Articles | Volume 16, issue 3
https://doi.org/10.5194/nhess-16-833-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-16-833-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Regional prioritisation of flood risk in mountainous areas
María Carolina Rogelis
CORRESPONDING AUTHOR
UNESCO-IHE, P.O. Box 3015, 2601DA Delft, the Netherlands
Micha Werner
UNESCO-IHE, P.O. Box 3015, 2601DA Delft, the Netherlands
Deltares, P.O. Box 177, 2600MH Delft, the Netherlands
Nelson Obregón
Universidad Javeriana, KR 7 No 40-62, Bogotá, Colombia
Nigel Wright
School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
Related authors
María Carolina Rogelis and Micha Werner
Hydrol. Earth Syst. Sci., 22, 853–870, https://doi.org/10.5194/hess-22-853-2018, https://doi.org/10.5194/hess-22-853-2018, 2018
Short summary
Short summary
Numerical weather prediction (NWP) models are fundamental for flood early warning, particularly in tropical mountainous watersheds. This paper aims to assess the potential of NWP for flood early warning purposes, and the possible improvement that the post-processing of forecasts can provide, in a tropical mountainous area. The results show the potential of NWP but also the need for more detailed evaluation of the meteorological model in the study area.
María Carolina Rogelis, Micha Werner, Nelson Obregón, and Nigel Wright
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-30, https://doi.org/10.5194/hess-2016-30, 2016
Manuscript not accepted for further review
Short summary
Short summary
A distributed model (TETIS), a semi-distributed model (TOPMODEL) and a lumped model (HEC HMS soil moisture accounting) were used to simulate the discharge response of a tropical high mountain basin. Performance analysis and diagnostics were carried out in order to identify the most appropriate model for the study area for flood early warning. The results show that TOPMODEL is the most realistic model of the three tested.
M. C. Rogelis and M. Werner
Nat. Hazards Earth Syst. Sci., 14, 3043–3064, https://doi.org/10.5194/nhess-14-3043-2014, https://doi.org/10.5194/nhess-14-3043-2014, 2014
Short summary
Short summary
A method for assessing regional debris flow susceptibility at the watershed scale, based on an index composed of a morphometric indicator and a land cover indicator, is proposed and applied in 106 peri-urban mountainous watersheds in Bogota, Colombia. The indicator of debris flow susceptibility is obtained from readily available information common to most peri-urban mountainous areas and can be used to prioritise watersheds that can subsequently be subjected to detailed hazard analysis.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Silvana Bolaños Chavarría, Micha Werner, Juan Fernando Salazar, and Teresita Betancur Vargas
Hydrol. Earth Syst. Sci., 26, 4323–4344, https://doi.org/10.5194/hess-26-4323-2022, https://doi.org/10.5194/hess-26-4323-2022, 2022
Short summary
Short summary
Using total water storage (TWS) from GRACE satellites, we assess the reliability of global hydrological and land surface models over a medium-sized tropical basin with a well-developed gauging network. We find the models poorly represent TWS for the monthly series, but they improve in representing seasonality and long-term trends. We conclude that GRACE provides a valuable dataset to benchmark global simulations of TWS change, offering a useful tool to improve global models in tropical basins.
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022, https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Agathe Bucherie, Micha Werner, Marc van den Homberg, and Simon Tembo
Nat. Hazards Earth Syst. Sci., 22, 461–480, https://doi.org/10.5194/nhess-22-461-2022, https://doi.org/10.5194/nhess-22-461-2022, 2022
Short summary
Short summary
Local communities in northern Malawi have well-developed knowledge of the conditions leading to flash floods, spatially and temporally. Scientific analysis of catchment geomorphology and global reanalysis datasets corroborates this local knowledge, underlining the potential of these large-scale scientific datasets. Combining local knowledge with contemporary scientific datasets provides a common understanding of flash flood events, contributing to a more people-centred warning to flash floods.
Alexander Kaune, Faysal Chowdhury, Micha Werner, and James Bennett
Hydrol. Earth Syst. Sci., 24, 3851–3870, https://doi.org/10.5194/hess-24-3851-2020, https://doi.org/10.5194/hess-24-3851-2020, 2020
Short summary
Short summary
This paper was developed from PhD research focused on assessing the value of using hydrological datasets in water resource management. Previous studies have assessed how well data can help in predicting river flows, but there is a lack of knowledge of how well data can help in water allocation decisions. In our research, it was found that using seasonal streamflow forecasts improves the available water estimates, resulting in better water allocation decisions in a highly regulated basin.
