Articles | Volume 17, issue 6
Nat. Hazards Earth Syst. Sci., 17, 861–879, 2017
https://doi.org/10.5194/nhess-17-861-2017
Nat. Hazards Earth Syst. Sci., 17, 861–879, 2017
https://doi.org/10.5194/nhess-17-861-2017
Research article
13 Jun 2017
Research article | 13 Jun 2017

High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

Arnau Folch et al.

Related authors

Data assimilation of volcanic aerosol observations using FALL3D+PDAF
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022,https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022,https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021,https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics
Arnau Folch, Leonardo Mingari, Natalia Gutierrez, Mauricio Hanzich, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020,https://doi.org/10.5194/gmd-13-1431-2020, 2020
Short summary
Volcanic ash forecast using ensemble-based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0)
Soledad Osores, Juan Ruiz, Arnau Folch, and Estela Collini
Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020,https://doi.org/10.5194/gmd-13-1-2020, 2020
Short summary

Related subject area

Volcanic Hazards
Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022,https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Risk communication during seismo-volcanic crises: the example of Mayotte, France
Maud Devès, Robin Lacassin, Hugues Pécout, and Geoffrey Robert
Nat. Hazards Earth Syst. Sci., 22, 2001–2029, https://doi.org/10.5194/nhess-22-2001-2022,https://doi.org/10.5194/nhess-22-2001-2022, 2022
Short summary
Assessing minimum pyroclastic density current mass to impact critical infrastructures: example from Aso Caldera (Japan)
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-100,https://doi.org/10.5194/nhess-2022-100, 2022
Revised manuscript accepted for NHESS
Short summary
Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022,https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Assessing the effectiveness and the economic impact of evacuation: the case of the island of Vulcano, Italy
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022,https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary

Cited articles

Aka, F. T. and Yokoyama, T.: Current status of the debate about the age of Lake Nyos dam (Cameroon) and its bearing on potential flood hazards, Nat. Hazards, 65, 875–885, https://doi.org/10.1007/s11069-012-0401-4, 2013.
Apsley, D. and Castro, I.: A limited-length-scale k-ϵ model for the neutral and stably-stratified atmospheric boundary layer, Bound.-Lay. Meteorol., 83, 75–98, https://doi.org/10.1023/A:1000252210512, 1997.
Avila, M., Folch, A., Houzeaux, G., Eguzkitza, B., Prieto, L., and Cabezon, D.: A Parallel CFD Model for Wind Farms, Procedia Comput. Sci., 18, 2157–2166, https://doi.org/10.1016/j.procs.2013.05.386, 2013.
Baxter, P. and Kapila, M.: Acute health impact of the gas release at Lake Nyos, Cameroon, 1986, J. Volcanol. Geoth. Res., 39, 265–275, https://doi.org/10.1016/0377-0273(89)90064-4, 1989.
Britter, R.: Atmospheric dispersion of dense gases, Annu. Rev. Fluid Mech., 2, 317–344, https://doi.org/10.1146/annurev.fl.21.010189.001533, 1989.
Download
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Altmetrics
Final-revised paper
Preprint