Articles | Volume 20, issue 4
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, 2020
https://doi.org/10.5194/nhess-20-1069-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Global- and continental-scale risk assessment for natural...
Review article
22 Apr 2020
Review article
| 22 Apr 2020
Review article: Natural hazard risk assessments at the global scale
Philip J. Ward et al.
Related authors
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-284, https://doi.org/10.5194/nhess-2022-284, 2023
Preprint under review for NHESS
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g., sea-level rise, land subsidence, and coastal urbanisation; action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on the global scale to estimate what level of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
This article is included in the Encyclopedia of Geosciences
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
This article is included in the Encyclopedia of Geosciences
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2022-1048, https://doi.org/10.5194/egusphere-2022-1048, 2022
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain understanding into the threat imposed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-248, https://doi.org/10.5194/nhess-2022-248, 2022
Preprint under review for NHESS
Short summary
Short summary
We present a globally-applicable framework for compound flood risk assessments using combined hydrodynamic, impact and statistical modeling. Our results show the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
This article is included in the Encyclopedia of Geosciences
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
This article is included in the Encyclopedia of Geosciences
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Hessel C. Winsemius, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2022-149, https://doi.org/10.5194/egusphere-2022-149, 2022
Short summary
Short summary
In coastal deltas flooding can occur from interactions between surge and waves, river discharge and precipitation, so-called compound flooding. Global flood models however ignore these interaction. We therefore present a framework to create a reproducible compound flood model anywhere at the globe and show how it can be used to better understand compound flooding. The framework is applied to two historical events tropical cyclone events in Mozambique with good results.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
This article is included in the Encyclopedia of Geosciences
Marleen Carolijn de Ruiter, Anaïs Couasnon, and Philip James Ward
Geosci. Commun., 4, 383–397, https://doi.org/10.5194/gc-4-383-2021, https://doi.org/10.5194/gc-4-383-2021, 2021
Short summary
Short summary
Many countries can get hit by different hazards, such as earthquakes and floods. Generally, measures and policies are aimed at decreasing the potential damages of one particular hazard type despite their potential of having unwanted effects on other hazard types. We designed a serious game that helps professionals to improve their understanding of these potential negative effects of measures and policies that reduce the impacts of disasters across many different hazard types.
This article is included in the Encyclopedia of Geosciences
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
This article is included in the Encyclopedia of Geosciences
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
This article is included in the Encyclopedia of Geosciences
Timothy Tiggeloven, Hans de Moel, Hessel C. Winsemius, Dirk Eilander, Gilles Erkens, Eskedar Gebremedhin, Andres Diaz Loaiza, Samantha Kuzma, Tianyi Luo, Charles Iceland, Arno Bouwman, Jolien van Huijstee, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020, https://doi.org/10.5194/nhess-20-1025-2020, 2020
Short summary
Short summary
We present a framework to evaluate the benefits and costs of coastal adaptation through dikes to reduce future flood risk. If no adaptation takes place, we find that global coastal flood risk increases 150-fold by 2080, with sea-level rise contributing the most. Moreover, 15 countries account for 90 % of this increase; that adaptation shows high potential to cost-effectively reduce flood risk. The results will be integrated into the Aqueduct Global Flood Analyzer web tool.
This article is included in the Encyclopedia of Geosciences
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
This article is included in the Encyclopedia of Geosciences
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
This article is included in the Encyclopedia of Geosciences
Johanna Englhardt, Hans de Moel, Charles K. Huyck, Marleen C. de Ruiter, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 19, 1703–1722, https://doi.org/10.5194/nhess-19-1703-2019, https://doi.org/10.5194/nhess-19-1703-2019, 2019
Short summary
Short summary
Large-scale risk assessments can be improved by a more direct relation between the type of exposed buildings and their flood impact. Compared to the common land-use-based approach, this model reflects heterogeneous structures and defines building-material-based vulnerability classes. This approach is particularly interesting for areas with large variations of building types, such as developing countries and large scales, and enables vulnerability comparison across different natural disasters.
This article is included in the Encyclopedia of Geosciences
Shiqiang Du, Xiaotao Cheng, Qingxu Huang, Ruishan Chen, Philip J. Ward, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 19, 715–719, https://doi.org/10.5194/nhess-19-715-2019, https://doi.org/10.5194/nhess-19-715-2019, 2019
Short summary
Short summary
A mega-flood in 1998 caused tremendous losses in China and triggered major policy adjustments in flood-risk management. This paper rethinks these policy adjustments and discusses how China should adapt to newly emerging flood challenges. We suggest that China needs novel flood-risk management approaches to address the new challenges from rapid urbanization and climate change. These include risk-based urban planning and a coordinated water governance system.
This article is included in the Encyclopedia of Geosciences
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
This article is included in the Encyclopedia of Geosciences
Anouk I. Gevaert, Ted I. E. Veldkamp, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 4649–4665, https://doi.org/10.5194/hess-22-4649-2018, https://doi.org/10.5194/hess-22-4649-2018, 2018
Short summary
Short summary
Drought is a natural hazard that has severe environmental and socioeconomic impacts around the globe. Here, we quantified the time taken for drought to propagate from precipitation droughts to soil moisture and streamflow droughts. Results show that propagation timescales are strongly related to climate type, with fast responses in tropical regions and slow responses in arid regions. Insight into the timescales of drought propagation globally may help improve seasonal drought forecasting.
This article is included in the Encyclopedia of Geosciences
Marleen C. de Ruiter, Philip J. Ward, James E. Daniell, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 17, 1231–1251, https://doi.org/10.5194/nhess-17-1231-2017, https://doi.org/10.5194/nhess-17-1231-2017, 2017
Short summary
Short summary
This study provides cross-discipline lessons for earthquake and flood vulnerability assessment methods by comparing indicators used in both fields. It appears that there is potential for improvement of these methods that can be obtained for both earthquake and flood vulnerability assessment indicators. This increased understanding is beneficial for both scientists as well as practitioners working with earthquake and/or flood vulnerability assessment methods.
This article is included in the Encyclopedia of Geosciences
Paolo Scussolini, Jeroen C. J. H. Aerts, Brenden Jongman, Laurens M. Bouwer, Hessel C. Winsemius, Hans de Moel, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, https://doi.org/10.5194/nhess-16-1049-2016, 2016
Short summary
Short summary
Assessments of flood risk, on global to local scales, are becoming more urgent with ongoing climate change and with rapid socioeconomic developments. Such assessments need information about existing flood protection, still largely unavailable. Here we present the first open-source database of FLood PROtection Standards, FLOPROS, which enables more accurate modelling of flood risk. We also invite specialists to contribute new information to this evolving database.
This article is included in the Encyclopedia of Geosciences
Yus Budiyono, Jeroen C. J. H. Aerts, Daniel Tollenaar, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 757–774, https://doi.org/10.5194/nhess-16-757-2016, https://doi.org/10.5194/nhess-16-757-2016, 2016
Short summary
Short summary
The paper describes a model framework for assessing flood risk in Jakarta under current and future scenarios (2030 and 2050) including climate change, sea level rise, land use change, and land subsidence. The results shows individual impact of future changes and serve as a basis to evaluate adaptation strategies in cities. They also show while the impacts of climate change alone on flood risk in Jakarta are highly uncertain, the combined impacts of all drivers reveal a strong increase in risk.
This article is included in the Encyclopedia of Geosciences
D. Lee, P. Ward, and P. Block
Hydrol. Earth Syst. Sci., 19, 4689–4705, https://doi.org/10.5194/hess-19-4689-2015, https://doi.org/10.5194/hess-19-4689-2015, 2015
Short summary
Short summary
This paper presents a global approach to defining high-flow seasons by identifying temporal patterns of streamflow. Simulations of streamflow from the PCR-GLOBWB model are evaluated to define dominant and minor high-flow seasons globally, and verified with GRDC observations and flood records from Dartmouth Flood Observatory.
This article is included in the Encyclopedia of Geosciences
T. I. E. Veldkamp, S. Eisner, Y. Wada, J. C. J. H. Aerts, and P. J. Ward
Hydrol. Earth Syst. Sci., 19, 4081–4098, https://doi.org/10.5194/hess-19-4081-2015, https://doi.org/10.5194/hess-19-4081-2015, 2015
Short summary
Short summary
Freshwater shortage is one of the most important risks, partially driven by climate variability. Here we present a first global scale sensitivity assessment of water scarcity events to El Niño-Southern Oscillation, the most dominant climate variability signal. Given the found correlations, covering a large share of the global land area, and seen the developments of water scarcity impacts under changing socioeconomic conditions, we show that there is large potential for ENSO-based risk reduction.
This article is included in the Encyclopedia of Geosciences
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
B. Jongman, E. E. Koks, T. G. Husby, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 14, 1245–1255, https://doi.org/10.5194/nhess-14-1245-2014, https://doi.org/10.5194/nhess-14-1245-2014, 2014
P. J. Ward, S. Eisner, M. Flörke, M. D. Dettinger, and M. Kummu
Hydrol. Earth Syst. Sci., 18, 47–66, https://doi.org/10.5194/hess-18-47-2014, https://doi.org/10.5194/hess-18-47-2014, 2014
H. C. Winsemius, L. P. H. Van Beek, B. Jongman, P. J. Ward, and A. Bouwman
Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, https://doi.org/10.5194/hess-17-1871-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
This article is included in the Encyclopedia of Geosciences
Robert Alexander Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2022-1315, https://doi.org/10.5194/egusphere-2022-1315, 2023
Short summary
Short summary
Soil can be eroded by rainfall, and this is a major threat to agricultural sustainability. Estimating the erosivity of rainfall is essential as a first step to determine how much soil might be lost. Until recently, satellite data has not been used to estimate rainfall erosivity, but the data quality is now sufficient to do so. In this study, I test several methods to calculate rainfall erosivity using satellite rainfall data and contrast this with ground-based estimates.
This article is included in the Encyclopedia of Geosciences
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-284, https://doi.org/10.5194/nhess-2022-284, 2023
Preprint under review for NHESS
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g., sea-level rise, land subsidence, and coastal urbanisation; action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on the global scale to estimate what level of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
This article is included in the Encyclopedia of Geosciences
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
This article is included in the Encyclopedia of Geosciences
Hubert T. Samboko, Sten Schurer, Hubert H.G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2022-21, https://doi.org/10.5194/gi-2022-21, 2022
Preprint under review for GI
Short summary
Short summary
The study investigates how low cost technology can be applied in data scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost RTK GNSS equipment and subsequently applied in a 3 D hydraulic model so as to generate more physically based rating curves.
This article is included in the Encyclopedia of Geosciences
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
This article is included in the Encyclopedia of Geosciences
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2022-1048, https://doi.org/10.5194/egusphere-2022-1048, 2022
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain understanding into the threat imposed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-248, https://doi.org/10.5194/nhess-2022-248, 2022
Preprint under review for NHESS
Short summary
Short summary
We present a globally-applicable framework for compound flood risk assessments using combined hydrodynamic, impact and statistical modeling. Our results show the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
This article is included in the Encyclopedia of Geosciences
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
This article is included in the Encyclopedia of Geosciences
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-225, https://doi.org/10.5194/nhess-2022-225, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: For +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
This article is included in the Encyclopedia of Geosciences
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
This article is included in the Encyclopedia of Geosciences
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
This article is included in the Encyclopedia of Geosciences
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
This article is included in the Encyclopedia of Geosciences
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Hessel C. Winsemius, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2022-149, https://doi.org/10.5194/egusphere-2022-149, 2022
Short summary
Short summary
In coastal deltas flooding can occur from interactions between surge and waves, river discharge and precipitation, so-called compound flooding. Global flood models however ignore these interaction. We therefore present a framework to create a reproducible compound flood model anywhere at the globe and show how it can be used to better understand compound flooding. The framework is applied to two historical events tropical cyclone events in Mozambique with good results.
This article is included in the Encyclopedia of Geosciences
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
This article is included in the Encyclopedia of Geosciences
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
This article is included in the Encyclopedia of Geosciences
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Short summary
Rapid detection of landslides is critical for emergency response and disaster mitigation. Here we develop a global landslide detection tool in Google Earth Engine that uses satellite radar data to measure changes in the ground surface properties. We find that we can detect areas with high landslide density within days of a triggering event. Our approach allows the broader hazard community to utilize these state-of-the-art data for improved situational awareness of landslide hazards.
This article is included in the Encyclopedia of Geosciences
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
This article is included in the Encyclopedia of Geosciences
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-397, https://doi.org/10.5194/nhess-2021-397, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
This article is included in the Encyclopedia of Geosciences
Heinz Jürgen Punge, Kristopher M. Bedka, Michael Kunz, Sarah D. Bang, and Kyle F. Itterly
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-342, https://doi.org/10.5194/nhess-2021-342, 2021
Revised manuscript under review for NHESS
Short summary
Short summary
We have estimated the probability of hail events in South Africa using a combination of satellite observations, reanalysis, and insurance loss data. It is found that hail concentrate mainly in the southeast. Multivariate stochastic modeling of event properties, such as multiple events on a day or track dimensions, yields an event catalog for 25 000 years. This can be used to estimate hail risk for return periods of 200 years, required for insurance companies.
This article is included in the Encyclopedia of Geosciences
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
This article is included in the Encyclopedia of Geosciences
Danhua Xin, James Edward Daniell, Hing-Ho Tsang, and Friedemann Wenzel
Nat. Hazards Earth Syst. Sci., 21, 3031–3056, https://doi.org/10.5194/nhess-21-3031-2021, https://doi.org/10.5194/nhess-21-3031-2021, 2021
Short summary
Short summary
A grid-level residential building stock model (in terms of floor area and replacement value) targeted for seismic risk analysis for mainland China is developed by using census and population density data. Comparisons with previous studies and yearbook records indicate the reliability of our model. The modelled results are openly accessible and can be conveniently updated when more detailed census or statistics data are available.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
This article is included in the Encyclopedia of Geosciences
Marleen Carolijn de Ruiter, Anaïs Couasnon, and Philip James Ward
Geosci. Commun., 4, 383–397, https://doi.org/10.5194/gc-4-383-2021, https://doi.org/10.5194/gc-4-383-2021, 2021
Short summary
Short summary
Many countries can get hit by different hazards, such as earthquakes and floods. Generally, measures and policies are aimed at decreasing the potential damages of one particular hazard type despite their potential of having unwanted effects on other hazard types. We designed a serious game that helps professionals to improve their understanding of these potential negative effects of measures and policies that reduce the impacts of disasters across many different hazard types.