Alexander Kaune, Micha Werner, Patricia López López, Erasmo Rodríguez, Poolad Karimi, and Charlotte de Fraiture
Hydrol. Earth Syst. Sci., 23, 2351–2368, https://doi.org/10.5194/hess-23-2351-2019, https://doi.org/10.5194/hess-23-2351-2019, 2019
Short summary
Short summary
The value of using longer periods of record of river discharge information from global precipitation datasets is assessed for irrigation area planning. Results show that for all river discharge simulations the benefit of choosing the irrigated area based on the 30 years of simulated data is higher compared to using only 5 years of observed discharge data. Hence, irrigated areas can be better planned using 30 years of river discharge information from global precipitation datasets.
Clara Linés, Ana Iglesias, Luis Garrote, Vicente Sotés, and Micha Werner
Hydrol. Earth Syst. Sci., 22, 5901–5917, https://doi.org/10.5194/hess-22-5901-2018, https://doi.org/10.5194/hess-22-5901-2018, 2018
Short summary
Short summary
In this paper we follow a user-based approach to examine operational drought management decisions and how the role of information on them can be assessed. The approach combines a stakeholder consultation and a decision model representing the interrelated decisions of the irrigation association and farmers. The decision model was extended to include information on snow cover from satellite. This contributed to better decisions in the simulation and ultimately higher benefits for the farmers.
Gaby J. Gründemann, Micha Werner, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 22, 4667–4683, https://doi.org/10.5194/hess-22-4667-2018, https://doi.org/10.5194/hess-22-4667-2018, 2018
Short summary
Short summary
Flooding in vulnerable and data-sparse regions such as the Limpopo basin in Southern Africa is a key concern. Data available to local flood managers are often limited, inconsistent or asymmetrically distributed. We demonstrate that freely available global datasets are well suited to provide essential information. Despite the poor performance of simulated discharges, these datasets hold potential in identifying damaging flood events, particularly for higher-resolution datasets and larger basins.
María Carolina Rogelis and Micha Werner
Hydrol. Earth Syst. Sci., 22, 853–870, https://doi.org/10.5194/hess-22-853-2018, https://doi.org/10.5194/hess-22-853-2018, 2018
Short summary
Short summary
Numerical weather prediction (NWP) models are fundamental for flood early warning, particularly in tropical mountainous watersheds. This paper aims to assess the potential of NWP for flood early warning purposes, and the possible improvement that the post-processing of forecasts can provide, in a tropical mountainous area. The results show the potential of NWP but also the need for more detailed evaluation of the meteorological model in the study area.
Clara Linés, Micha Werner, and Wim Bastiaanssen
Hydrol. Earth Syst. Sci., 21, 4747–4765, https://doi.org/10.5194/hess-21-4747-2017, https://doi.org/10.5194/hess-21-4747-2017, 2017
Short summary
Short summary
This paper aims at identifying Earth observation data sets that can help river basin managers detect drought conditions that may lead to impacts early enough to take mitigation actions. Six remote sensing products were assessed using two types of impact data as a benchmark: media records from a regional newspaper and crop yields. Precipitation, vegetation condition and evapotranspiration products showed the best results, offering early signs of impacts up to 6 months before the reported damages.
María Carolina Rogelis, Micha Werner, Nelson Obregón, and Nigel Wright
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-30, https://doi.org/10.5194/hess-2016-30, 2016
Manuscript not accepted for further review
Short summary
Short summary
A distributed model (TETIS), a semi-distributed model (TOPMODEL) and a lumped model (HEC HMS soil moisture accounting) were used to simulate the discharge response of a tropical high mountain basin. Performance analysis and diagnostics were carried out in order to identify the most appropriate model for the study area for flood early warning. The results show that TOPMODEL is the most realistic model of the three tested.
