Articles | Volume 18, issue 3
https://doi.org/10.5194/nhess-18-709-2018
https://doi.org/10.5194/nhess-18-709-2018
Research article
 | 
05 Mar 2018
Research article |  | 05 Mar 2018

Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data

Kuo-Jen Chang, Yu-Chang Chan, Rou-Fei Chen, and Yu-Chung Hsieh

Related authors

MULTI-TEMPORAL HIGH-RESOLUTION LANDSLIDE MONITORING BASED ON UAS PHOTOGRAMMETRY AND UAS LIDAR GEOINFORMATION
C.-L. J. Hung, C.-W. Tseng, M.-J. Huang, C.-M. Tseng, and K.-J. Chang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 157–160, https://doi.org/10.5194/isprs-archives-XLII-3-W8-157-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W8-157-2019, 2019
Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)
Benoit Deffontaines, Kuo-Jen Chang, Johann Champenois, Kuan-Chuan Lin, Chyi-Tyi Lee, Rou-Fei Chen, Jyr-Ching Hu, and Samuel Magalhaes
Nat. Hazards Earth Syst. Sci., 18, 829–845, https://doi.org/10.5194/nhess-18-829-2018,https://doi.org/10.5194/nhess-18-829-2018, 2018
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024,https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024,https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024,https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary
Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023,https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023,https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary

Cited articles

Ambrosi, C. and Crosta, G. B.: Large sackung along major tectonic features in the Central Italian Alps, Eng. Geol., 83, 183–200, 2006.
Bucci, F., Cardinali, M., and Guzzetti, F.: Structural geomorphology, active faulting and slope deformations in the epicentre area of the MW 7.0, 1857, Southern Italy earthquake, Phys. Chem. Earth., 63, 12–24, 2013.
Bucci, F., Santangelo, M., Cardinali, M., Fiorucci, F., and Guzzetti, F.: Landslide distribution and size in response to Quaternary fault activity: the Peloritani Range, NE Sicily, Italy, Earth. Surf. Proc. Land., 41, 711–720, https://doi.org/10.1002/esp.3898, 2016.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016.
Chan, Y. C., Chang, K. J., Chen, R. F., and Liu, J. K.: Topographic changes revealed by airborne LiDAR surveys in regions affected by the 2009 Typhoon Morakot, southern Taiwan, Western Pacific Earth Sciences, 12, 67–82, 2012.
Download
Short summary
Several remote sensing techniques, i.e., aerial photographs, drone images, and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence, subsequent geomorphological evolution, and potential hazards. Two large-scale landslides were characterized and quantified in this study.
Altmetrics
Final-revised paper
Preprint