Articles | Volume 18, issue 10
https://doi.org/10.5194/nhess-18-2741-2018
https://doi.org/10.5194/nhess-18-2741-2018
Review article
 | 
24 Oct 2018
Review article |  | 24 Oct 2018

Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas

Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins

Related authors

The importance of retention times in Natural Flood Management interventions
Elizabeth Follett, Keith Beven, Barry Hankin, David Mindham, and Nick Chappell
Proc. IAHS, 385, 197–201, https://doi.org/10.5194/piahs-385-197-2024,https://doi.org/10.5194/piahs-385-197-2024, 2024
Short summary
UPH Problem 20 – reducing uncertainty in model prediction: a model invalidation approach based on a Turing-like test
Keith Beven, Trevor Page, Paul Smith, Ann Kretzschmar, Barry Hankin, and Nick Chappell
Proc. IAHS, 385, 129–134, https://doi.org/10.5194/piahs-385-129-2024,https://doi.org/10.5194/piahs-385-129-2024, 2024
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022,https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021,https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary

Related subject area

Hydrological Hazards
The 2018–2023 drought in Berlin: impacts and analysis of the perspective of water resources management
Ina Pohle, Sarah Zeilfelder, Johannes Birner, and Benjamin Creutzfeldt
Nat. Hazards Earth Syst. Sci., 25, 1293–1313, https://doi.org/10.5194/nhess-25-1293-2025,https://doi.org/10.5194/nhess-25-1293-2025, 2025
Short summary
Recent large-inland-lake outbursts on the Tibetan Plateau: processes, causes, and mechanisms
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci., 25, 1187–1206, https://doi.org/10.5194/nhess-25-1187-2025,https://doi.org/10.5194/nhess-25-1187-2025, 2025
Short summary
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025,https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025,https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025,https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary

Cited articles

AIR Worldwide: Study of impact and the insurance and economic cost of a major earthquake in British Columbia and Ontario/Québec, Insurance Bureau of Canada, Toronto, Canada, 345 p., 2013.
Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247–265, https://doi.org/10.1016/j.enggeo.2004.01.007, 2004.
Alfieri, L., Smith, P. J., Thielen-del, Pozo, J., and Beven, K. J.: A staggered approach to flash flood forecasting – case study in the Cevennes Region, Adv. Geosci., 29, 13–20, 2011.
Almeida, S., Holcombe, E. A., Pianosi, F., and Wagener, T.: Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change, Nat. Hazards Earth Syst. Sci., 17, 225–241, https://doi.org/10.5194/nhess-17-225-2017, 2017.
Alonso, E. E., Gens, A., and Delahaye, C. H.: Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study, Hydrogeol. J., 11, 174–192, https://doi.org/10.1007/s10040-002-0245-1, 2003.
Short summary
This paper discusses how uncertainties resulting from lack of knowledge are considered in a number of different natural hazard areas including floods, landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. As every analysis is necessarily conditional on the assumptions made about the nature of sources of such uncertainties it is also important to follow the guidelines for good practice suggested in Part 2.
Share
Altmetrics
Final-revised paper
Preprint