P. Trambauer, M. Werner, H. C. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 1695–1711, https://doi.org/10.5194/hess-19-1695-2015, https://doi.org/10.5194/hess-19-1695-2015, 2015
M. C. Rogelis and M. Werner
Nat. Hazards Earth Syst. Sci., 14, 3043–3064, https://doi.org/10.5194/nhess-14-3043-2014, https://doi.org/10.5194/nhess-14-3043-2014, 2014
Short summary
Short summary
A method for assessing regional debris flow susceptibility at the watershed scale, based on an index composed of a morphometric indicator and a land cover indicator, is proposed and applied in 106 peri-urban mountainous watersheds in Bogota, Colombia. The indicator of debris flow susceptibility is obtained from readily available information common to most peri-urban mountainous areas and can be used to prioritise watersheds that can subsequently be subjected to detailed hazard analysis.
F. F. Worku, M. Werner, N. Wright, P. van der Zaag, and S. S. Demissie
Hydrol. Earth Syst. Sci., 18, 3837–3853, https://doi.org/10.5194/hess-18-3837-2014, https://doi.org/10.5194/hess-18-3837-2014, 2014
P. Trambauer, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 2925–2942, https://doi.org/10.5194/hess-18-2925-2014, https://doi.org/10.5194/hess-18-2925-2014, 2014
P. Trambauer, E. Dutra, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 193–212, https://doi.org/10.5194/hess-18-193-2014, https://doi.org/10.5194/hess-18-193-2014, 2014
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Invited perspectives: Advancing knowledge co-creation in drought impact studies
How does perceived heat stress differ between urban forms and human vulnerability profiles? Case study Berlin
Modelling flood losses of micro-businesses in Ho Chi Minh City, Vietnam
Tracing online flood conversations across borders: a watershed-level analysis of geo-social media topics during the 2021 European flood
An evaluation of the alignment of drought policy and planning guidelines with the contemporary disaster risk reduction agenda
Qualitative risk assessment of sensitive infrastructures at the local level: flooding and heavy rainfall
Measuring extremes-driven direct biophysical impacts in agricultural drought damages
Brief communication: Bridging the data gap – a call to enhance the representation of global coastal flood protection
Disaster management following the great Kahramanmaraş earthquakes in 2023, Türkiye
From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications
Assessing future impacts of tropical cyclones on global banana production
Review article: Applicability and effectiveness of structural measures for subsidence (risk) reduction in urban areas
The Effect of Community Resilience and Disaster Risk Management Cycle Stages on Morbi-Mortality Following Floods: An Empirical Assessment
Unravelling the capacity–action gap in flood risk adaptation
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
Modeling Regional Production Capacity Loss Rates Considering Response Bias: Insights from a Questionnaire Survey on Zhengzhou Flood
Warnings based on risk matrices: a coherent framework with consistent evaluation
How are public compensation efforts implemented in multi-hazard events? Insights from the 2020 Gloria storm in Catalonia
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Content analysis of multi-annual time series of flood-related Twitter (X) data
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Flood exposure of environmental assets
A new method for calculating highway blocking due to high-impact weather conditions
Review Article: Analysis of sediment disaster risk assessment surveys in Brazil: A critical review and recommendations
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Flood exposure in Rotterdam’s unembanked areas from 1970 to 2150: sensitivities to urban development, sea level rise and adaptation
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Monitoring agricultural and economic drought: the Australian Agricultural Drought Indicators (AADI)
Ready, Set & Go! An anticipatory action system against droughts
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Flood risk assessment through large-scale modeling under uncertainty
Migration as a hidden risk factor in seismic fatality: spatial modeling of the Chi-Chi earthquake and suburban syndrome
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Current status of water-related planning for climate change adaptation in the Spree river basin, Germany
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
Reevaluating Flood Protection: Disaster Risk Reduction for Urbanized Alluvial Fans
Brief communication: Comprehensive Resilience to Typhoon Disasters: An Urban Assessment of 27 Cities in Seven Major River Basin, China
What if extreme droughts occur more frequently? – Mechanisms and limits of forest adaptation in pine monocultures and mixed forests in Berlin-Brandenburg, Germany
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Sectoral Vulnerability to Drought: Exploring the Role of Blue and Green Water Dependency in Mid and High-Latitudes
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Invited perspectives: Fostering interoperability of data, models, communication and governance for disaster resilience through transdisciplinary knowledge co-production
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Silvia De Angeli, Lorenzo Villani, Giulio Castelli, Maria Rusca, Giorgio Boni, Elena Bresci, and Luigi Piemontese
Nat. Hazards Earth Syst. Sci., 25, 2571–2589, https://doi.org/10.5194/nhess-25-2571-2025, https://doi.org/10.5194/nhess-25-2571-2025, 2025
Short summary
Short summary
Despite transdisciplinary approaches being increasingly explored to study droughts and their impacts, their depth and breadth are yet to be fully exploited. By integrating insights from different research fields, we present five key dimensions to deepen and broaden the knowledge co-creation process for drought impact studies. Emphasizing social dynamics and power imbalances, we support hydrologists in developing more integrated, power-sensitive, inclusive, situated, and reflexive studies.
