts related to urban waterlogging and establish an online monitoring system of urban waterlogging caused by flood disasters. We manually curated more than 4400 waterlogging posts to train the RNN model so that it can precisely identify waterlogging-related posts of Sina Weibo to timely determine urban waterlogging.
Altmetrics
Final-revised paper
Preprint