This article is included in the Encyclopedia of Geosciences
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
This article is included in the Encyclopedia of Geosciences
Elody Fluck, Michael Kunz, Peter Geissbuehler, and Stefan P. Ritz
Nat. Hazards Earth Syst. Sci., 21, 683–701, https://doi.org/10.5194/nhess-21-683-2021, https://doi.org/10.5194/nhess-21-683-2021, 2021
Short summary
Short summary
Severe convective storms (SCSs) and the related hail events constitute major atmospheric hazards in parts of Europe. In our study, we identified the regions of France, Germany, Belgium and Luxembourg that were most affected by hail over a 10 year period (2005 to 2014). A cell-tracking algorithm was computed on remote-sensing data to enable the reconstruction of several thousand SCS tracks. The location of hail hotspots will help us understand hail formation and improve hail forecasting.
This article is included in the Encyclopedia of Geosciences
Joel C. Gill, Faith E. Taylor, Melanie J. Duncan, Solmaz Mohadjer, Mirianna Budimir, Hassan Mdala, and Vera Bukachi
Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021, https://doi.org/10.5194/nhess-21-187-2021, 2021
Short summary
Short summary
This paper draws on the experiences of seven early career scientists, in different sectors and contexts, to explore the improved integration of natural hazard science into broader efforts to reduce the likelihood and impacts of disasters. We include recommendations for natural hazard scientists, to improve education, training, and research design and to strengthen institutional, financial, and policy actions. We hope to provoke discussion and catalyse changes that will help reduce disaster risk.
This article is included in the Encyclopedia of Geosciences
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
This article is included in the Encyclopedia of Geosciences
Robert Emberson, Dalia Kirschbaum, and Thomas Stanley
Nat. Hazards Earth Syst. Sci., 20, 3413–3424, https://doi.org/10.5194/nhess-20-3413-2020, https://doi.org/10.5194/nhess-20-3413-2020, 2020
Short summary
Short summary
Landslides cause thousands of fatalities and cost billions of dollars of damage worldwide every year, but different inventories of landslide events can have widely diverging completeness. This can lead to spatial biases in our understanding of the impacts. Here we use a globally homogeneous model of landslide hazard and exposure to provide consistent estimates of where landslides are most likely to cause damage to people, roads and other critical infrastructure at 1 km resolution.
This article is included in the Encyclopedia of Geosciences
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
This article is included in the Encyclopedia of Geosciences
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
This article is included in the Encyclopedia of Geosciences
Alexander L. Handwerger, Shannan Y. Jones, Mong-Han Huang, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-315, https://doi.org/10.5194/nhess-2020-315, 2020
Manuscript not accepted for further review
Short summary
Short summary
The rapid and accurate mapping of landslides is critical for emergency response, disaster mitigation, and understanding landslide processes. Here we present a new approach to detect landslides anywhere in the world using freely available synthetic aperture radar data and open source tools in Google Earth Engine. Importantly, our methods do not require specialized processing software or training, which allows the broader hazards community to utilize these state-of-the-art remote sensing tools.
This article is included in the Encyclopedia of Geosciences
Jens A. de Bruijn, James E. Daniell, Antonios Pomonis, Rashmin Gunasekera, Joshua Macabuag, Marleen C. de Ruiter, Siem Jan Koopman, Nadia Bloemendaal, Hans de Moel, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-282, https://doi.org/10.5194/nhess-2020-282, 2020
Revised manuscript not accepted
Short summary
Short summary
Following hurricanes and other natural hazards, it is important to quickly estimate the damage caused by the hazard such that recovery aid can be granted from organizations such as the European Union and the World Bank. To do so, it is important to estimate the vulnerability of buildings to the hazards. In this research, we use post-disaster observations from social media to improve these vulnerability assessments and show its application in the Bahamas following Hurricane Dorian.
This article is included in the Encyclopedia of Geosciences
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
This article is included in the Encyclopedia of Geosciences
Susanna Mohr, Jannik Wilhelm, Jan Wandel, Michael Kunz, Raphael Portmann, Heinz Jürgen Punge, Manuel Schmidberger, Julian F. Quinting, and Christian M. Grams
Weather Clim. Dynam., 1, 325–348, https://doi.org/10.5194/wcd-1-325-2020, https://doi.org/10.5194/wcd-1-325-2020, 2020
Short summary
Short summary
We investigated an exceptional thunderstorm episode in 2018, in which atmospheric blocking provided large-scale environmental conditions favouring convection. Furthermore, blocking was accompanied by a high cut-off frequency on its upstream side, which together with filaments of high PV provided the mesoscale setting for deep moist convection. The exceptional persistence of low stability combined with weak wind speed in the mid-troposphere over more than 3 weeks has never been observed before.
This article is included in the Encyclopedia of Geosciences
Michael Kunz, Jan Wandel, Elody Fluck, Sven Baumstark, Susanna Mohr, and Sebastian Schemm
Nat. Hazards Earth Syst. Sci., 20, 1867–1887, https://doi.org/10.5194/nhess-20-1867-2020, https://doi.org/10.5194/nhess-20-1867-2020, 2020
Short summary
Short summary
Severe convective storms are major loss drivers across Europe. We reconstructed several thousand storm tracks from radar reflectivity over a 10-year period for parts of Europe. The tracks were additionally combined with hail reports, reanalysis data, and front detections based on ERA-Interim (ECMWF Reanalysis). It is found that frontal hailstorms on average produce larger hailstones and have longer tracks and that wind shear is important not only for the hail diameter but also for track length.
This article is included in the Encyclopedia of Geosciences
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020, https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.
This article is included in the Encyclopedia of Geosciences
Samuel J. Sutanto, Melati van der Weert, Veit Blauhut, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 20, 1595–1608, https://doi.org/10.5194/nhess-20-1595-2020, https://doi.org/10.5194/nhess-20-1595-2020, 2020
Short summary
Short summary
Present-day drought early warning systems only provide information on drought hazard forecasts. Here, we have developed drought impact functions to forecast drought impacts up to 7 months ahead using machine learning techniques, logistic regression, and random forest. Our results show that random forest produces a higher-impact forecasting skill than logistic regression. For German county levels, drought impacts can be forecasted up to 4 months ahead using random forest.
This article is included in the Encyclopedia of Geosciences
Timothy Tiggeloven, Hans de Moel, Hessel C. Winsemius, Dirk Eilander, Gilles Erkens, Eskedar Gebremedhin, Andres Diaz Loaiza, Samantha Kuzma, Tianyi Luo, Charles Iceland, Arno Bouwman, Jolien van Huijstee, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020, https://doi.org/10.5194/nhess-20-1025-2020, 2020
Short summary
Short summary
We present a framework to evaluate the benefits and costs of coastal adaptation through dikes to reduce future flood risk. If no adaptation takes place, we find that global coastal flood risk increases 150-fold by 2080, with sea-level rise contributing the most. Moreover, 15 countries account for 90 % of this increase; that adaptation shows high potential to cost-effectively reduce flood risk. The results will be integrated into the Aqueduct Global Flood Analyzer web tool.
This article is included in the Encyclopedia of Geosciences
Danhua Xin, James Edward Daniell, and Friedemann Wenzel
Nat. Hazards Earth Syst. Sci., 20, 643–672, https://doi.org/10.5194/nhess-20-643-2020, https://doi.org/10.5194/nhess-20-643-2020, 2020
Short summary
Short summary
Field surveys after major disastrous earthquakes have shown that poor performance of buildings in earthquake-affected areas is the leading cause of human fatalities and economic losses. The evaluation of seismic fragility for existing building stocks has become a crucial issue due to the frequent occurrence of earthquakes in the last decades. This study conducts such a comprehensive review for mainland China and aims to better serve the natural disaster prevention and mitigation cause in China.
This article is included in the Encyclopedia of Geosciences
Constanze Wellmann, Andrew I. Barrett, Jill S. Johnson, Michael Kunz, Bernhard Vogel, Ken S. Carslaw, and Corinna Hoose
Atmos. Chem. Phys., 20, 2201–2219, https://doi.org/10.5194/acp-20-2201-2020, https://doi.org/10.5194/acp-20-2201-2020, 2020
Short summary
Short summary
Severe hailstorms may cause damage to buildings and crops. Thus, the forecast of numerical weather prediction (NWP) models should be as reliable as possible.
Using statistical emulation, we identify those model input parameters describing environmental conditions and cloud microphysics which lead to large uncertainties in the prediction of deep convection. We find that the impact of the input parameters on the uncertainty depends on the considered output variable.
This article is included in the Encyclopedia of Geosciences
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
This article is included in the Encyclopedia of Geosciences
Toby R. Marthews, Eleanor M. Blyth, Alberto Martínez-de la Torre, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 24, 75–92, https://doi.org/10.5194/hess-24-75-2020, https://doi.org/10.5194/hess-24-75-2020, 2020
Short summary
Short summary
Climate change impact modellers can only act on predictions of the occurrence of an extreme event in the Earth system if they know the uncertainty in that prediction and how uncertainty is attributable to different model components. Using eartH2Observe data, we quantify the balance between different sources of uncertainty in global evapotranspiration and runoff, making a crucial contribution to understanding the spatial distribution of water resources allocation deficiencies.
This article is included in the Encyclopedia of Geosciences
Danhua Xin, James Edward Daniell, Hing-Ho Tsang, and Friedemann Wenzel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-385, https://doi.org/10.5194/nhess-2019-385, 2020
Manuscript not accepted for further review
Short summary
Short summary
A grid-level residential building stock model (in terms of floor area and replacement value) targeted for seismic risk analysis for mainland China is developed by using census and population density data. Comparison with previous studies and yearbook records indicates the reliability of our model. The model is flexible for updates when more detailed census or statistics data are available, and it can be conveniently combined with hazard data and vulnerability information for risk assessment.
This article is included in the Encyclopedia of Geosciences
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
This article is included in the Encyclopedia of Geosciences
Johanna Englhardt, Hans de Moel, Charles K. Huyck, Marleen C. de Ruiter, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 19, 1703–1722, https://doi.org/10.5194/nhess-19-1703-2019, https://doi.org/10.5194/nhess-19-1703-2019, 2019
Short summary
Short summary
Large-scale risk assessments can be improved by a more direct relation between the type of exposed buildings and their flood impact. Compared to the common land-use-based approach, this model reflects heterogeneous structures and defines building-material-based vulnerability classes. This approach is particularly interesting for areas with large variations of building types, such as developing countries and large scales, and enables vulnerability comparison across different natural disasters.
This article is included in the Encyclopedia of Geosciences
Jannis M. Hoch, Dirk Eilander, Hiroaki Ikeuchi, Fedor Baart, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-1723-2019, https://doi.org/10.5194/nhess-19-1723-2019, 2019
Short summary
Short summary
Flood events are often complex in their origin and dynamics. The choice of computer model to simulate can hence determine which level of complexity can be represented. We here compare different models varying in complexity (hydrology with routing, 1-D routing, 1D/2D hydrodynamics) and assess how model choice influences the accuracy of results. This was achieved by using GLOFRIM, a model coupling framework. Results show that accuracy depends on the model choice and the output variable considered.
This article is included in the Encyclopedia of Geosciences
Shiqiang Du, Xiaotao Cheng, Qingxu Huang, Ruishan Chen, Philip J. Ward, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 19, 715–719, https://doi.org/10.5194/nhess-19-715-2019, https://doi.org/10.5194/nhess-19-715-2019, 2019
Short summary
Short summary
A mega-flood in 1998 caused tremendous losses in China and triggered major policy adjustments in flood-risk management. This paper rethinks these policy adjustments and discusses how China should adapt to newly emerging flood challenges. We suggest that China needs novel flood-risk management approaches to address the new challenges from rapid urbanization and climate change. These include risk-based urban planning and a coordinated water governance system.
This article is included in the Encyclopedia of Geosciences
Florian Ehmele and Michael Kunz
Hydrol. Earth Syst. Sci., 23, 1083–1102, https://doi.org/10.5194/hess-23-1083-2019, https://doi.org/10.5194/hess-23-1083-2019, 2019
Short summary
Short summary
The risk estimation of precipitation events with high recurrence periods is difficult due to the limited timescale with meteorological observations and an inhomogeneous distribution of rain gauges, especially in mountainous terrains. In this study a spatially high resolved analytical model, designed for stochastic simulations of flood-related precipitation, is developed and applied to an investigation area in Germany but is transferable to other areas. High conformity with observations is found.
This article is included in the Encyclopedia of Geosciences
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
This article is included in the Encyclopedia of Geosciences
Danhua Xin, James Edward Daniell, and Friedemann Wenzel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-254, https://doi.org/10.5194/nhess-2018-254, 2018
Revised manuscript not accepted
Short summary
Short summary
Field surveys after major disastrous earthquakes have shown that poor performance of buildings in earthquake affected areas is the leading cause of human fatalities and economic losses. The evaluation of seismic fragility for existing building stocks has become a crucial issue due to the frequent occurrence of earthquakes in the last decades. They are required for the estimation of fatalities and monetary losses due to structural damage in destructive natural disasters like earthquakes.
This article is included in the Encyclopedia of Geosciences
Anouk I. Gevaert, Ted I. E. Veldkamp, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 4649–4665, https://doi.org/10.5194/hess-22-4649-2018, https://doi.org/10.5194/hess-22-4649-2018, 2018
Short summary
Short summary
Drought is a natural hazard that has severe environmental and socioeconomic impacts around the globe. Here, we quantified the time taken for drought to propagate from precipitation droughts to soil moisture and streamflow droughts. Results show that propagation timescales are strongly related to climate type, with fast responses in tropical regions and slow responses in arid regions. Insight into the timescales of drought propagation globally may help improve seasonal drought forecasting.
This article is included in the Encyclopedia of Geosciences
Gaby J. Gründemann, Micha Werner, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 22, 4667–4683, https://doi.org/10.5194/hess-22-4667-2018, https://doi.org/10.5194/hess-22-4667-2018, 2018
Short summary
Short summary
Flooding in vulnerable and data-sparse regions such as the Limpopo basin in Southern Africa is a key concern. Data available to local flood managers are often limited, inconsistent or asymmetrically distributed. We demonstrate that freely available global datasets are well suited to provide essential information. Despite the poor performance of simulated discharges, these datasets hold potential in identifying damaging flood events, particularly for higher-resolution datasets and larger basins.
This article is included in the Encyclopedia of Geosciences
Kai Schröter, Daniela Molinari, Michael Kunz, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 18, 963–968, https://doi.org/10.5194/nhess-18-963-2018, https://doi.org/10.5194/nhess-18-963-2018, 2018
Konstantinos Bischiniotis, Bart van den Hurk, Brenden Jongman, Erin Coughlan de Perez, Ted Veldkamp, Hans de Moel, and Jeroen Aerts
Nat. Hazards Earth Syst. Sci., 18, 271–285, https://doi.org/10.5194/nhess-18-271-2018, https://doi.org/10.5194/nhess-18-271-2018, 2018
Short summary
Short summary
Preparedness activities and flood forecasting have received increasing attention and have led towards new science-based early warning systems. Understanding the flood triggering mechanisms will result in increasing warning lead times, providing sufficient time for early action. Findings of this study indicate that the consideration of short- and long-term antecedent conditions can be used by humanitarian organizations and decision makers for improved flood risk management.