Nimra Iqbal, Marvin Ravan, Zina Mitraka, Joern Birkmann, Sue Grimmond, Denise Hertwig, Nektarios Chrysoulakis, Giorgos Somarakis, Angela Wendnagel-Beck, and Emmanouil Panagiotakis
Nat. Hazards Earth Syst. Sci., 25, 2481–2502, https://doi.org/10.5194/nhess-25-2481-2025, https://doi.org/10.5194/nhess-25-2481-2025, 2025
Short summary
Short summary
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age, income) and adaptive capacities (e.g. green, shaded spaces) are coupled with urban structures. The results show that perceived heat stress decreases with distance from the urban center, however, human vulnerability and adaptive capacities depend more strongly on inner variations and differences between urban structures. Planning policies and adaptation strategies should account for these differences.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
Nat. Hazards Earth Syst. Sci., 25, 2437–2453, https://doi.org/10.5194/nhess-25-2437-2025, https://doi.org/10.5194/nhess-25-2437-2025, 2025
Short summary
Short summary
Many households in Vietnam depend on revenue from micro-businesses (shop houses). However, losses caused by regular flooding are not modelled. Business turnover, building age, and water depth were found to be the main drivers of flood losses of micro-businesses. We built and validated probabilistic models (non-parametric Bayesian networks) that estimate flood losses of micro-businesses. The results help with flood risk management and adaption decision making for micro-businesses.
Sébastien Dujardin, Dorian Arifi, Sebastian Schmidt, Catherine Linard, and Bernd Resch
Nat. Hazards Earth Syst. Sci., 25, 2351–2369, https://doi.org/10.5194/nhess-25-2351-2025, https://doi.org/10.5194/nhess-25-2351-2025, 2025
Short summary
Short summary
Our research explores how social media can help understand public responses to floods, focusing on the 2021 western European flood. We found that discussions varied by location and flood impact: in-disaster concerns were more common in severely affected upstream areas, while post-disaster topics dominated downstream. Findings show the potential of social media for improving disaster coordination along cross-border rivers in time-sensitive situations.
Ilyas Masih
Nat. Hazards Earth Syst. Sci., 25, 2155–2178, https://doi.org/10.5194/nhess-25-2155-2025, https://doi.org/10.5194/nhess-25-2155-2025, 2025
Short summary
Short summary
This study evaluates 12 sets of drought policy and planning guidelines for their alignment with the four priority areas of the SENDAI framework. The guidelines do not align very well with the contemporary disaster risk reduction agenda. The study highlights strengths, weaknesses, opportunities, and threats and provides useful insights to develop the next generation of drought guidelines that are better aligned with contemporary science–policy–practice agendas.
Alessa Truedinger, Joern Birkmann, Mark Fleischhauer, and Celso Ferreira
Nat. Hazards Earth Syst. Sci., 25, 2097–2113, https://doi.org/10.5194/nhess-25-2097-2025, https://doi.org/10.5194/nhess-25-2097-2025, 2025
Short summary
Short summary
In post-disaster reconstruction, emphasis should be placed on critical and sensitive infrastructures. In Germany, as in other countries, sensitive infrastructures have not yet been focused on; therefore, we developed a method for determining the risk that sensitive infrastructures are facing in the context of riverine and pluvial flooding. The easy-to-use assessment framework can be applied to various sensitive infrastructures, e.g., to qualify and accelerate decisions in the reconstruction process.
