Articles | Volume 17, issue 6
https://doi.org/10.5194/nhess-17-861-2017
https://doi.org/10.5194/nhess-17-861-2017
Research article
 | 
13 Jun 2017
Research article |  | 13 Jun 2017

High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

Arnau Folch, Jordi Barcons, Tomofumi Kozono, and Antonio Costa

Related authors

Reconstructing tephra fall deposits via ensemble-based data assimilation techniques
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023,https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Data assimilation of volcanic aerosol observations using FALL3D+PDAF
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022,https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022,https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021,https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics
Arnau Folch, Leonardo Mingari, Natalia Gutierrez, Mauricio Hanzich, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020,https://doi.org/10.5194/gmd-13-1431-2020, 2020
Short summary

Related subject area

Volcanic Hazards
Brief communication: Small-scale geohazards cause significant and highly variable impacts on emotions
Evgenia Ilyinskaya, Vésteinn Snæbjarnarson, Hanne Krage Carlsen, and Björn Oddsson
Nat. Hazards Earth Syst. Sci., 24, 3115–3128, https://doi.org/10.5194/nhess-24-3115-2024,https://doi.org/10.5194/nhess-24-3115-2024, 2024
Short summary
“More poison than words can describe”: what did people die of after the 1783 Laki eruption in Iceland?
Claudia Elisabeth Wieners and Guðmundur Hálfdanarson
Nat. Hazards Earth Syst. Sci., 24, 2971–2994, https://doi.org/10.5194/nhess-24-2971-2024,https://doi.org/10.5194/nhess-24-2971-2024, 2024
Short summary
Automating tephra fall building damage assessment using deep learning
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-81,https://doi.org/10.5194/nhess-2024-81, 2024
Revised manuscript accepted for NHESS
Short summary
SEATANI: hazards from seamounts in Southeast Asia, Taiwan, and Andaman and Nicobar Islands (eastern India)
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024,https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Where will the next flank eruption at Etna occur? An updated spatial probabilistic assessment
Laura Sandri, Alexander Garcia, Cristina Proietti, Stefano Branca, Gaetana Ganci, and Annalisa Cappello
EGUsphere, https://doi.org/10.5194/egusphere-2023-2624,https://doi.org/10.5194/egusphere-2023-2624, 2023
Short summary

Cited articles

Aka, F. T. and Yokoyama, T.: Current status of the debate about the age of Lake Nyos dam (Cameroon) and its bearing on potential flood hazards, Nat. Hazards, 65, 875–885, https://doi.org/10.1007/s11069-012-0401-4, 2013.
Apsley, D. and Castro, I.: A limited-length-scale k-ϵ model for the neutral and stably-stratified atmospheric boundary layer, Bound.-Lay. Meteorol., 83, 75–98, https://doi.org/10.1023/A:1000252210512, 1997.
Avila, M., Folch, A., Houzeaux, G., Eguzkitza, B., Prieto, L., and Cabezon, D.: A Parallel CFD Model for Wind Farms, Procedia Comput. Sci., 18, 2157–2166, https://doi.org/10.1016/j.procs.2013.05.386, 2013.
Baxter, P. and Kapila, M.: Acute health impact of the gas release at Lake Nyos, Cameroon, 1986, J. Volcanol. Geoth. Res., 39, 265–275, https://doi.org/10.1016/0377-0273(89)90064-4, 1989.
Britter, R.: Atmospheric dispersion of dense gases, Annu. Rev. Fluid Mech., 2, 317–344, https://doi.org/10.1146/annurev.fl.21.010189.001533, 1989.
Download
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Altmetrics
Final-revised paper
Preprint