This article is included in the Encyclopedia of Geosciences
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
This article is included in the Encyclopedia of Geosciences
Naze Candogan Yossef, Rens van Beek, Albrecht Weerts, Hessel Winsemius, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017, https://doi.org/10.5194/hess-21-4103-2017, 2017
Short summary
Short summary
This paper presents a skill assessment of the global seasonal streamflow forecasting system FEWS-World. For 20 large basins of the world, forecasts using the ESP procedure are compared to forecasts using actual S3 seasonal meteorological forecast ensembles by ECMWF. The results are discussed in the context of prevailing hydroclimatic conditions per basin. The study concludes that in general, the skill of ECMWF S3 forecasts is close to that of the ESP forecasts.
This article is included in the Encyclopedia of Geosciences
David Piper and Michael Kunz
Nat. Hazards Earth Syst. Sci., 17, 1319–1336, https://doi.org/10.5194/nhess-17-1319-2017, https://doi.org/10.5194/nhess-17-1319-2017, 2017
Marleen C. de Ruiter, Philip J. Ward, James E. Daniell, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 17, 1231–1251, https://doi.org/10.5194/nhess-17-1231-2017, https://doi.org/10.5194/nhess-17-1231-2017, 2017
Short summary
Short summary
This study provides cross-discipline lessons for earthquake and flood vulnerability assessment methods by comparing indicators used in both fields. It appears that there is potential for improvement of these methods that can be obtained for both earthquake and flood vulnerability assessment indicators. This increased understanding is beneficial for both scientists as well as practitioners working with earthquake and/or flood vulnerability assessment methods.
This article is included in the Encyclopedia of Geosciences
Susanna Mohr, Michael Kunz, Alexandra Richter, and Bodo Ruck
Nat. Hazards Earth Syst. Sci., 17, 957–969, https://doi.org/10.5194/nhess-17-957-2017, https://doi.org/10.5194/nhess-17-957-2017, 2017
Short summary
Short summary
Due to the small-scale and non-stationary nature of the convective wind gusts usually associated with thunderstorms, there is a considerable lack of knowledge regarding their characteristics and statistics. Thus, we investigated the temporal and spatial distribution, intensity, and return values of those wind events in Germany. The study constitutes a fundamental addition to an improved understanding of convective wind gusts and serves as basis for further risk assessments.
This article is included in the Encyclopedia of Geosciences
Mook Bangalore, Andrew Smith, and Ted Veldkamp
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-100, https://doi.org/10.5194/nhess-2017-100, 2017
Preprint withdrawn
Short summary
Short summary
This paper examines the exposure to current and future flooding in Vietnam and in Ho Chi Minh City, using new high-resolution flood hazard maps and spatial socioeconomic data on poverty. While floods already expose a third of the population today, climate change impacts may increase exposure by more than 20 %, with significant implications for poor households in urban areas. This paper provides implications regarding infrastructure development, land use planning, and strategies to manage floods.
This article is included in the Encyclopedia of Geosciences
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
This article is included in the Encyclopedia of Geosciences
David Piper, Michael Kunz, Florian Ehmele, Susanna Mohr, Bernhard Mühr, Andreas Kron, and James Daniell
Nat. Hazards Earth Syst. Sci., 16, 2835–2850, https://doi.org/10.5194/nhess-16-2835-2016, https://doi.org/10.5194/nhess-16-2835-2016, 2016
Veit Blauhut, Kerstin Stahl, James Howard Stagge, Lena M. Tallaksen, Lucia De Stefano, and Jürgen Vogt
Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, https://doi.org/10.5194/hess-20-2779-2016, 2016
Paolo Scussolini, Jeroen C. J. H. Aerts, Brenden Jongman, Laurens M. Bouwer, Hessel C. Winsemius, Hans de Moel, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, https://doi.org/10.5194/nhess-16-1049-2016, 2016
Short summary
Short summary
Assessments of flood risk, on global to local scales, are becoming more urgent with ongoing climate change and with rapid socioeconomic developments. Such assessments need information about existing flood protection, still largely unavailable. Here we present the first open-source database of FLood PROtection Standards, FLOPROS, which enables more accurate modelling of flood risk. We also invite specialists to contribute new information to this evolving database.
This article is included in the Encyclopedia of Geosciences
Kerstin Stahl, Irene Kohn, Veit Blauhut, Julia Urquijo, Lucia De Stefano, Vanda Acácio, Susana Dias, James H. Stagge, Lena M. Tallaksen, Eleni Kampragou, Anne F. Van Loon, Lucy J. Barker, Lieke A. Melsen, Carlo Bifulco, Dario Musolino, Alessandro de Carli, Antonio Massarutto, Dionysis Assimacopoulos, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, https://doi.org/10.5194/nhess-16-801-2016, 2016
Short summary
Short summary
Based on the European Drought Impact report Inventory (EDII), the study presents an assessment of the occurrence and diversity of drought impacts across Europe. A unique research database has collected close to 5000 textual drought impact reports from 33 European countries. Consistently, reported impacts have been dominated in number by agriculture and water supply, but were very diverse across other sectors. Data and assessment may help drought policy planning at the international level.
This article is included in the Encyclopedia of Geosciences
Yus Budiyono, Jeroen C. J. H. Aerts, Daniel Tollenaar, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 757–774, https://doi.org/10.5194/nhess-16-757-2016, https://doi.org/10.5194/nhess-16-757-2016, 2016
Short summary
Short summary
The paper describes a model framework for assessing flood risk in Jakarta under current and future scenarios (2030 and 2050) including climate change, sea level rise, land use change, and land subsidence. The results shows individual impact of future changes and serve as a basis to evaluate adaptation strategies in cities. They also show while the impacts of climate change alone on flood risk in Jakarta are highly uncertain, the combined impacts of all drivers reveal a strong increase in risk.
This article is included in the Encyclopedia of Geosciences
D. Lee, P. Ward, and P. Block
Hydrol. Earth Syst. Sci., 19, 4689–4705, https://doi.org/10.5194/hess-19-4689-2015, https://doi.org/10.5194/hess-19-4689-2015, 2015
Short summary
Short summary
This paper presents a global approach to defining high-flow seasons by identifying temporal patterns of streamflow. Simulations of streamflow from the PCR-GLOBWB model are evaluated to define dominant and minor high-flow seasons globally, and verified with GRDC observations and flood records from Dartmouth Flood Observatory.
This article is included in the Encyclopedia of Geosciences
D. B. Kirschbaum, T. Stanley, and J. Simmons
Nat. Hazards Earth Syst. Sci., 15, 2257–2272, https://doi.org/10.5194/nhess-15-2257-2015, https://doi.org/10.5194/nhess-15-2257-2015, 2015
Short summary
Short summary
This research presents a new framework for evaluating potential landslide activity in near real time. This system was implemented in Central America and the Caribbean by integrating a regional susceptibility map and satellite-based rainfall estimates into a binary decision tree, considering both daily and antecedent rainfall. The model demonstrates the capability to use free, globally available satellite products for near real-time regional landslide hazard assessment and situational awareness.
This article is included in the Encyclopedia of Geosciences
T. I. E. Veldkamp, S. Eisner, Y. Wada, J. C. J. H. Aerts, and P. J. Ward
Hydrol. Earth Syst. Sci., 19, 4081–4098, https://doi.org/10.5194/hess-19-4081-2015, https://doi.org/10.5194/hess-19-4081-2015, 2015
Short summary
Short summary
Freshwater shortage is one of the most important risks, partially driven by climate variability. Here we present a first global scale sensitivity assessment of water scarcity events to El Niño-Southern Oscillation, the most dominant climate variability signal. Given the found correlations, covering a large share of the global land area, and seen the developments of water scarcity impacts under changing socioeconomic conditions, we show that there is large potential for ENSO-based risk reduction.
This article is included in the Encyclopedia of Geosciences
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
This article is included in the Encyclopedia of Geosciences
F. Wetterhall, H. C. Winsemius, E. Dutra, M. Werner, and E. Pappenberger
Hydrol. Earth Syst. Sci., 19, 2577–2586, https://doi.org/10.5194/hess-19-2577-2015, https://doi.org/10.5194/hess-19-2577-2015, 2015
Short summary
Short summary
Dry spells can have a devastating impact on agricuture in areas where irrigation is not available. Forecasting these dry spells could enhance preparedness in sensitive regions and avoid economic loss due to harvest failure. In this study, ECMWF seasonal forecasts are applied in the Limpopo basin in southeastern Africa to forecast dry spells in the seasonal rains. The results indicate skill in the forecast which is further improved by post-processing of the precipitation forecasts.
This article is included in the Encyclopedia of Geosciences
P. Trambauer, M. Werner, H. C. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 1695–1711, https://doi.org/10.5194/hess-19-1695-2015, https://doi.org/10.5194/hess-19-1695-2015, 2015
K. Schröter, M. Kunz, F. Elmer, B. Mühr, and B. Merz
Hydrol. Earth Syst. Sci., 19, 309–327, https://doi.org/10.5194/hess-19-309-2015, https://doi.org/10.5194/hess-19-309-2015, 2015
Short summary
Short summary
Extreme antecedent precipitation, increased initial hydraulic load in the river network and strong but not extraordinary event precipitation were key drivers for the flood in June 2013 in Germany. Our results are based on extreme value statistics and aggregated severity indices which we evaluated for a set of 74 historic large-scale floods. This flood database and the methodological framework enable the rapid assessment of future floods using precipitation and discharge observations.
This article is included in the Encyclopedia of Geosciences
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
R. Lasage, T. I. E. Veldkamp, H. de Moel, T. C. Van, H. L. Phi, P. Vellinga, and J. C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 14, 1441–1457, https://doi.org/10.5194/nhess-14-1441-2014, https://doi.org/10.5194/nhess-14-1441-2014, 2014
B. Jongman, E. E. Koks, T. G. Husby, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 14, 1245–1255, https://doi.org/10.5194/nhess-14-1245-2014, https://doi.org/10.5194/nhess-14-1245-2014, 2014
H. C. Winsemius, E. Dutra, F. A. Engelbrecht, E. Archer Van Garderen, F. Wetterhall, F. Pappenberger, and M. G. F. Werner
Hydrol. Earth Syst. Sci., 18, 1525–1538, https://doi.org/10.5194/hess-18-1525-2014, https://doi.org/10.5194/hess-18-1525-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
P. J. Ward, S. Eisner, M. Flörke, M. D. Dettinger, and M. Kummu
Hydrol. Earth Syst. Sci., 18, 47–66, https://doi.org/10.5194/hess-18-47-2014, https://doi.org/10.5194/hess-18-47-2014, 2014
M. Kunz, B. Mühr, T. Kunz-Plapp, J. E. Daniell, B. Khazai, F. Wenzel, M. Vannieuwenhuyse, T. Comes, F. Elmer, K. Schröter, J. Fohringer, T. Münzberg, C. Lucas, and J. Zschau
Nat. Hazards Earth Syst. Sci., 13, 2579–2598, https://doi.org/10.5194/nhess-13-2579-2013, https://doi.org/10.5194/nhess-13-2579-2013, 2013
H. C. Winsemius, L. P. H. Van Beek, B. Jongman, P. J. Ward, and A. Bouwman
Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, https://doi.org/10.5194/hess-17-1871-2013, 2013
T. Euser, H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, https://doi.org/10.5194/hess-17-1893-2013, 2013
J. E. Daniell, B. Khazai, and F. Wenzel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-1913-2013, https://doi.org/10.5194/nhessd-1-1913-2013, 2013
Revised manuscript has not been submitted
R. S. Westerhoff, M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop
Hydrol. Earth Syst. Sci., 17, 651–663, https://doi.org/10.5194/hess-17-651-2013, https://doi.org/10.5194/hess-17-651-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa
Invited perspectives: An insurer's perspective on the knowns and unknowns in natural hazard risk modelling
Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Tsunami risk perception in central and southern Italy
Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy
Process-based flood damage modelling relying on expert knowledge: a methodological contribution applied to the agricultural sector
Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: a case study of typhoon–rainstorm hazards in Shenzhen, China
Integrated seismic risk assessment in Nepal
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Invited perspectives: Managed realignment as a solution to mitigate coastal flood risks – optimizing success through knowledge co-production
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Surveying the surveyors to address risk perception and adaptive-behaviour cross-study comparability
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Full-scale experiments to examine the role of deadwood in rockfall dynamics in forests
Predicting drought and subsidence risks in France
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
The determinants affecting the intention of urban residents to prepare for flood risk in China
Strategic framework for natural disaster risk mitigation using deep learning and cost-benefit analysis
Risk communication during seismo-volcanic crises: the example of Mayotte, France
Invited perspectives: Challenges and step changes for natural hazard – perspectives from the German Committee for Disaster Reduction (DKKV)
Invited perspectives: When research meets practice: challenges, opportunities, and suggestions from the implementation of the Floods Directive in the largest Italian river basin
Rapid landslide risk zoning toward multi-slope units of the Neikuihui tribe for preliminary disaster management
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Identifying the drivers of private flood precautionary measures in Ho Chi Minh City, Vietnam
Performance of the flood warning system in Germany in July 2021 – insights from affected residents
Effective uncertainty visualization for aftershock forecast maps
Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment
Empirical tsunami fragility modelling for hierarchical damage levels: An application to damage data of the 2009 South Pacific tsunami
Education, financial aid, and awareness can reduce smallholder farmers' vulnerability to drought under climate change
Regional county-level housing inventory predictions and the effects on hurricane risk
Brief communication: Key papers of 20 years in Natural Hazards and Earth System Sciences
Invited Perspectives: “Small country, big challenges – Switzerland's hazard prevention research”
Invited perspectives: Challenges and future directions in improving bridge flood resilience
Bangladesh's vulnerability to cyclonic coastal flooding
A geography of drought indices: mismatch between indicators of drought and its impacts on water and food securities
Cost–benefit analysis of coastal flood defence measures in the North Adriatic Sea
About the return period of a catastrophe
Brief communication: Radar images for monitoring informal urban settlements in vulnerable zones in Lima, Peru
A simulation–optimization framework for post-disaster allocation of mental health resources
Lessons learned about the importance of raising risk awareness in the Mediterranean region (north Morocco and west Sardinia, Italy)
Stochastic system dynamics modelling for climate change water scarcity assessment of a reservoir in the Italian Alps
Multiple hazards and risk perceptions over time: the availability heuristic in Italy and Sweden under COVID-19
Review article: Mapping the adaptation solution space – lessons from Jakarta
Risk perception of local stakeholders on natural hazards: implications for theory and practice
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
Nat. Hazards Earth Syst. Sci., 23, 481–505, https://doi.org/10.5194/nhess-23-481-2023, https://doi.org/10.5194/nhess-23-481-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, there is reported uptake of at least one nature-based solution (NBS) in 71 % of urban areas in the region for mitigating hydro-meteorological risks. These NBSs are implemented where risks exist but not where they are most severe. With these NBSs providing multiple ecosystem services and four out of every five NBSs creating livelihood opportunities, NBSs can help address major development challenges in the region, such as water and food insecurity and unemployment.