Mansi Nagpal, Jasmin Heilemann, Luis Samaniego, Bernd Klauer, Erik Gawel, and Christian Klassert
Nat. Hazards Earth Syst. Sci., 25, 2115–2135, https://doi.org/10.5194/nhess-25-2115-2025, https://doi.org/10.5194/nhess-25-2115-2025, 2025
Short summary
Short summary
This study measures the direct effects of droughts in association with other extreme weather events on agriculture in Germany at the district level. Using a statistical yield model, we quantify the direct damage of extremes on crop yields and farm revenue. Extreme events during drought cause an average annual damage of EUR 781 million, accounting for 45 % of reported revenue losses. The insights herein can help develop better strategies for managing and mitigating the effects of future climate extremes.
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci., 25, 2075–2080, https://doi.org/10.5194/nhess-25-2075-2025, https://doi.org/10.5194/nhess-25-2075-2025, 2025
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection are limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTtal flood PROtection Standards within EUrope (COASTPROS-EU), which compiles coastal flood protection standards in Europe.
Bektaş Sarı
Nat. Hazards Earth Syst. Sci., 25, 2031–2043, https://doi.org/10.5194/nhess-25-2031-2025, https://doi.org/10.5194/nhess-25-2031-2025, 2025
Short summary
Short summary
After the Kahramanmaraş earthquakes, the Turkish Government mobilized all available resources, ensured regular information updates, and deployed a significant number of rescue personnel to the affected areas. However, the scale of this devastating disaster, resulting in the loss of over 50 000 lives, underscores the critical importance of building earthquake-resistant structures as the most effective means to mitigate such calamities.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 1993–2005, https://doi.org/10.5194/nhess-25-1993-2025, https://doi.org/10.5194/nhess-25-1993-2025, 2025
Short summary
Short summary
Drought affects not only water availability but also agriculture, the economy, and communities. This study explores how public policies help reduce these impacts in Ceará, Northeast Brazil. Using qualitative drought monitoring data, interviews, and policy analysis, we found that policies supporting local economies help lessen drought effects. However, most reported impacts are still related to water shortages, showing the need for broader strategies beyond water supply investment.
Sophie Kaashoek, Žiga Malek, Nadia Bloemendaal, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 25, 1963–1974, https://doi.org/10.5194/nhess-25-1963-2025, https://doi.org/10.5194/nhess-25-1963-2025, 2025
Short summary
Short summary
Tropical storms are expected to get stronger all over the world, and this will have a big impact on people, buildings and important activities like growing bananas. Already, in different parts of the world, banana farms are being hurt by these storms, which makes banana prices go up and affects the people who grow them. We are not sure how these storms will affect bananas everywhere in the future. We assessed what happened to banana farms during storms in different parts of the world.
Nicoletta Nappo and Mandy Korff
Nat. Hazards Earth Syst. Sci., 25, 1811–1839, https://doi.org/10.5194/nhess-25-1811-2025, https://doi.org/10.5194/nhess-25-1811-2025, 2025
Short summary
Short summary
Cities in coastal and delta areas need effective engineering techniques to counteract subsidence and its damage. This paper presents a framework for choosing these techniques using a decision tree and four performance parameters. This procedure was tested on various cases representative of different scenarios. This demonstrated the potential of this method for initial screenings of techniques which site-specific assessments should always follow.
Raquel Guimaraes, Reinhard Mechler, Stefan Velev, and Dipesh Chapagain
EGUsphere, https://doi.org/10.5194/egusphere-2025-1947, https://doi.org/10.5194/egusphere-2025-1947, 2025
Short summary
Short summary
This study explores how communities can better protect people's lives and health during floods. By looking at 66 communities in seven countries, we found that strong social ties and preparedness before disasters helped reduce injuries and deaths. However, some environmental efforts didn't show clear health benefits, especially in degraded areas. Our research highlights how early planning and strong local networks can make a real difference during crises.
