Articles | Volume 17, issue 6
https://doi.org/10.5194/nhess-17-861-2017
https://doi.org/10.5194/nhess-17-861-2017
Research article
 | 
13 Jun 2017
Research article |  | 13 Jun 2017

High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

Arnau Folch, Jordi Barcons, Tomofumi Kozono, and Antonio Costa

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish as is (03 May 2017) by Giovanni Macedonio
Download
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Altmetrics
Final-revised paper
Preprint