This article is included in the Encyclopedia of Geosciences
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci., 23, 251–259, https://doi.org/10.5194/nhess-23-251-2023, https://doi.org/10.5194/nhess-23-251-2023, 2023
Short summary
Short summary
This paper proves the need to conduct an in-depth review of the existing loss modelling framework and makes it clear that only a transdisciplinary effort will be up to the challenge of building global loss models. These two factors are essential to capture the interactions and increasing complexity of the three risk drivers (exposure, hazard, and vulnerability), thus enabling insurers to anticipate and be equipped to face the far-ranging impacts of climate change and other natural events.
This article is included in the Encyclopedia of Geosciences
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci., 23, 139–158, https://doi.org/10.5194/nhess-23-139-2023, https://doi.org/10.5194/nhess-23-139-2023, 2023
Short summary
Short summary
This study aims to provide a practical and relatively fast solution for early-stage planning of marine infrastructure that must cross a faulted zone. Instead of investing huge efforts in finding whether each specific fault meets a pre-defined criterion of activeness, we map the subsurface and determine the levels of fault hazard based on the amount of displacement and the fault's plane size. This allows for choosing the least problematic infrastructure routes at an early planning stage.
This article is included in the Encyclopedia of Geosciences
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
This article is included in the Encyclopedia of Geosciences
Lorenzo Cugliari, Massimo Crescimbene, Federica La Longa, Andrea Cerase, Alessandro Amato, and Loredana Cerbara
Nat. Hazards Earth Syst. Sci., 22, 4119–4138, https://doi.org/10.5194/nhess-22-4119-2022, https://doi.org/10.5194/nhess-22-4119-2022, 2022
Short summary
Short summary
The Tsunami Alert Centre of the National Institute of Geophysics and Volcanology (CAT-INGV) has been promoting the study of tsunami risk perception in Italy since 2018. A total of 7342 questionnaires were collected in three survey phases (2018, 2020, 2021). In this work we present the main results of the three survey phases, with a comparison among the eight surveyed regions and between the coastal regions and some coastal metropolitan cities involved in the survey.
This article is included in the Encyclopedia of Geosciences
Elco E. Koks, Kees C. H. van Ginkel, Margreet J. E. van Marle, and Anne Lemnitzer
Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, https://doi.org/10.5194/nhess-22-3831-2022, 2022
Short summary
Short summary
This study provides an overview of the impacts to critical infrastructure and how recovery has progressed after the July 2021 flood event in Germany, Belgium and the Netherlands. The results show that Germany and Belgium were particularly affected, with many infrastructure assets severely damaged or completely destroyed. This study helps to better understand how infrastructure can be affected by flooding and can be used for validation purposes for future studies.
This article is included in the Encyclopedia of Geosciences
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
This article is included in the Encyclopedia of Geosciences
Andrea Taramelli, Margherita Righini, Emiliana Valentini, Lorenzo Alfieri, Ignacio Gatti, and Simone Gabellani
Nat. Hazards Earth Syst. Sci., 22, 3543–3569, https://doi.org/10.5194/nhess-22-3543-2022, https://doi.org/10.5194/nhess-22-3543-2022, 2022
Short summary
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
This article is included in the Encyclopedia of Geosciences
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
This article is included in the Encyclopedia of Geosciences
Wenwu Gong, Jie Jiang, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 3271–3283, https://doi.org/10.5194/nhess-22-3271-2022, https://doi.org/10.5194/nhess-22-3271-2022, 2022
Short summary
Short summary
We propose a model named variable fuzzy set and information diffusion (VFS–IEM–IDM) to assess the dynamic risk of compound hazards, which takes into account the interrelations between the hazard drivers, deals with the problem of data sparsity, and considers the temporal dynamics of the occurrences of the compound hazards. To examine the efficacy of the proposed VFS–IEM–IDM model, a case study of typhoon–rainstorm risks in Shenzhen, China, is presented.
This article is included in the Encyclopedia of Geosciences
Sanish Bhochhibhoya and Roisha Maharjan
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, https://doi.org/10.5194/nhess-22-3211-2022, https://doi.org/10.5194/nhess-22-3211-2022, 2022
Short summary
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
This article is included in the Encyclopedia of Geosciences
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
This article is included in the Encyclopedia of Geosciences
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
This article is included in the Encyclopedia of Geosciences
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
This article is included in the Encyclopedia of Geosciences
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
This article is included in the Encyclopedia of Geosciences
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022, https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary
Short summary
Mass livestock mortality during severe winters (dzud in Mongolian) is a compound event. Summer droughts are a precondition for dzud. We estimate the return levels of relevant variables: summer drought conditions and minimum winter temperature. The result shows that the return levels of drought conditions vary over time. Winter severity, however, is constant. We link climatic factors to socioeconomic impacts and draw attention to the need for index insurance.
This article is included in the Encyclopedia of Geosciences
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
This article is included in the Encyclopedia of Geosciences
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022, https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
This article is included in the Encyclopedia of Geosciences
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
This article is included in the Encyclopedia of Geosciences
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
This article is included in the Encyclopedia of Geosciences
Arthur Charpentier, Molly James, and Hani Ali
Nat. Hazards Earth Syst. Sci., 22, 2401–2418, https://doi.org/10.5194/nhess-22-2401-2022, https://doi.org/10.5194/nhess-22-2401-2022, 2022
Short summary
Short summary
Predicting consequences of drought episodes is complex, all the more when focusing on subsidence. We use 20 years of insurer data to derive a model to predict both the intensity and the severity of such events, using geophysical and climatic information located in space and time.
This article is included in the Encyclopedia of Geosciences
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-183, https://doi.org/10.5194/nhess-2022-183, 2022
Preprint under review for NHESS
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
This article is included in the Encyclopedia of Geosciences
Tiantian Wang, Yunmeng Lu, Tiezhong Liu, Yujiang Zhang, Xiaohan Yan, and Yi Liu
Nat. Hazards Earth Syst. Sci., 22, 2185–2199, https://doi.org/10.5194/nhess-22-2185-2022, https://doi.org/10.5194/nhess-22-2185-2022, 2022
Short summary
Short summary
To identify the main determinants influencing urban residents' intention to prepare for flood risk in China, we developed an integrated theoretical framework based on protection motivation theory (PMT) and validated it with structural equation modeling. The results showed that both threat perception and coping appraisal were effective in increasing residents' intention to prepare. In addition, individual heterogeneity and social context also had an impact on preparedness intentions.
This article is included in the Encyclopedia of Geosciences
Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae
Nat. Hazards Earth Syst. Sci., 22, 2131–2144, https://doi.org/10.5194/nhess-22-2131-2022, https://doi.org/10.5194/nhess-22-2131-2022, 2022
Short summary
Short summary
Insurance data has been utilized with deep learning techniques to predict natural disaster damage losses in South Korea.
This article is included in the Encyclopedia of Geosciences
Maud Devès, Robin Lacassin, Hugues Pécout, and Geoffrey Robert
Nat. Hazards Earth Syst. Sci., 22, 2001–2029, https://doi.org/10.5194/nhess-22-2001-2022, https://doi.org/10.5194/nhess-22-2001-2022, 2022
Short summary
Short summary
This paper focuses on the issue of population information about natural hazards and disaster risk. It builds on the analysis of the unique seismo-volcanic crisis on the island of Mayotte, France, that started in May 2018 and lasted several years. We document the gradual response of the actors in charge of scientific monitoring and risk management. We then make recommendations for improving risk communication strategies in Mayotte and also in contexts where comparable geo-crises may happen.
This article is included in the Encyclopedia of Geosciences
Benni Thiebes, Ronja Winkhardt-Enz, Reimund Schwarze, and Stefan Pickl
Nat. Hazards Earth Syst. Sci., 22, 1969–1972, https://doi.org/10.5194/nhess-22-1969-2022, https://doi.org/10.5194/nhess-22-1969-2022, 2022
Short summary
Short summary
The worldwide challenge of the present as well as the future is to navigate the global community to a sustainable and secure future. Humanity is increasingly facing multiple risks under more challenging conditions. The continuation of climate change and the ever more frequent occurrence of extreme, multi-hazard, and cascading events are interacting with increasingly complex and interconnected societies.
This article is included in the Encyclopedia of Geosciences
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
This article is included in the Encyclopedia of Geosciences
Chih-Chung Chung and Zih-Yi Li
Nat. Hazards Earth Syst. Sci., 22, 1777–1794, https://doi.org/10.5194/nhess-22-1777-2022, https://doi.org/10.5194/nhess-22-1777-2022, 2022
Short summary
Short summary
The Neikuihui tribe in northern Taiwan faces landslides during rainfall events. Since the government needs to respond with disaster management for the most at-risk tribes, this study develops rapid risk zoning, which involves the susceptibility, activity, exposure, and vulnerability of each slope unit of the area. Results reveal that one of the slope units of the Neikuihui tribal area has a higher risk and did suffer a landslide during the typhoon in 2016.
This article is included in the Encyclopedia of Geosciences
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
This article is included in the Encyclopedia of Geosciences
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2022-171, https://doi.org/10.5194/egusphere-2022-171, 2022
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourages the households to adopt measures without having to experience multiple flood events.
This article is included in the Encyclopedia of Geosciences
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
EGUsphere, https://doi.org/10.5194/egusphere-2022-244, https://doi.org/10.5194/egusphere-2022-244, 2022
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in Western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP) questioning their warning system. An online survey revealed that 35 % of the respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving the warning system in Germany.
This article is included in the Encyclopedia of Geosciences
Max Schneider, Michelle McDowell, Peter Guttorp, E. Ashley Steel, and Nadine Fleischhut
Nat. Hazards Earth Syst. Sci., 22, 1499–1518, https://doi.org/10.5194/nhess-22-1499-2022, https://doi.org/10.5194/nhess-22-1499-2022, 2022
Short summary
Short summary
Aftershock forecasts are desired for risk response, but public communications often omit their uncertainty. We evaluate three uncertainty visualization designs for aftershock forecast maps. In an online experiment, participants complete map-reading and judgment tasks relevant across natural hazards. While all designs reveal which areas are likely to have many or no aftershocks, one design can also convey that areas with high uncertainty can have more aftershocks than forecasted.
This article is included in the Encyclopedia of Geosciences
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
This article is included in the Encyclopedia of Geosciences
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
EGUsphere, https://doi.org/10.5194/egusphere-2022-206, https://doi.org/10.5194/egusphere-2022-206, 2022
Short summary
Short summary
Assessing tsunami fragility and the related uncertainties is crucial in the evaluation of incurred losses. Empirical fragility modelling is based on observed tsunami intensity and damage data. Fragility curves for hierarchical damage levels are distinguished by their laminar shape; that is, the curves should not intersect. However, this condition is not satisfied automatically. We present a workflow for hierarchical fragility modelling, uncertainty propagation, and fragility model selection.
This article is included in the Encyclopedia of Geosciences
Marthe L. K. Wens, Anne F. van Loon, Ted I. E. Veldkamp, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 22, 1201–1232, https://doi.org/10.5194/nhess-22-1201-2022, https://doi.org/10.5194/nhess-22-1201-2022, 2022
Short summary
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
This article is included in the Encyclopedia of Geosciences
Caroline J. Williams, Rachel A. Davidson, Linda K. Nozick, Joseph E. Trainor, Meghan Millea, and Jamie L. Kruse
Nat. Hazards Earth Syst. Sci., 22, 1055–1072, https://doi.org/10.5194/nhess-22-1055-2022, https://doi.org/10.5194/nhess-22-1055-2022, 2022
Short summary
Short summary
A neural network model based on publicly available data was developed to forecast the number of housing units for each of 1000 counties in the southeastern United States in each of the next 20 years. The estimated number of housing units is almost always (97 % of the time) less than 1 percentage point different than the observed number, which are predictive errors acceptable for most practical purposes. The housing unit projections can help quantify changes in future expected hurricane impacts.
This article is included in the Encyclopedia of Geosciences
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
This article is included in the Encyclopedia of Geosciences
Dorothea Wabbels and Gian Reto Bezzola
Nat. Hazards Earth Syst. Sci., 22, 927–930, https://doi.org/10.5194/nhess-22-927-2022, https://doi.org/10.5194/nhess-22-927-2022, 2022
Short summary
Short summary
Due to its geography and climate, densely populated Switzerland is often affected by water-related hazards such as surface runoff, floods, debris flows, landslides, rockfalls and avalanches. Almost every part of Switzerland is exposed to natural hazards, and anyone can be affected.
This article is included in the Encyclopedia of Geosciences
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022, https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
Short summary
Bridges are critical infrastructure components of transport networks. A large number of these critical assets cross or are adjacent to waterways and are therefore exposed to the potentially devastating impact of floods. This paper discusses a series of issues and areas where improvements in research and practice are required in the context of risk assessment and management of bridges exposed to flood hazard, with the ultimate goal of guiding future efforts in improving bridge flood resilience.
This article is included in the Encyclopedia of Geosciences
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
This article is included in the Encyclopedia of Geosciences
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Short summary
The aim of our study was to question the validity of the assumed direct linkage between drivers of drought and its impacts on water and food securities, mainly found in the frameworks of drought early warning systems (DEWSs). We analysed more than 5000 scientific studies leading us to the conclusion that the local context can contribute to drought drivers resulting in these drought impacts. Our research aims to increase the relevance and utility of the information provided by DEWSs.
This article is included in the Encyclopedia of Geosciences
Mattia Amadio, Arthur H. Essenfelder, Stefano Bagli, Sepehr Marzi, Paolo Mazzoli, Jaroslav Mysiak, and Stephen Roberts
Nat. Hazards Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/nhess-22-265-2022, https://doi.org/10.5194/nhess-22-265-2022, 2022
Short summary
Short summary
We estimate the risk associated with storm surge events at two case study locations along the North Adriatic Italian coast, considering sea level rise up to the year 2100, and perform a cost–benefit analysis of planned or proposed coastal renovation projects. The study uses nearshore hydrodynamic modelling. Our findings represent a useful indication for disaster risk management, helping to understand the importance of investing in adaptation and estimating the economic return on investments.
This article is included in the Encyclopedia of Geosciences
Mathias Raschke
Nat. Hazards Earth Syst. Sci., 22, 245–263, https://doi.org/10.5194/nhess-22-245-2022, https://doi.org/10.5194/nhess-22-245-2022, 2022
Short summary
Short summary
We develop the combined return period to stochastically measure hazard and catastrophe events. This is used to estimate a risk curve by stochastic scaling of historical events and averaging corresponding risk parameters in combination with a vulnerability model. We apply the method to extratropical cyclones over Germany and estimate the risk for insured losses. The results are strongly influenced by assumptions about spatial dependence.