Annika Schubert, Anne von Streit, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 25, 1621–1653, https://doi.org/10.5194/nhess-25-1621-2025, https://doi.org/10.5194/nhess-25-1621-2025, 2025
Short summary
Short summary
Households play a crucial role in climate adaptation efforts. Yet, households require capacities to implement measures. We explore which capacities enable German households to adapt to flooding. Our results indicate that flood-related capacities such as risk perception, responsibility appraisal, and motivation are pivotal, whereas financial assets are secondary. Enhancing these specific capacities, e.g. through collaborations between households and municipalities, could promote local adaptation.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025, https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners' needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025, https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Lijiao Yang, Yan Luo, Zilong Li, and Xinyu Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3923, https://doi.org/10.5194/egusphere-2024-3923, 2025
Short summary
Short summary
This study proposes a response-bias-tolerant methodology for constructing production capacity loss rate (PCLR) curves, which addresses response bias in extreme flood scenarios and considers the distribution characteristics of PCLR under different damage states. The core value of this study is to provide a competing and promising input in economic modeling, such as input-output and computable general equilibrium models.
Robert J. Taggart and David J. Wilke
EGUsphere, https://doi.org/10.5194/egusphere-2025-323, https://doi.org/10.5194/egusphere-2025-323, 2025
Short summary
Short summary
Our research presents a new method for determining warning levels for any hazard. Using risk matrices, our framework addresses issues found in other approaches. We provide examples to demonstrate how the approach works. A powerful method for evaluating warning accuracy is given, allowing for a cycle of continuous improvement in warning services. This research is relevant to a broad audience, from those who develop forecast systems to practitioners who issue or communicate warnings.
Núria Pantaleoni Reluy, Marcel Hürlimann, and Nieves Lantada
EGUsphere, https://doi.org/10.5194/egusphere-2025-1009, https://doi.org/10.5194/egusphere-2025-1009, 2025
Short summary
Short summary
Spain combines public funds with a state-backed insurance program for natural disaster recovery. Our study examines Storm Gloria, which struck Catalonia in 2020, causing severe damage. By systematically collecting and classifying direct losses, we offer insights into the role of government interventions in disaster response, define multi-hazard municipalities based on a loss database, and provide initial insights into loss assessments relative to annual occurrence probability.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025, https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025, https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary
Short summary
This study developed a model of extreme drought-induced famine processes and response mechanisms in ancient China. The spatial distribution of drought and famine during the Chenghua drought and the Wanli drought was constructed. By categorizing drought-affected counties into three types, a comparative analysis of the differences in famine severity and response effectiveness between the Chenghua and Wanli droughts was conducted.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025, https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary
Short summary
Environmental assets are crucial to sustaining and fulfilling life on Earth via ecosystem services (ESs). Studying their flood risk is thus seminal, in addition to being required by several norms. However, this field is not yet adequately developed. We studied the exposure component of flood risk and developed an evaluating methodology based on the ESs provided by environmental assets to discern assets and areas that are more important than others with metrics suitable to large-scale studies.
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci., 25, 493–513, https://doi.org/10.5194/nhess-25-493-2025, https://doi.org/10.5194/nhess-25-493-2025, 2025
Short summary
Short summary
Highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is catagorized into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East, and Southwest China.
Thiago Dutra dos Santos and Taro Uchida
EGUsphere, https://doi.org/10.5194/egusphere-2024-2255, https://doi.org/10.5194/egusphere-2024-2255, 2025
Short summary
Short summary
Five federal sediment-related disaster risk assessments have been conducted in Brazil, each with distinct objectives and methodologies. To evaluate their effectiveness and identify issues, we analyzed the methods, the outcome data, and reviewed the status of disaster prevention initiatives based on the assessment results. Our findings revealed persistent problems across all methods. Consequently, we recommended improvements to enhance their efficacy and reliability.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Cees Oerlemans, Martine van den Boomen, Ties Rijcken, and Matthijs Kok
EGUsphere, https://doi.org/10.5194/egusphere-2024-2910, https://doi.org/10.5194/egusphere-2024-2910, 2025
Short summary
Short summary
This study analyzes flood exposure in Rotterdam's unembanked areas from 1970 to 2150, exploring the interplay between rising sea levels, urban development, and flood protection measures. Without measures, flood exposure will increase, especially after 2100. The Maeslant storm surge barrier had the most impact on flood exposure, followed by urban development and sea level rise. Varied exposure levels across neighborhoods suggest the need for localized adaptation strategies.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025, https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history mean the data required for vulnerability evaluation by the insurance industry are scarce. A systematic literature review is conducted in this study to determine the suitability of current published literature for this purpose. Knowledge gaps are charted, and a representative asset–hazard taxonomy is proposed to guide future quantitative research.
