Articles | Volume 17, issue 6
https://doi.org/10.5194/nhess-17-861-2017
https://doi.org/10.5194/nhess-17-861-2017
Research article
 | 
13 Jun 2017
Research article |  | 13 Jun 2017

High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

Arnau Folch, Jordi Barcons, Tomofumi Kozono, and Antonio Costa

Related authors

Reconstructing tephra fall deposits via ensemble-based data assimilation techniques
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023,https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Data assimilation of volcanic aerosol observations using FALL3D+PDAF
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022,https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022,https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021,https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics
Arnau Folch, Leonardo Mingari, Natalia Gutierrez, Mauricio Hanzich, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020,https://doi.org/10.5194/gmd-13-1431-2020, 2020
Short summary

Related subject area

Volcanic Hazards
Cities near volcanoes: which cities are most exposed to volcanic hazards?
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025,https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Geophysical fingerprint of the 4–11 July 2024 eruptive activity at Stromboli volcano, Italy
Luciano Zuccarello, Duccio Gheri, Silvio De Angelis, Riccardo Civico, Tullio Ricci, and Piergiorgio Scarlato
Nat. Hazards Earth Syst. Sci., 25, 2317–2330, https://doi.org/10.5194/nhess-25-2317-2025,https://doi.org/10.5194/nhess-25-2317-2025, 2025
Short summary
Estimating the mass of tephra accumulated on roads to best manage the impact of volcanic eruptions: the example of Mt Etna, Italy
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 25, 1943–1962, https://doi.org/10.5194/nhess-25-1943-2025,https://doi.org/10.5194/nhess-25-1943-2025, 2025
Short summary
Brief communication: A magma depletion alternative for vent distribution in volcanic fields
Mark S. Bebbington, Melody G. Whitehead, and Gabor Kereszturi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2010,https://doi.org/10.5194/egusphere-2025-2010, 2025
Short summary
Social sensing a volcanic eruption: application to Kīlauea, 2018
James Hickey, James Young, Michelle Spruce, Ravi Pandit, Hywel Williams, Rudy Arthur, Wendy Stovall, and Matthew Head
Nat. Hazards Earth Syst. Sci., 25, 1681–1696, https://doi.org/10.5194/nhess-25-1681-2025,https://doi.org/10.5194/nhess-25-1681-2025, 2025
Short summary

Cited articles

Aka, F. T. and Yokoyama, T.: Current status of the debate about the age of Lake Nyos dam (Cameroon) and its bearing on potential flood hazards, Nat. Hazards, 65, 875–885, https://doi.org/10.1007/s11069-012-0401-4, 2013.
Apsley, D. and Castro, I.: A limited-length-scale k-ϵ model for the neutral and stably-stratified atmospheric boundary layer, Bound.-Lay. Meteorol., 83, 75–98, https://doi.org/10.1023/A:1000252210512, 1997.
Avila, M., Folch, A., Houzeaux, G., Eguzkitza, B., Prieto, L., and Cabezon, D.: A Parallel CFD Model for Wind Farms, Procedia Comput. Sci., 18, 2157–2166, https://doi.org/10.1016/j.procs.2013.05.386, 2013.
Baxter, P. and Kapila, M.: Acute health impact of the gas release at Lake Nyos, Cameroon, 1986, J. Volcanol. Geoth. Res., 39, 265–275, https://doi.org/10.1016/0377-0273(89)90064-4, 1989.
Britter, R.: Atmospheric dispersion of dense gases, Annu. Rev. Fluid Mech., 2, 317–344, https://doi.org/10.1146/annurev.fl.21.010189.001533, 1989.
Download
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Share
Altmetrics
Final-revised paper
Preprint