This article is included in the Encyclopedia of Geosciences
Luis Moya, Fernando Garcia, Carlos Gonzales, Miguel Diaz, Carlos Zavala, Miguel Estrada, Fumio Yamazaki, Shunichi Koshimura, Erick Mas, and Bruno Adriano
Nat. Hazards Earth Syst. Sci., 22, 65–70, https://doi.org/10.5194/nhess-22-65-2022, https://doi.org/10.5194/nhess-22-65-2022, 2022
Short summary
Short summary
Informal occupation of unused lands for settlements is a critical issue in Peru. In most cases, such areas are unsafe against natural hazards. We performed a time-series analysis of Sentinel-1 images at recent informal settlements in Lima. The result suggests that a low-cost and sustainable monitoring system of informal settlements can be implemented.
This article is included in the Encyclopedia of Geosciences
Stephen Cunningham, Steven Schuldt, Christopher Chini, and Justin Delorit
Nat. Hazards Earth Syst. Sci., 21, 3843–3862, https://doi.org/10.5194/nhess-21-3843-2021, https://doi.org/10.5194/nhess-21-3843-2021, 2021
Short summary
Short summary
The severity of disaster-induced mental health illness outcomes varies based on factors such as socioeconomic standing, age, and degree of exposure. This research proposes a resource allocation framework allowing decision-makers the capability to assess the capacity and scalability of early, intermediate, and long-term mental health treatment and recovery. Ultimately, this framework can inform policy and operational decisions based on community needs and constrained resources post-disaster.
This article is included in the Encyclopedia of Geosciences
Ante Ivčević, Hubert Mazurek, Lionel Siame, Raquel Bertoldo, Vania Statzu, Kamal Agharroud, Isabel Estrela Rego, Nibedita Mukherjee, and Olivier Bellier
Nat. Hazards Earth Syst. Sci., 21, 3749–3765, https://doi.org/10.5194/nhess-21-3749-2021, https://doi.org/10.5194/nhess-21-3749-2021, 2021
Short summary
Short summary
The results from two Mediterranean case studies, in north Morocco and west Sardinia, confirm the importance of interdisciplinarity and risk awareness sessions for risk management. The policy literature and interviews held with the administration, associations and scientists indicate that although recognised, the importance of risk awareness sessions is not necessarily put into practice. As a consequence, this could lead to a failure of risk management policy.
This article is included in the Encyclopedia of Geosciences
Stefano Terzi, Janez Sušnik, Stefan Schneiderbauer, Silvia Torresan, and Andrea Critto
Nat. Hazards Earth Syst. Sci., 21, 3519–3537, https://doi.org/10.5194/nhess-21-3519-2021, https://doi.org/10.5194/nhess-21-3519-2021, 2021
Short summary
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
This article is included in the Encyclopedia of Geosciences
Giuliano Di Baldassarre, Elena Mondino, Maria Rusca, Emanuele Del Giudice, Johanna Mård, Elena Ridolfi, Anna Scolobig, and Elena Raffetti
Nat. Hazards Earth Syst. Sci., 21, 3439–3447, https://doi.org/10.5194/nhess-21-3439-2021, https://doi.org/10.5194/nhess-21-3439-2021, 2021
Short summary
Short summary
COVID-19 has affected humankind in an unprecedented way, and it has changed how people perceive multiple risks. In this paper, we compare public risk perceptions in Italy and Sweden in two different phases of the pandemic. We found that people are more worried about risks related to recently experienced events. This finding is in line with the availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind.
This article is included in the Encyclopedia of Geosciences
Mia Wannewitz and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 21, 3285–3322, https://doi.org/10.5194/nhess-21-3285-2021, https://doi.org/10.5194/nhess-21-3285-2021, 2021
Short summary
Short summary
Focusing on Jakarta as a city with high flood risk and adaptation pressure, this study presents findings from a systematic literature review of adaptation options and the adaptation solution space to counter the city’s flood problem. Results indicate that the perceived solution space is skewed towards protection against flooding, while soft and hybrid adaptation options are less considered. This significantly influences flood risk management, including its effectiveness and sustainability.
This article is included in the Encyclopedia of Geosciences
Mihai Ciprian Mărgărint, Mihai Niculiță, Giulia Roder, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3251–3283, https://doi.org/10.5194/nhess-21-3251-2021, https://doi.org/10.5194/nhess-21-3251-2021, 2021
Short summary
Short summary
Local stakeholders' knowledge plays a deciding role in emergencies, supporting rescue officers in natural hazard events; coordinating; and assisting, both physically and psychologically, the affected populations. Their risk perception was assessed using a questionnaire for an area in north-eastern Romania. The results show low preparedness and reveal substantial distinctions among stakeholders and different risks based on their cognitive and behavioral roles in their communities.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., and Kunreuther, H.:
Integrating human behaviour dynamics into flood disaster risk assessment,
Nat. Clim. Change, 8, 193–199, https://doi.org/10.1038/s41558-018-0085-1, 2018.
AghaKouchak, A., Huning, L. S., Chiang, F., Sadegh, M., Vahedifard, F.,
Mazdiyasni, O., Moftakhari, H., and Mallakpour, I.: How do natural hazards
cascade to cause disasters?, Nature, 561, 458–460,
https://doi.org/10.1038/d41586-018-06783-6, 2018.
Ahlström, A., Schurgers, G., Arneth, A., and Smith, B.: Robustness and
uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change
projections, Environ. Res. Lett., 7, 044008, https://doi.org/10.1088/1748-9326/7/4/044008, 2012.
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a warmer world, Earth's Future, 5, 171–182, https://doi.org/10.1002/2016EF000485, 2017.
Allen, J. T., Tippett, M. K., Sobel, A. H., and Lepore, C.: Understanding the
drivers of variability in severe convection: Bringing together the scientific and insurance communities, B. Am. Meteorol. Soc., 97, ES221–ES223,
https://doi.org/10.1175/BAMS-D-16-0208.1, 2016.
Allen, J. T., Giammanco, I. M., Kumjian, M. R., Punge, H. J., Zhang, Q.,
Groenemeijer, P., Kunz, M., and Ortega, K.: Understanding hail in the earth system, Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665, 2020.
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river
flood risk at the global scale, Climatic Change, 134, 387–401,
https://doi.org/10.1007/s10584-014-1084-5, 2016.
Arnell, N. W. and Lloyd-Hughes, B.: The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic
scenarios, Climatic Change, 122, 127–140, https://doi.org/10.1007/s10584-013-0948-4, 2014.
Arnell, N. W., Lowe, J. A., Brown, S., Gosling, S. N., Gottschalk, P., Hinkel, J., Lloyd-Hughes, B., Nicholls, R. J., Osborn, T. J., Osborne, T. M., Rose, G. A., Smith, P., and Warren, R. F.: A global assessment of the effects of climate policy on the impacts of climate change, Nat. Clim. Change, 3,
512–519, 2013.
Arnell, N. W., Lowe, J. A., Lloyd-Hughes, B., and Osborn, T. J.: The impacts avoided with a 1.5 ∘C climate target: a global and regional assessment, Climatic Change, 147, 61–76, https://doi.org/10.1007/s10584-017-2115-9, 2018.
Auker, M. R., Sparks, R. S. J., Siebert, L., Crosweller, H. S., and Ewert, J.: A statistical analysis of the global historical volcanic fatalities record, J. Appl. Volcanol., 2, 1–24, 2013.
Auker, M. R., Sparks, R. S. J., Jenkins, S. F., Aspinall, W. P., Brown, S. K., Deligne, N. I., Jolly, G., Loughlin, S. C., Marzocchi, W., Newhall, C. G., and Palma, J. L.: Development of a new global Volcanic Hazard Index (VHI), in: Global Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press, Cambridge, 2015.
Badoux, A., Andres, N., and Turowski, J. M.: Damage costs due to bedload
transport processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279–294, https://doi.org/10.5194/nhess-14-279-2014, 2014.
Barclay, J., Few, R., Armijos, M. T., Phillips, J. C., Pyle, D. M., Hicks, A., Brown, S. K., and Robertson, R. E. A.: Livelihoods, wellbeing and the risk to life during volcanic eruptions, Front. Earth Sci., 7, 205, https://doi.org/10.3389/feart.2019.00205, 2019.
Beck, M. W., Losada, I. J., Menéndez, P., Reguero, B. G., Díaz-Simal,
P., and Fernández, F: The global flood protection savings provided by
coral reefs, Na. Commun., 9, 2186, https://doi.org/10.1038/s41467-018-04568-z, 2018.
Berryman, K.: Review of tsunami hazard and risk in New Zealand, Report no. CR2005-104, Institute of Geological & Nuclear Sciences, Lower Hutt, 2005.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bloemendaal, N., Haigh, I. D., De Moel, H., Muis, S., Haarsma, R. J., and Aerts, J. C. J. H.: Generation of a global synthetic tropical cyclone hazard
dataset using STORM, Sci. Data, 7, 40, https://doi.org/10.1038/s41597-020-0381-2, 2020.
Blong, R.: A new damage index, Nat. Hazards, 30, 1–23, https://doi.org/10.1023/A:1025018822429, 2003.
Bonadonna, C., Biass, S., Calder, E. S., Frischknecht C., Gregg, C. E., Jenkins, S. F., Loughlin, S. C., Menoni, S., Takarada, S., and Wilson, T., 2018, in: 1st IAVCEI/GVM Workshop: From Volcanic Hazard to Risk Assessment, 27–29 June 2018, Geneva, available at: https://vhub.org/resources/4498 (last access: 30 November 2019), 2018.
Bradley, K, Mallick, R., Andikagumi, H., Hubbard, J., Meilianda, E., Switzer, A., Du, N., Brocard, G., Alfian, D., Benazir, B., Feng, G., Yun, S.-H., Majewski, J., Wei, S., and Hill, E. M.: Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation, Nat. Geosci., 12, 935–939, https://doi.org/10.1038/s41561-019-0444-1, 2019.
Bright, E. A., Coleman, P. R., Rose, A. N., and Urban, M. L.: LandScan 2010,
Oak Ridge National Laboratory, Oak Ridge, TN, 2011.
Bright, E. A., Rose, A. N., Urban, M. L., and McKee, J. J.: LandScan 2016
High-Resolution Global Population Data Set, Oak Ridge National Laboratory, Oak Ridge, TN, 2017.
Brown, S. K., Auker, M. R., and Sparks, R. S. J.: Populations around Holocene volcanoes and development of a Population Exposure Index, in: Global Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press, Cambridge, 2015a.
Brown, S. K., Sparks, R., and Jenkins, S.: Global distribution of volcanic
threat, in: Global Volcanic Hazards and Risk, Cambridge University Press,
Cambridge, 2015b.
Brown, S. K., Jenkins, S. F., Sparks, R. S. J., Odbert, H., and Auker, M. R.: Volcanic fatalities database: analysis of volcanic threat with distance and
victim classification, J. Appl. Volcanol., 6, 15, https://doi.org/10.1186/s13617-017-0067-4, 2017.
Brunette, W., Sundt, M., Dell, N., Chaudhri, R., Breit, N., and Borriello, G.: Open Data Kit 2.0: Expanding and refining information services for
developing regions, in: Proceedings of the 14th Workshop on Mobile Computing
Systems and Applications, New York, https://doi.org/10.1145/2444776.2444790, 2013.
Cammerer, H., Thieken, A. H., and Verburg, P. H.: Spatio-temporal dynamics
in the flood exposure due to land use changes in the Alpine Lech Valley in
Tyrol (Austria), Nat. Hazards, 68, 1243–1270, https://doi.org/10.1007/s11069-012-0280-8, 2013.
Cao, X., Meng, Y., and Chen, J.: Mapping Grassland Wildfire Risk of the World, in: World Atlas of Natural Disaster Risk, IHDP/Future Earth-Integrated Risk Governance Project Series, edited by: Shi, P. and Kasperson, R., Springer, Berlin, Heidelberg, 2015.
Cardona, O. D., Ordaz, M. G., Mora, M. G., Salgado-Gálvez, M. A., Bernal,
G. A., and Zuloaga-Romero, D.: Global risk assessment: A fully probabilistic seismic and tropical cyclone wind risk assessment, Int. J. Disast. Risk Reduct., 10, 461–476, https://doi.org/10.1016/j.ijdrr.2014.05.006, 2014.
Carrão, H., Naumann, G., and Barbosa, P.: Mapping global patterns of
drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability, Global Environ. Change, 39, 108–124,
https://doi.org/10.1016/j.gloenvcha.2016.04.012, 2016.
Cecil, D. J., Buechler, D. E., and Blakeslee, R. J.: Gridded lightning
climatology from TRMM-LIS and OTD: Dataset description, Atmos. Res., 135,
404–414, https://doi.org/10.1016/j.atmosres.2012.06.028, 2014.
Chan, L.S., Chen, Y., Chen, Q., Chen, L., Liu, J., Dong, W., and Shah, H.:
Assessment of global seismic loss based on macroeconomic indicators, Nat.
Hazards, 17, 269–283, https://doi.org/10.1023/A:1008060510137, 1998.
Christenson, E., Elliott, M., Banerjee, O., Hamrick, L., and Bartram, J.:
Climate-related hazards: a method for global assessment of urban and rural
population exposure to cyclones, droughts, and floods, Int. J. Environ. Res.
Publ. Health, 11, 2169–2192, https://doi.org/10.3390/ijerph110202169, 2014.
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler,
D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., and Stewart, M. F.: Global frequency and distribution of lightning as
observed from space by the Optical Transient Detector, J. Geophys. Res., 108,
4005, https://doi.org/10.1029/2002JD002347, 2003.
Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M., Pereira, J. M., Oom, D., and Tansey, K.: A new global burned area product for climate assessment of fire impacts, Global Ecol. Biogeogr., 25, 619–629, https://doi.org/10.1111/geb.12440, 2016.
CIESIN: Columbia University Center for International Earth Science Information Network Gridded Population of the World, Version 4 (GPWv4):
Population Count, CIESIN, Columbia University, Palisades, New York,
https://doi.org/10.7927/H4X63JVC, 2016.
Ciscar, J.-C., Rising, J., Kopp, R. E., and Feyen, L.: Assessing future climate change impacts in the EU and the USA: insights and lessons from two
continental-scale projects, Environ. Res. Lett., 14, 084010,
https://doi.org/10.1088/1748-9326/ab281e, 2019.
Corlett, R. T.: Impacts of warming on tropical lowland rainforests, Trends Ecol. Evol., 26, 606–613, https://doi.org/10.1016/j.tree.2011.06.015, 2011.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl,
T., Winsemius, H. C., Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale and its implications for flood hazard, Nat. Hazards Earth Syst. Sci., 20, 489–504,
https://doi.org/10.5194/nhess-20-489-2020, 2020.
