Articles | Volume 18, issue 4
https://doi.org/10.5194/nhess-18-1055-2018
https://doi.org/10.5194/nhess-18-1055-2018
Research article
 | 
05 Apr 2018
Research article |  | 05 Apr 2018

Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards

Davide Fugazza, Marco Scaioni, Manuel Corti, Carlo D'Agata, Roberto Sergio Azzoni, Massimo Cernuschi, Claudio Smiraglia, and Guglielmina Adele Diolaiuti

Related authors

Loss of accumulation zone exposes dark ice and drives increased ablation at Weißseespitze, Austria
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
EGUsphere, https://doi.org/10.5194/egusphere-2025-384,https://doi.org/10.5194/egusphere-2025-384, 2025
Short summary
Investigation on Miage/Brenva Glaciers in The Alps From 50s to-date Based on Remote-Sensing Data
Rasoul Eskandari, Nicola Genzano, Davide Fugazza, and Marco Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 147–154, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-147-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-147-2024, 2024
Multitemporal Structure-from-Motion: A Flexible Tool to Cope with Aerial Blocks in Changing Mountain Environment
Nicola Genzano, Davide Fugazza, Rasoul Eskandari, and Marco Scaioni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 99–106, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-99-2024,https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-99-2024, 2024
TECHNIQUES FOR COMPARING MULTI-TEMPORAL ARCHIVE AERIAL IMAGERY FOR GLACIER MONITORING WITH POOR GROUND CONTROL
M. Scaioni, A. Malekian, and D. Fugazza
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 293–300, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-293-2023,https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-293-2023, 2023
Megadunes in Antarctica: migration and characterization from remote and in situ observations
Giacomo Traversa, Davide Fugazza, and Massimo Frezzotti
The Cryosphere, 17, 427–444, https://doi.org/10.5194/tc-17-427-2023,https://doi.org/10.5194/tc-17-427-2023, 2023
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
The Avalanche Terrain Exposure Scale (ATES) v.2
Grant Statham and Cam Campbell
Nat. Hazards Earth Syst. Sci., 25, 1113–1137, https://doi.org/10.5194/nhess-25-1113-2025,https://doi.org/10.5194/nhess-25-1113-2025, 2025
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca A. Hetland, Tarjei Tveito Skille, and Andrea Mannberg
Nat. Hazards Earth Syst. Sci., 25, 929–948, https://doi.org/10.5194/nhess-25-929-2025,https://doi.org/10.5194/nhess-25-929-2025, 2025
Short summary
A quantitative module of avalanche hazard – comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 25, 625–646, https://doi.org/10.5194/nhess-25-625-2025,https://doi.org/10.5194/nhess-25-625-2025, 2025
Short summary
Modelling current and future forest fire susceptibility in north-eastern Germany
Katharina H. Horn, Stenka Vulova, Hanyu Li, and Birgit Kleinschmit
Nat. Hazards Earth Syst. Sci., 25, 383–401, https://doi.org/10.5194/nhess-25-383-2025,https://doi.org/10.5194/nhess-25-383-2025, 2025
Short summary
The effect of propagation saw test geometries on critical cut length
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 321–334, https://doi.org/10.5194/nhess-25-321-2025,https://doi.org/10.5194/nhess-25-321-2025, 2025
Short summary

Cited articles

Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., and Lato, M. J.: Terrestrial laser scanning of rock slope instabilities, Earth Surf. Proc. Land., 39, 80–97, https://doi.org/10.1002/esp.3493, 2014. 
Aicardi, I., Chiabrando, F.,Grasso, N., Lingua, A. M., Noardo, F., and Spanò, A.: UAV photogrammetry with oblique images: first analysis on data acquisition and processing, in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 12–19 July 2016, Prague, Czech Republic, 41-B1, 835–842, https://doi.org/10.5194/isprs-archives-XLI-B1-835-2016, 2016. 
Andreassen, L. M., Hallgeir, E., and Kjollmoen, B.: Using aerial photography to study glacier changes in Norway, Ann. Glaciol., 34, 343–348, https://doi.org/10.3189/172756402781817626, 2010. 
Azzoni, R. S., Fugazza, D., Zennaro, M., Zucali, M., D'Agata, C., Maragno, D., Cernuschi, M., Smiraglia, C., and Diolaiuti, G. A.: Recent structural evolution of Forni Glacier tongue (Ortles-Cevedale Group, Central Italian Alps), J. Maps, 13, 870–878, https://doi.org/10.1080/17445647.2017.1394227, 2017. 
Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., and Chevallier, P.: Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India), Remote Sens. Environ., 108, 327–338, https://doi.org/10.1016/j.rse.2006.11.017, 2007. 
Download
Short summary
This paper describes the surveys we performed in 2014 and 2016 by means of UAVs and terrestrial photogrammetry to monitor the Forni Glacier, one of the largest glaciers in the Italian Alps. We investigated the hazards related to the glacier collapse, which have been increasing recently due to the high ice melting rate. Our approach is feasible and low cost and we will repeatedly monitor the glacier to provide rapid hazard detection services to help the tourism sector.
Share
Altmetrics
Final-revised paper
Preprint