Neal Hughes, Donald Gaydon, Mihir Gupta, Andrew Schepen, Peter Tan, Geoffrey Brent, Andrew Turner, Sean Bellew, Wei Ying Soh, Christopher Sharman, Peter Taylor, John Carter, Dorine Bruget, Zvi Hochman, Ross Searle, Yong Song, Heidi Horan, Patrick Mitchell, Yacob Beletse, Dean Holzworth, Laura Guillory, Connor Brodie, Jonathon McComb, and Ramneek Singh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3731, https://doi.org/10.5194/egusphere-2024-3731, 2024
Short summary
Short summary
Droughts can impact agriculture and regional economies, and their severity is rising with climate change. Our research introduces a new system, the Australian Agricultural Drought Indicators (AADI), which measures droughts based on their effects on crops, livestock, and farm profits rather than traditional weather metrics. Using climate data and modelling, AADI predicts drought impacts more accurately, helping policymakers prepare and respond to financial and social challenges during droughts.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024, https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Short summary
The
Ready, Set & Go!system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024, https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Short summary
This study shows migration patterns to be a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing on the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, https://doi.org/10.5194/nhess-24-4369-2024, 2024
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in plans for water management, spatial planning and landscape planning in the Spree river basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this gap, more frequent updates of plans, a stronger focus on multifunctional measures, and the adaptation of best-practice examples for systematic integration of climate change impacts and adaptation are needed.
Laura T. Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
Nat. Hazards Earth Syst. Sci., 24, 4293–4315, https://doi.org/10.5194/nhess-24-4293-2024, https://doi.org/10.5194/nhess-24-4293-2024, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Tamir Grodek and Gerardo Benito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-171, https://doi.org/10.5194/nhess-2024-171, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Check dams, terraces, and trees on steep basins serve to retain sediments, thereby protecting urbanized alluvial fan canals and levees from flooding. However, their effectiveness gradually decreases over time due to sedimentation and aging, which may lead to catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating 20–30 % of the alluvial fan for channel migration and sediment deposition corridors.
Zezhao Liu, Jiahui Yang, and Cong Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2343, https://doi.org/10.5194/egusphere-2024-2343, 2024
Short summary
Short summary
We construct an indicator-based framework, and assess urban resilience to typhoon in China’s contexts for the seven major river basins. Results verified the heterogeneity, and the resilience level in certain circumstance was not matched with city strength of economy. The analysis is helpful for government to enhance capability of resilience in specific dimensions, and provides a reference in probing urban resilience assessment confronting typhoon.
Jamir Priesner, Boris Sakschewski, Maik Billing, Werner von Bloh, Sebastian Fiedler, Sarah Bereswill, Kirsten Thonicke, and Britta Tietjen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3066, https://doi.org/10.5194/egusphere-2024-3066, 2024
Short summary
Short summary
Our simulations suggest that increased drought frequencies lead to a drastic reduction in biomass in pine monoculture and mixed forest. Mixed forest eventually recovered, as long as drought frequencies was not too high. The higher resilience of mixed forests was due to higher adaptive capacity. After adaptation mixed forests were mainly composed of smaller, broad-leaved trees with higher wood density and slower growth.This would have strong implications for forestry and other ecosystem services.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2726, https://doi.org/10.5194/egusphere-2024-2726, 2024
Short summary
Short summary
Utilizing a survey including respondents from seven societal sectors, the role of water dependency for drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture, or groundwater and surface water). The results highlight the importance of accounting for water dependency, and to clearly define the drought hazard, in drought vulnerability or risk assessments.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Cited articles
Akbas, S., Blahut, J., and Sterlacchini, S.: Critical assessment of existing
physical vulnerability estimation approaches for debris flows, in: Landslide
processes: from geomorphological mapping to dynamic modelling, 229–233,
2009.