CRED: EM-DAT. The Emergency Events Database, Université catholique
de Louvain (UCL) – CRED, Brussels, available at: https://www.emdat.be/ (last access: 30 November 2019), 2020.
CRED and UNISDR: Economic losses, poverty and disasters 1998–2017, CRED, Brussels and UNISDR, Geneva, available at:
https://www.unisdr.org/2016/iddr/IDDR2018_Economic Losses.pdf (last access: 30 November 2019), 2018.
Cutter, S. L. and Finch, C.: Temporal and spatial changes in social vulnerability to natural hazards, P. Natl. Acad. Sci. USA, 105, 2301–2306, https://doi.org/10.1073/pnas.0710375105, 2008.
Cutter, S. L., Ismail-Zadeh, A., Alcántara-Ayala, I., Altan, O., Baker, D. N., Briceño, S., Gupta, H., Holloway, A., Johnston, D., McBean, G. A., Ogawa, Y., Paton, D., Porio, E., Silbereisen, R. K., Takeuchi, K., Valsecchi, G. B., Vogel, V., and Wu, G.: Global risks: Pool knowledge to stem losses from disasters, Nature, 522, 277–279, https://doi.org/10.1038/522277a, 2015.
Daniell, J. E.: The development of socio-economic fragility functions for use in worldwide rapid earthquake loss estimation procedures, Doctoral Thesis, Karlsruhe Institute of Technology, Karlsruhe, 2014.
Daniell, J. E.: The CATDAT Integrated Natural Catastrophes Database, Karlsruhe, available at: http://www.risklayer.com/en/service/catdat/ (last access: 30 November 2019), 2020.
Daniell, J. E. and Wenzel, F.: The production and implementation of socioeconomic fragility functions for use in rapid worldwide earthquake loss
estimation, Paper No. 490, in: 15th ECEE, Istanbul, 2014.
De Bono, A. and Chatenoux, B.: A Global Exposure Model for GAR 2015 Background Paper prepared for the 2015 Global Assessment Report on Disaster
Risk Reduction, UNDRR, Geneva, 2015.
De Bruijn, J. A., de Moel, H., Jongman, B., Wagemaker, J., and Aerts, J. C. J. H.: TAGGS: Grouping Tweets to Improve Global Geoparsing for Disaster Response, J. Geovisual. Spat. Anal., 2, 1–14, https://doi.org/10.1007/s41651-017-0010-6, 2018.
De Risi, R. and Goda, K.: Simulation-based probabilistic tsunami hazard analysis: empirical and robust hazard predictions, Pure Appl. Geophys., 174, 3083–3106, 2017.
De Ruiter, M. C., Couasnon, A., Van den Homberg, M. J. C., Daniell, J. E., Gill, J. C., and Ward, P. J.: Why we can no longer ignore consecutive disasters, Earths Future, 8, e2019EF001425, https://doi.org/10.1029/2019EF001425, 2020a.
De Ruiter, M. C., De Bruijn, J. A., Englhardt, J., Daniell, J. W., Ward, P. J., and De Moel, H.: The asynergies of disaster risk reduction measures:
comparing floods and earthquakes, in review, 2020b.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte,
L., and Blöschl, G.: Debates-Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes, Water Resour. Res., 51, 4770–4781, https://doi.org/10.1002/2014WR016416, 2015.
Di Baldassarre, G., Kreibich, H., Vorogushyn, S., Aerts, J., Arnbjerg-Nielsen, K., Barendrecht, M., Bates, P., Borga, M., Botzen, W., Bubeck, P., De Marchi, B., Carmen Llasat, M., Mazzoleni, M., Molinari, D., Mondino, E., Mård, J., Petrucci, O., Scolobig, A., Viglione, A., and Ward, P. J.: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection, Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, 2018.
Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A., Arnold, M., Agwe, J.,
Buys, P., Kjekstad, O., Lyon, B., and Yetman, G.: Natural Disaster Hotspots. A Global Risk Analysis, The World Bank, Washington, D.C., 2005.
Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L., Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R. A., and Feyen, L.: Increased human and economic losses from river flooding with anthropogenic warming, Nat. Clim. Change, 8, 781–786, https://doi.org/10.1038/s41558-018-0257-z, 2018.
Emanuel, K. and Nolan, D. S.: Tropical cyclone activity and the global climate system, in: 26th Conference on Hurricanes and Tropical Meteorology,
2–7 May 2004, Miami, USA, 240–241, 2004.
Emanuel, K., Sundararajan, R., and William, J.: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations, B. Am. Meterol. Soc., 89, 347–367, https://doi.org/10.1175/BAMS-89-3-347, 2008.
Englhardt, J., De Moel, H., Huyck, C. K., De Ruiter, M. C., and Aerts, J. C. J. H.: Enhancement of large-scale flood risk assessments using building-material-based vulnerability curves for an object-based approach in
urban and rural areas, Nat. Hazards Earth Syst. Sci., 19, 1703–1722,
https://doi.org/10.5194/nhess-19-1703-2019, 2019.
Fang, J., Sun, S., and Shi, P.: Assessment and mapping of potential storm
surge impacts on global population and economy, Int. J. Disast. Risk Sci.,
5, 323–331, https://doi.org/10.1007/s13753-014-0035-0, 2014.
Fang W., Tan, C., Lin, W., Wu, X., Ye, Y., Cao, S., Mo, W., Li, Y., Li, Y.,
Wu, Y., Lin, G., and Yang, Y.: Mapping Tropical Cyclone Wind Risk of the
World, in: World Atlas of Natural Disaster Risk, IHDP/Future Earth-Integrated Risk Governance Project Series, edited by: Shi, P. and Kasperson, R., Springer, Berlin, Heidelberg, 2015.
Flannigan, M. D., Krawchuk, M. A., De Groot, W. J., Wotton, B. M., and Gowman, L. M.: Implications of changing climate for global wildland fire, Int. J. Wildland Fire, 18, 483–507, https://doi.org/10.1071/WF08187, 2009.
Freire, S., Kemper, T., Pesaresi, M., Florczyk, A., and Syrris, V.: Combining GHSL and GPW to improve global population mapping, in: 2015 IEEE International Geoscience & Remote Sensing Symposium Proceedings, 26–31 July 2015, Milan, Italy, 2541–2543, 2015.
Freire, S., Florczyk, A. J., Pesaresi, M., and Sliuzas, R.: An Improved Global Analysis of Population Distribution in Proximity to Active Volcanoes,
1975–2015, ISPRS Int. J. Geo.-Inf., 8, 341, https://doi.org/10.3390/ijgi8080341, 2019.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181,
https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., and Marcomini, A.: A review of multi-risk methodologies for natural hazards:
Consequences and challenges for a climate change impact assessment, J. Environ. Manage., 168, 123–132, https://doi.org/10.1016/j.jenvman.2015.11.011, 2016.
GCOS: Systematic observation requirements for satellite-based products for climate, 2011 update, edn. WMO GCOS Rep. 154, WMO, Geneva, 2011.
Giglio, L., Loboda, T., Roy, D. P., Quayle, B., and Justice, C. O.: An active-fire based burned area mapping algorithm for the MODIS sensor, Remote
Sens. Environ., 113, 408–420, https://doi.org/10.1016/j.rse.2008.10.006, 2009.
Gill, J. C. and Malamud, B. D.: Reviewing and visualizing the interactions
of natural hazards, Rev. Geophys., 52, 680–722, https://doi.org/10.1002/2013RG000445, 2014.
Grezio, A., Gasparini, P., Marzocchi, W., Patera, A., and Tinti, S.: Tsunami risk assessments in messina, Sicily – Italy, Nat. Hazards Earth Syst. Sci., 12, 151–163, https://doi.org/10.5194/nhess-12-151-2012, 2012.
Guerreiro, S. B., Glenis, V., Dawson, R. J., and Kilsby, C.: Pluvial flooding in European cities – A continental approach to urban flood modelling, Water, 9, 296, https://doi.org/10.3390/w9040296, 2017.
Gunasekera, R., Ishizawa, O., Aubrecht, C., Blankespoor, B., Murray, S.,
Pomonis, A., and Daniell, J.: Developing an adaptive global exposure model to support the generation of country disaster risk profiles, Earth-Sci. Rev., 150, 594–608, https://doi.org/10.1016/j.earscirev.2015.08.012, 2015.
Gunasekera, R., Daniell, J. E., Pomonis, A., Arias, R. A. D., Ishizawa, O.,
and Stone, H.: Methodology Note: The Global RApid post-disaster Damage
Estimation (GRADE) approach, World Bank and GFDRR Technical Report, World Bank and GFDRR, Washington, D.C., 2018.
Güneralp, B., Güneralp, I., and Liu, Y.: Changing global patterns
of urban exposure to flood and drought hazards, Global Environ. Change, 31,
217–225, https://doi.org/10.1016/j.gloenvcha.2015.01.002, 2015.
Guo, H., Zhang, X., Lian, F., Gao, Y., Lin, D., and Wang, J.: Drought risk
assessment based on vulnerability surfaces: a case study of maize,
Sustainability, 8, 813, https://doi.org/10.3390/su8080813, 2016.
Guzzetti, F., Cardinali, M., and Reichenbach, P.: The AVI project: a
bibliographical and archive inventory of landslides and floods, Environ. Manage., 18, 623–633, 1994.
Haer, T., Botzen, W. J. W., and Aerts, J. C. J. H.: Advancing disaster policies by integrating dynamic adaptive behaviour in risk assessments using an agent-based modelling approach, Environ. Res. Lett., 14, 044022,
https://doi.org/10.1088/1748-9326/ab0770, 2019.
Haklay, M. and Weber, P.: OpenStreetMap: user-generated street maps,
IEEE Pervasive Comput., 7, 12–18, https://doi.org/10.1109/MPRV.2008.80, 2008.
Hall, T. M. and Kossin, J. P.:. Hurricane stalling along the North American
coast and implications for rainfall, Clim. Atmos. Sci., 2, 17, https://doi.org/10.1038/s41612-019-0074-8, 2019.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806,
https://doi.org/10.1038/nclimate1979, 2013.
Hallegatte, S., Bangalore, M., Bonzanigo, L., Fay, M., Kane, T., Narloch, U., Rozenberg, J., Treguer, D., and Vogt-Schilb, A.: Shock Waves: Managing the Impacts of Climate Change on Poverty, World Bank, Washington, D.C., 2016.
Hallegatte, S., Vogt-Schilb, A., Bangalore, M., and Rozenberg, J.: Unbreakable: Building the Resilience of the Poor in the Face of Natural
Disasters, World Bank, Washington, D.C., 2017.
Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K., and Masui, T.: Global
land-use allocation model linked to an integrated assessment model, Sci.
Total Environ., 580, 787–796, https://doi.org/10.1016/j.scitotenv.2016.12.025, 2017.
Hicks, A., Barclay, J., Chilvers, J., Armijos, M. T., Oven, K., Simmons, P.,
and Haklay, M.: Global mapping of citizen science projects for Disaster Risk Reduction, Front. Earth Sci., 7, 1–18, https://doi.org/10.3389/feart.2019.00226, 2019.
Hinkel, J. and Klein, R. J. T.: Integrating knowledge to assess coastal
vulnerability to sea-level rise: The development of the DIVA tool, Global
Environ. Change, 19, 384–395, https://doi.org/10.1016/j.gloenvcha.2009.03.002, 2009.
Hinkel, J., Nicholls, R. J., Vafeidis, A. T., Tol, R. S. J., and Avagianou, T.: Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA, Mitig. Adapt. Strateg. Glob. Change, 15, 703–719, https://doi.org/10.1007/s11027-010-9237-y, 2010.
Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol,
R. S. J., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann, A.: Coastal flood damage and adaptation costs under 21st century sea-level rise, P. Natl. Acad. Sci. USA, 111, 3292–3297, https://doi.org/10.1073/pnas.1222469111, 2014.
Hirabayashi, Y. and Kanae, S.: First estimate of the future global population at risk of flooding, Hydrolog. Res. Lett., 3, 6–9, https://doi.org/10.3178/HRL.3.6, 2009.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Holland, G. J.: An analytic model of the wind and pressure profiles in
hurricanes, Mon. Weather Rev., 108, 1212–1218,
https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2, 1980.
Holmes, J. D.: Wind loading of structures, CRC Press, Boca Raton, 2015.
Hoozemans, F. M. J., Marchand, M., and Pennekamp, H. A.: Sea Level Rise: A
Global Vulnerability Assessment (GVA) – vulnerability assessment for
population, coastal wetlands and rice production on a global scale, Delft
Hydraulics and Rijkswaterstaat, Delft and The Hague, 1993.
Huang, C.: Principle of information diffusion, Fuzzy Set. Syst., 91, 69–90, https://doi.org/10.1016/S0165-0114(96)00257-6, 1997.
Huang, C. F.: Risk analysis and management of natural disasters, Science Press, Beijing, 2012.
Hunter, J. R., Woodworth, P. L., Wahl, T., and Nicholls, R. J.: Using global
tide gauge data to validate and improve the representation of extreme sea
levels in flood impact studies, Global Planet. Change, 156, 34–45,
https://doi.org/10.1016/j.gloplacha.2017.06.007, 2017.
Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Muis, S., Ward, P. J., Winsemius,
H. C., Verlaan, M., and Kanae, S.: Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh, J. Adv. Model. Earth Syst., 9, 1847–1862, https://doi.org/10.1002/2017MS000943, 2017.
Iliffe, M., Goulding, J., and Winsemius, H. C.: Towards a conceptual framework for participatory mapping in developing countries, GISRUK 2017,
Manchester, 2017.
Jaiswal, K. and Wald, D.: An empirical model for global earthquake fatality estimation, Earthq. Spectra, 26, 1017–1037, https://doi.org/10.1193/1.3480331, 2010.
Jaiswal, K. S. and Wald, D. J.: Rapid estimation of the economic consequences of global earthquakes, US Geological Survey Open-File Report 2011-1116, USGS, Denver, 2011.
Jelínek, R., Krausmann, E., Gonzalez, M., Álvarez-Gómez, J.,
Birkmann, J., and Welle, T.: Approaches for tsunami risk assessment and
application to the city of Cádiz, Spain, Nat. Hazards, 60, 273–293,
https://doi.org/10.1007/s11069-011-0009-0, 2012.
Jenkins, S., Magill, C., McAneney, J., and Blong, R.: Regional ash fall hazard I: A probabilistic assessment methodology, Bull. Volcanol., 74, 1699–1712, https://doi.org/10.1007/s00445-012-0627-8, 2012.
Jenkins, S. F., Spence, R. J. S., Fonseca, J. F. B. D., Solidum, R. U., and Wilson, T. M.: Volcanic risk assessment: Quantifying physical vulnerability in the built environment, J. Volcanol. Geoth. Res., 276, 105–120,
https://doi.org/10.1016/j.jvolgeores.2014.03.002, 2014.
Jenkins, S. F., Wilson, T. M., Magill, C. R., Miller, V., Stewart, C., Blong,
R., Marzocchi, W., Boulton, M., Bonadonna, C. and Costa, A.: Volcanic
ash fall hazard and risk, n: Global Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press, Cambridge, 2015.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J.,
Williamson, G. J., and Bowman, D. M. J. S.: Climate-induced variations in
global wildfire danger from 1979 to 2013, Nat. Commun., 6, 7537,
https://doi.org/10.1038/ncomms8537, 2015.
Jongman, B., Ward, P. J., and Aerts, J. C. J. H.: Global exposure to river and coastal flooding: long term trends and changes, Global Environ. Change, 22, 823–835, https://doi.org/10.1016/j.gloenvcha.2012.07.004, 2012.
Jongman, B., Winsemius, H. C., Aerts, J. C. J. H., Coughlan de Perez, E., Van Aalst, M. K., Kron, W., and Ward, P. J.: Declining vulnerability to river
floods and the global benefits of adaptation, P. Natl. Acad. Sci. USA, 112, E227—E2280, https://doi.org/10.1073/pnas.1414439112, 2015.
Juang, C. S., Kirschbaum, D. B., and Stanley, T.: Using citizen science to
expand the global map of landslides: Introducing the Cooperative Open Online
Landslide Repository (COOLR), PLOS One, 14, e0218657, https://doi.org/10.1371/journal.pone.0218657, 2019.
Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness, Earth's Future, 6, 505–523, https://doi.org/10.1002/2017EF000715, 2018.
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A.: A global landslide catalog for hazard applications: method, results, and
limitations, Nat. Hazards, 52, 561–575, https://doi.org/10.1007/s11069-009-9401-4, 2010.
Kleinen, T. and Petschel-Held, G.: Integrated assessment of changes in flooding probabilities due to climate change, Climatic Change, 81, 283–312,
https://doi.org/10.1007/s10584-006-9159-6, 2007.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: The International Best Track Archive for Climate Stewardship (IBTrACS):
Unifying tropical cyclone data, B. Am. Meteorol. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010.
Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human population density on fire frequency at the global scale, Biogeosciences,
11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, 2014.
Knorr, W., Arneth, A., and Jiang, L.: Demographic controls of future global fire risk, Nat. Clim. Change, 6, 781–785, 2016.
Kocaman, S. and Gokceoglu, C.: Possible contributions of citizen science for landslide hazard assessment, Int. Arch. Photogramm., 42, 295–300,
https://doi.org/10.5194/isprs-archives-XLII-3-W4-295-2018, 2018.
Koks, E. E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser,
S. A., Hall, J. W., and Hallegatte, S.: A global multi-hazard risk analysis of road and railway infrastructure assets, Nat. Commun., 10, 2677,
https://doi.org/10.1038/s41467-019-10442-3, 2019.
Korswagen, P. A., Jonkman, S. N., and Terwel, K. C.: Probabilistic assessment
of structural damage from coupled multi-hazards, Struct. Saf., 76, 135–148,
https://doi.org/10.1016/j.strusafe.2018.08.001, 2019.
Kossin, J. P.: A global slowdown of tropical-cyclone translation speed, Nature, 558, 104–107, https://doi.org/10.1038/s41586-018-0158-3, 2018.
Kreibich, H., Blauhut, V., Aerts, J. C. J. H., Bouwer, L. M., Van Lanen, H. A., Mejia, A., Mens, M., and Van Loon, A. F.: How to improve attribution of
changes in drought and flood impacts, Hydrolog. Sci. J., 64, 1–18, 2019.
Kron, W., Steuer, M., Löw, P., and Wirtz, A.: How to deal properly with a natural catastrophe database – analysis of flood losses, Nat. Hazards Earth Syst. Sci., 12, 535–550, https://doi.org/10.5194/nhess-12-535-2012, 2012.
Kunz, M. and Geissbuehler, P.: Severe convective storm, in: Natural Catastrophe Risk Management and Modelling: A Practitioner's Guide, edited by:
Mitchell-Wallace, K., Jones, M., Hillier, J., and Foote, M., John Wiley & Sons Ltd., Chicherster, 2017.
Lallemant, D.: Modeling the future disaster risk of cities to envision paths towards their future resilience, Stanford University, Stanford, 2015.
LandScan: LandScan™ Global, Oak Ridge National Laboratory, Oak Ridge, available at: http://www.ornl.gov/sci/landscan/ (last access: 30 November 2019), 2008.
Landsea, C. W. and Franklin, J. L.: Atlantic hurricane database uncertainty
and presentation of a new database format, Mon. Weather Rev., 141,
3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1, 2013.
Laurance, W. F. and Williamson, G. B.: Positive feedbacks among forest
fragmentation, drought, and climate change in the Amazon, Conserv. Biol., 15, 1529–1535, https://doi.org/10.1046/j.1523-1739.2001.01093.x, 2001.
Lee, C.-Y., Tippett, M. K., Sobel, A. H., and Camargo, S. J.: An Environmentally Forced Tropical Cyclone Hazard Model, J. Adv. Model. Earth Syst., 10, 223–241, https://doi.org/10.1002/2017MS001186, 2018.
Li, M., Zou, Z., Xu, G., and Shi, P.: Mapping earthquake risk of the world, in: World Atlas of Natural Disaster Risk, IHDP/Future Earth-Integrated Risk Governance Project Series, edited by: Shi, P. and Kasperson, R., Springer,
Berlin, Heidelberg, 2015.
Li, Y., Ye, W., Wang, M., and Yan, X.: Climate change and drought: a risk
assessment of crop-yield impacts, Clim. Res., 39, 31–46, https://doi.org/10.3354/cr00797, 2009.
Lindsay, J. M. and Robertson, R. E. A.: Integrating Volcanic Hazard Data in a Systematic Approach to Develop Volcanic Hazard Maps in the Lesser Antilles, Front. Earth Sci., 6, 42, https://doi.org/10.3389/feart.2018.00042, 2018.
Liu, W., Sun F., Ho Lim, W., Zhang, J., Wang, H., Shiogama, H., and Zhang, Y.: Global drought and severe drought-affected populations in 1.5 and
2.0 ∘C warmer worlds, Earth Syst. Dynam., 9, 267–283,
https://doi.org/10.5194/esd-9-267-2018, 2018.
Lloyd-Hughes, B.: The impracticality of a universal drought definition, Theor. Appl. Climatol., 117, 607–611, https://doi.org/10.1007/s00704-013-1025-7, 2014.
Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C.: Global Volcanic Hazards and Risk, Cambridge University Press,
Cambridge, 2015.
Løvholt, F., Griffin, J., and Salgado-Gálvez, M.: Tsunami Hazard and
Risk Assessment on the Global Scale, in: Encyclopedia of Complexity and Systems Science, edited by: Meyers, R., Springer, Berlin, Heidelberg, 2015.
Maqsood, T., Wehner, M., Ryu, H., Edwards, M., Dale, K., and Miller, V.: GAR15 Vulnerability Functions. Reporting on the UNISDR/GA SE Asian Regional
Workshop on Structural Vulnerability Models for the GAR Global Risk
Assessment, Record 2014/38, 11–14 November 2013, Geoscience Australia, Canberra, Australia, https://doi.org/10.11636/Record.2014.038, 2014.
Marc, O., Hovius, N., Meunier, P., Uchida, T., and Hayashi, S.: Transient
Changes of Landslide Rates after Earthquakes, Geology, 43, 883–886,
https://doi.org/10.1130/G36961.1, 2015.
Martius, O., Hering, A., Kunz, M., Manzato, A., Mohr, S., Nisi, L., and Trefald, S.: Challenges and recent advances in hail research, B. Am. Meteorol. Soc., 99, ES51–ES54, https://doi.org/10.1175/BAMS-D-17-0207.1, 2018.
Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact of climate change on global tropical cyclone damage, Nat. Clim. Change, 2, 205–209, https://doi.org/10.1038/NCLIMATE1357, 2012.
Meng, Y., Deng, Y., and Shi, P.: Mapping forest wildfire risk of the world, in: World Atlas of Natural Disaster Risk. IHDP/Future Earth-Integrated Risk Governance Project Series, edited by: Shi, P. and Kasperson, R., Springer,
Berlin, Heidelberg, 2015.
Mirza, M. M. Q.: Climate change and extreme weather events: can developing countries adapt?, Clim. Policy, 3, 233–248, 2003.
Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B., Miles,
W., Smith, C. Z., Freel, K., Moy, J., Louis, L. V., Barba, E. W., Bettinger,
K., Frazier, A. G., Colburn IX, J. F., Hanasaki, N., Hawkins, E., Hirabayashi, Y., Knorr, W., Little, C. M., Emanuel, K., Sheffield, J., Patz, J. A., and Hunter, C. L.: Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions, Nat. Clim. Change, 8, 1062–1071, 2018.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.: A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7,
11969, https://doi.org/10.1038/ncomms11969, 2016.
Muis, S., Verlaan, M., Nicholls, R. J., Brown, S., Hinkel, J., Lincke, D.,
Vafeidis, T., Scussolini, P., Winsemius, H. C., and Ward, P. J.: A comparison of two global datasets of extreme sea levels and resulting flood exposure, Earth's Future, 5, 379–392, https://doi.org/10.1002/2016EF000430, 2017.
Munich Re: NatCatSERVICE, Munich Re, Munich, available at:
https://natcatservice.munichre.com/ (last access: 30 November 2019), 2020.
Murnane, R., Allegri, G., Bushi, A., Dabbeek, J., de Moel, H., Duncan, M.,
Fraser, S., Galasso, C., Giovando, C., Henshaw, P., Horsburgh, K., Huyck, C., Jenkins, S., Johnson, C., Kamihanda, G., Kijazi, J., Kikwasi, W., Kombe, W., Loughlin, S., Løvholt, F., Masanja, A., Mbongoni, G., Minas, S., Msabi, M., Msechu, M., Mtongori, H., Nadim, F., O'Hara, M., Pagani, M., Phillips, E., Rossetto, T., Rudari, R., Sangana, P., Silva, V., Twigg, J., Uhinga, G. Verrucci, E.: Data schemas for multiple hazards, exposure and vulnerability, Disast. Prevent. Manage., 28, 752–763, https://doi.org/10.1108/DPM-09-2019-0293, 2019.
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C.: Global
landslide and avalanche risk hotspots, The World Bank, Washington, D.C., 2004.
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C.: Global
landslide and avalanche hotspots, Landslides, 3, 159–173, https://doi.org/10.1007/s10346-006-0036-1, 2006.
Neri, M., Le Cozannet, G., Thierry, P., Bignami, C., and Ruch, J.: A method for multi-hazard mapping in poorly known volcanic areas: an example from Kanlaon (Philippines), Nat. Hazard. Earth Syst. Sci., 13, 1929–1943,
https://doi.org/10.5194/nhess-13-1929-2013, 2013.
Newhall, C., Costa, F., Ratdomopurbo, A., Venezky, D., Widiwijayanti, C.,
Win, N. T. Z., Tan, K., and Fajiculay, E.: WOVOdat – an online, growing
library of worldwide volcanic unrest, J. Volcanol. Geoth. Res., 345, 184–199, https://doi.org/10.1016/j.jvolgeores.2017.08.003, 2017.
Nowicki Jessee, M. A. N., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson, S. M., Tanyas, H., Hearne, M., and Thompson, E. M.: A Global Empirical Model for Near-Real-Time Assessment of Seismically Induced Landslides, J. Geophys. Res.-Earth, 123, 1835–1859, https://doi.org/10.1029/2017JF004494, 2018.
Okumura, N., Jonkman, S. N., Esteban, M., Hoand, B., and Shibayama, T.: A
method for tsunami risk assessment: a case study for Kamakura, Japan, Nat.
Hazards, 88, 1451, https://doi.org/10.1007/s11069-017-2928-x, 2017.
Pan, H., Shi, P., Ye, T., Xu, W., and Wang, J.: Mapping the expected annual fatality risk of volcano on a global scale, Int. J. Disast. Risk Reduct., 13, 52–60, https://doi.org/10.1016/j.ijdrr.2015.03.004, 2015.
Peduzzi, P., Dao, H., Herold, C., and Mouton, F.: Assessing global exposure and vulnerability towards natural hazards: the Disaster Risk Index, Nat. Hazards Earth Syst. Sci., 9, 1149–1159, https://doi.org/10.5194/nhess-9-1149-2009, 2009.
Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J.,
Mouton, F., and Nordbeck, O.: Global trends in tropical cyclone risk, Nat.
Clim. Change, 2, 289–294, https://doi.org/10.1038/NCLIMATE1410, 2012.
Pesaresi, M., Ehrlich, D., Ferri, S., Florczyk, A. J., Freire, S., Halkia, M., Julea, A., Kemper, T., Soille, P., and Syrris, V.: Operating procedure for the production of the Global Human Settlement Layer from Landsat data of
the epochs 1975, 1990, 2000, and 2014, JRC Technical Report EUR 27741 EN,
European Commission Joint Research Centre, Ispra, Italy, https://doi.org/10.2788/253582, 2016.
Petley, D.: Global patterns of loss of life from landslides, Geology, 40, 927–930, https://doi.org/10.1130/G33217.1, 2012.
Pittore, M., Wieland, M., and Fleming, K.: Perspectives on global dynamic
exposure modelling for geo-risk assessment, Nat. Hazards, 86, 7–30, https://doi.org/10.1007/s11069-016-2437-3, 2017.
Punge, H., Werner, A., Bedka, K., and Kunz, M.: A new physically based stochastic event catalogue for hail in Europe, Nat. Hazards, 73, 1625–1645,
https://doi.org/10.1007/s11069-014-1161-0, 2014.
Riddell, G. A., Van Delden, H., Maier, H. R., and Zecchin, A. C.: Exploratory
scenario analysis for disaster risk reduction: Considering alternative pathways in disaster risk assessment, Int. J. Disast. Risk Reduct., 39, 101230, https://doi.org/10.1016/j.ijdrr.2019.101230, 2019.
Riley, K. L., Williams, A. P., Urbanski, S. P., Calkin, D. E., Short, K. C.,
and O'Connor, C. D.: Will Landscape Fire Increase in the Future? A Systems
Approach to Climate, Fire, Fuel, and Human Drivers, Curr. Pollut. Rep., 5, 9–24, https://doi.org/10.1007/s40726-019-0103-6, 2019.
Ritz, S.: Incorporating distributions of insurance loss data into a stochastic hail loss model, in: 2nd European Hail Workshop, 19–21 April 2017, Bern, 2017.
Sachs, J. D., Mellinger, A. D., and Gallup, J. L.: The Geography of Poverty
and Wealth, Scient. Am., 284, 70–75, https://doi.org/10.1038/scientificamerican0301-70, 2001.
Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, A., and Freer, J. E.: A high-resolution global flood hazard model, Water Resour. Res., 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015.
Sandri, L., Thouret, J.-C., Constantinescu, R., Biass, S., and Tonini, R.:
Long-term multi-hazard assessment for El Misti volcano (Peru), Bull. Volcanol., 76, 1–26, https://doi.org/10.1007/s00445-013-0771-9, 2014.
Schäfer, A. M.: Development of a Global Tsunami Risk Model, PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2018.
Schmidberger, M.: Hagelgefährdung und Hagelrisiko in Deutschland basierend auf einer Kombination von Radardaten und Versicherungsdaten, in: Vol. 78, Wiss. Berichte d. Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie, KIT Scientific Publishing, Karlsruhe, 2018.
Schmidberger, M., Daniell, J. E., and Kunz, M.: Hail hazard and hail risk
modeling for Germany based on a combination of radar and insurance data, in: 1st North American Workshop on Hail & Hailstorms, 14–16 August 2018, Boulder, Colorado, 2018.
Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke,
D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J.,
Nicholls, R. J., and Brown, S.: Future response of global coastal wetlands to sea-level rise, Nature, 561, 231–234, https://doi.org/10.1038/s41586-018-0476-5, 2018.
Schumann, G. J. P. and Bates, P. D.: The Need for a High-Accuracy, Open-Access Global DEM, Front. Earth Sci., 6, 225, https://doi.org/10.3389/feart.2018.00225, 2018.
Scolobig, A., Komendantova, N., and Mignan, A.: Mainstreaming multi-risk
approaches into policy, Geosciences, 7, 129, https://doi.org/10.3390/geosciences7040129, 2017.
Shi, P. and Kasperson, R.: World Atlas of Natural Disaster Risk, in: IHDP/Future Earth-Integrated Risk Governance Project Series, Springer, Berlin, Heidelberg, 2015.
Silva, V., Crowley, H., Jaiswal, K., Acevedo, A. B., Pittore, M., and Journey, M.: Developing a global earthquake risk model, in: 16th European
Conference on Earthquake Engineering, 18–21 June 2018, Thessaloniki, 2018.
Small, C. and Naumann, T.: The global distribution of human population and recent volcanism, Environ. Hazards, 3, 93–109, https://doi.org/10.1016/S1464-2867(02)00002-5, 2001.
Smirnov, O., Zhang, M., Xiao, T., Orbell, J., Lobben, A., and Gordon, J.: The relative importance of climate change and population growth for exposure
to future extreme droughts, Climatic Change, 138, 41–53,
https://doi.org/10.1007/s10584-016-1716-z, 2016.
Soden, R. and Palen, L.: From crowdsourced mapping to community mapping:
the post-earthquake work of OpenStreetMap Haiti, in: Proceedings of the 11th International Conference on the Design of Cooperative Systems, 27–30 May 2014, Nice, Springer International Publishing,
https://doi.org/10.1007/978-3-319-06498-7__19, 2014.
Stahl, K. and Hisdal, H.: Hydroclimatology, Dev. Water Sci., 48, 19–51, 2004.
Stanley, T. A. and Kirschbaum, D. B.: A heuristic approach to global landslide susceptibility mapping, Nat. Hazards, 87, 145–164,
https://doi.org/10.1007/s11069-017-2757-y, 2017.
Stone, J., Barclay, J., Simmons, P., Cole, P., Loughlin, S. C., Ramón, P., and Mothes, P.: Risk reduction through community-based monitoring: the
vigías of Tungurahua, Ecuador, J Appl. Volcanol. 3, 11, https://doi.org/10.1186/s13617-014-0011-9, 2014.
Suppasri, A., Mas, E., Charvet, I., Gunasekera, G., Imai, K., Fukutani, Y., Abe, Y., and Imamura, F.: Building damage characteristics based on surveyed data and fragility curves of the 2011 great east Japan tsunami, Nat. Hazards, 66, 319–341, https://doi.org/10.1007/s11069-012-0487-8, 2013.
Tanyas, H., Van Westen, C., Allstadt, K., Nowicki Jessee, A., Görüm,
T., Jibson, R. W., Godt, J. W., Sato, H. P., Schmitt, R. G., Marc, O., Hovius, N.: Presentation and Analysis of Earthquake-Induced Landslide Inventories, J. Geophys. Res.-Earth, 122, 1991–2015, https://doi.org/10.1002/2017JF004236, 2017.
Tiggeloven, T., De Moel, H., Winsemius, H. C., Eilander, D., Erkens, D., Erkens, G., Gebremedhin, E., Diaz Loaiza, A., Kuzma, S., Luo, T., Iceland, C., Bouwman, A., Van Huijstee, J., Ligtvoet, J., and Ward, P. J.: Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures, Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020, 2020.
Tinti, S., Tonini, R., Pontrelli, P., Pagnoni, G., and Santoro, L.: Tsunami risk assessment in the Messina Straits, Italy, with application to the urban area of Messina, Geophys. Res. Abstr., 10, EGU2008-a-08045, 2008.
UNGA: Report of the open ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction, United Nations General Assembly A/71/644, New York, 2016.
UNDRR: Global Assessment Report 2009, Risk and Poverty in a Changing Climate, Global Assessment Report on Disaster Risk Reduction, UN Office for Disaster Risk Reduction, Geneva, 2009.
UNDRR: GAR 2011, Global Assessment Report on Disaster Risk Reduction, Revealing Risk, Redefining Development, UN Office for Disaster Risk Reduction, Geneva, 2011.
UNDRR: GAR 2013. From Shared Risk to Shared Value: the Business Case for Disaster Risk Reduction, UN Office for Disaster Risk Reduction, Geneva, 2013.
UNDRR: Global Assessment Report 2015, Making Development Sustainable: The Future of Disaster Risk Management, UN Office for Disaster Risk Reduction, Geneva, 2015a.
UNDRR: Sendai Framework for Disaster Risk Reduction 2015–2030 United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, 2015b.
UNDRR: GAR 2019. Global Assessment Report on Disaster Risk Reduction, UN Office for Disaster Risk Reduction, Geneva, 2017.
UNDRR: DesInventar database, UNDRR, Geneva, available at:
https://www.desinventar.net/ (last access: 30 November 2019), 2020.
Vafeidis, A. T., Nicholls, R. J., McFadden, L., Tol, R. S. J., Hinkel, J.,
Spencer, T., Grashoff, P. S., Boot, G., and Klein, R. J. T.: A new global
coastal database for impact and vulnerability analysis to sea-level rise, J.
Coast. Res., 24, 917–924, https://doi.org/10.2112/06-0725.1, 2008.
Vafeidis, A. T., Schuerch, M., Wolff, C., Spencer, T., Merkens, J. L., Hinkel, J., Lincke, D., Brown, S., and Nicholls, R. J.: Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 973–984,
https://doi.org/10.5194/nhess-19-973-2019, 2019.
Van Asselen, S. and Verburg, P.: Land cover change or land-use intensification: simulating land system change with a global-scale land change model, Global Change Biol., 19, 3648–3667, https://doi.org/10.1111/gcb.12331, 2013.
Virts, K. S., Wallace, J. M., Hutchins, M. L., and Holzworth, R. H.: Highlights of a new ground-based, hourly global lightning climatology, B. Am. Meteorol. Soc., 94, 1381–1391, https://doi.org/10.1175/BAMS-D-12-00082.1, 2013.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen, L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47, 3171–3190, https://doi.org/10.1007/s00382-016-3019-5, 2016.
Wallace, K., Snedigar, S., and Cameron, C.: `Is Ash Falling?', an online
ashfall reporting tool in support of improved ashfall warnings and investigations of ashfall processes, J. Appl. Volcanol., 4, 1–10, 2015.
Wang, S. Y. S., Zhao, L., Yoon, J.-H., Klotzbach, P., and Gillies, R. R.:
Quantitative attribution of climate effects on Hurricane Harvey's extreme
rainfall in Texas, Environ. Res. Lett., 13, 054014, https://doi.org/10.1088/1748-9326/aabb85, 2018.
Ward, P. J., Jongman, B., Sperna Weiland, F., Bouwman, A., Van Beek, R.,
Bierkens, M. F. P., Ligtvoet, W., and Winsemius, H. C.: Assessing flood risk
at the global scale: model setup, results, and sensitivity, Environ. Res.
Lett., 8, 044019, https://doi.org/10.1088/1748-9326/8/4/044019, 2013.
Ward, P. J. Kummu, M., and Lall, U.: Flood frequencies and durations and
their response to El Niño Southern Oscillation: Global analysis, J.
Hydrol., 539, 358–378, https://doi.org/10.1016/j.jhydrol.2016.05.045, 2016.
Ward, P. J., Jongman, B., Aerts, J. C. J. H., Bates, P. D., Botzen, W. J. W., Diaz Loaiza, A., Hallegatte, S., Kind, J. M., Kwadijk, J., Scussolini, P., and Winsemius, H. C.: A global framework for future costs and benefits of
river-flood protection in urban areas, Nat. Clim. Change, 7, 642–646,
https://doi.org/10.1038/NCLIMATE3350, 2017.
Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S.,
Veldkamp, T. I. E., Winsemius, H. C., and Wahl, T.: Dependence between high
sea-level and high river discharge increases flood hazard in global deltas
and estuaries, Environ. Res. Lett., 13, 084012, https://doi.org/10.1088/1748-9326/aad400, 2018.
Watkinson, I. M. and Hall, R.: Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides, Nat. Geosci., 12, 940–945,
https://doi.org/10.1038/s41561-019-0448-x, 2019.
Wens, M., Johnson, J. M., Zagaria, C., and Veldkamp, T. I. E.: Integrating
human behavior dynamics into drought risk assessment – A sociohydrologic,
agent-based approach, WIREs Water, 6, e1345, https://doi.org/10.1002/wat2.1345, 2019.
White, G. F.: Human adjustment to floods, University of Chicago Press, Chicago, 1945.
Wiebe, D. M. and Cox, D. T.: Application of fragility curves to estimate
building damage and economic loss at a community scale: a case study of Seaside, Oregon, Nat. Hazards, 71, 2043–2061, https://doi.org/10.1007/s11069-013-0995-1, 2014.
Willner, S.N., Levermann, A., Zhao, F., and Frieler, K.: Adaptation required to preserve future high-end river flood risk at present levels, Sci. Adv., 4, eaao1914, https://doi.org/10.1126/sciadv.aao1914, 2018.
Wilson, G., Wilson, T. M., Deligne, N. I., and Cole, J. W.: Volcanic hazard
impacts to critical infrastructure: A review, J. Volcanol. Geoth. Res., 286,
148–182, https://doi.org/10.1016/j.jvolgeores.2014.08.030, 2014.
Wing, O. E. J., Bates, P. D., Sampson, C. C., Smith, A. M., Johnson, K. A.,
and Erickson, T. A.: Validation of a 30 m resolution flood hazard model of
the conterminous United States, Water Resour. Res., 53, 7968–7986,
https://doi.org/10.1002/2017WR020917, 2017.
Wing, O. E. J., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A.,
Fargione, J., and Morefield, P.: Estimates of present and future flood risk in the conterminous United States, Environ. Res. Lett., 13, 034023,
https://doi.org/10.1088/1748-9326/aaac65, 2018.
Winsemius, H. C., Aerts, J. C. J. H., Van Beek, L. P. H., Bierkens, M. F. P.,
Bouwman, A., Jongman, B., Kwadijk, J., Ligtvoet, W., Lucas, P. L., Van Vuuren, D. P., and Ward, P. J.: Global drivers of future river flood risk, Nat. Clim. Change, 6, 381–385, https://doi.org/10.1038/nclimate2893, 2016.
Winsemius, H. C., Jongman, B., Veldkamp, T. I. E., Hallegatte, S., Bangalore,
M., and Ward, P. J.: Disaster Risk, Climate Change, and Poverty: Assessing the Global Exposure of Poor People to Floods and Droughts, Environ. Dev. Econ., 23, 328–348, https://doi.org/10.1017/S1355770X17000444, 2018.
Winsemius, H. C., Ward, P. J., Gayton, I., ten Veldhuis, M.-C., Meijer, D.
H., and Iliffe, M.: Commentary: The need for a high-accuracy, open-access
global DEM, Front. Earth Sci., 7, 33, https://doi.org/10.3389/feart.2019.00033, 2019.
Wood, N. J. and Good, J. W.: Vulnerability of port and harbor communities to
earthquake and tsunami hazards: the use of GIS in community hazard planning,
Coast. Manage., 32, 243–269, https://doi.org/10.1080/08920750490448622, 2004.
World Bank: Natural Hazards, Unnatural Disasters: The Economics of Effective Prevention, World Bank, Washington, D.C., 2010.
Yamin, L. E., Hurtado, A., Barbat, A. H., and Cardona, O. D.: Seismic and
wind vulnerability assessment for the GAR-13 global risk assessment, Int. J.
Disast. Risk Reduct., 10, 452–460, https://doi.org/10.1016/j.ijdrr.2014.05.007, 2014.
Yang, W., Shen, L., and Shi, P.: Mapping Landslide Risk of the World, in:
World Atlas of Natural Disaster Risk. IHDP/Future Earth-Integrated Risk Governance Project Series, edited by: Shi, P. and Kasperson, R., Springer,
Berlin, Heidelberg, 2015.
Yin, Y., Zhang, X., Lin, D., Yu, H., Wang, J., and Shi, P.: GEPIC-V-R model: A GIS-based tool for regional crop drought risk assessment, Agr. Water Assess., 144, 107–119, https://doi.org/10.1016/j.agwat.2014.05.017, 2014.
Ying, M., Zhangm W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y., and Chen, D.: An overview of the China Meteorological Administration tropical cyclone database, J. Atmos. Ocean. Tech., 31, 287–301, https://doi.org/10.1175/JTECH-D-12-00119.1, 2014.
Yokoyama, I., Tilling, R. I., and Scarpa, R.: International mobile early-warning system(s) for volcanic eruptions and related seismic activities, UNEP, Paris, 1984.
Zaghi, A. E., Padgett, J. E., Bruneau, M., and Barbato, M.: Establishing
common nomenclature, characterizing the problem, and identifying future
opportunities in multihazard design, J. Struct. Eng., 142, H2516001, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001586, 2016.
Zscheischler, J., Westra, S., Van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Download
- Article
(1268 KB) - Full-text XML
Short summary
We review the scientific literature on natural hazard risk assessments at the global scale. In doing so, we examine similarities and differences between the approaches taken across the different hazards and identify potential ways in which different hazard communities can learn from each other. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales.
We review the scientific literature on natural hazard risk assessments at the global scale. In...
Altmetrics
Final-revised paper
Preprint