Albano, R., Sole, A., Adamowski, J., and Mancusi, L.: A GIS-based model to
estimate flood consequences and the degree of accessibility and operability
of strategic emergency response structures in urban areas, Nat. Hazards Earth
Syst. Sci., 14, 2847–2865, https://doi.org/10.5194/nhess-14-2847-2014, 2014.
Balica, S. F., Wright, N. G., and van der Meulen, F.: A flood vulnerability
index for coastal cities and its use in assessing climate change impacts, Nat. Hazards, 64, 73–105, https://doi.org/10.1007/s11069-012-0234-1, 2012.
Barrenechea, J., Gentile, E., González, S., and Natenson, C.: Una
propuesta metodológica para el estudio de la vulnerabilidad social en
el marco de la teoría social del riesgo, in: IV Jornadas de
Sociología, edited by: Facultad de Ciencias Sociales
Facultad de Ciencias Sociales, UBA, Buenos Aires, Argentina, 1–13, 2000.
Barroca, B., Bernardara, P., Mouchel, J. M., and Hubert, G.: Indicators for
identification of urban flooding vulnerability, Nat. Hazards Earth Syst.
Sci., 6, 553–561, https://doi.org/10.5194/nhess-6-553-2006, 2006.
Beltrán, J.: Crecimiento Urbano, Pobreza y Medio Ambiente en
Bogotá: Los Efectors Soci Ambientales en Tres Humedales, in: CII
Seminario Nacional de Investigación Urbano Regional,
Medellín, Colombia, 1–13, 2008.
Bernal, G., Rosero, M., Cadena, M., Montealegre, J., and Sanabria, F.: Estudio
de la Caracterización Climática de Bogotá y cuenca alta del
Río Tunjuelo, Tech. rep., Instituto de Hidrología,
Meteorología y Estudios Ambientales IDEAM – Fondo de Prevención y
Atención de Emergencias FOPAE, Bogotá, Colombia, 2007.
Birkmann, J.: Measuring vulnerability to natural hazards: toward disaster
resilient societies, second edn., edited by: Birkmann, J., United Nations University Press, New York, USA, 460 pp., 2006.
Birkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M.,
Schneiderbauer, S., Kienberger, S., Keiler, M., Alexander, D., Zeil, P., and
Welle, T.: Framing vulnerability, risk and societal responses: the MOVE
framework, Nat. Hazards, 67, 193–211, 2013.
Birkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M.,
Schneiderbauer, S., Zeil, P., and Welle, T.: Theoretical and Conceptual
Framework for the Assessment of Vulnerability to Natural Hazards and Climate
Change in Europe, in: Assessment of Vulnerability to Natural Hazards: A
European Perspective, edited by: Birkmann, J., Kienberger, S., and Alexander,
D., Elsevier, San Diego, California, USA, chap. 1, 1–19, 2014.
Buendía, J. A. T.: Relaciones socioespaciales en los Cerros Orientales:
prácticas , valores y formas de apropiación territorial en torno a
las quebradas la Vieja y las Delicias en Bogotá, PhD thesis,
Universidad Colegio Mayor Nuestra Señora del Rosario, Bogotá, Colombia, 2013.
Cardona, O.: The need for rethinking the concepts of vulnerability and risk
from a holistic perspective: a necessary review and criticism for effective
risk management, in: Mapping Vulnerability: Disasters, Development and
People, edited by: Bankoff, G., Frerks, G., and Hilhorst, D., chap. 3, Earthscan
Publishers, London, UK, 37–51, 2003.
Cardona, O. D.: Estimación Holística del Riesgo Sísmico
utilizando Sistemas Dinámicos Complejos, PhD thesis, Universidad
Politécnica de Cataluña, Barcelona, Spain, 2001.
Cardona, O. D., Van Aalts, M. K., Birkmann, J., Fordham, M., Glenn, M.,
Perez, R., Pulwarty, R. S., Schipper, L. F., and Sinh, B. T.: Determinants
of Risk : Exposure and Vulnerability, in: Managing the Risks of Extreme
Events and Disasters to Advance Climate Change Adaptation. A Special Report
of Working Groups I and II of the Intergovernmental Panel on Climate Change
(IPCC), Cambridge University Press,
Cambridge, UK, and New York, NY, USA, chap. Determinan, 65–108, 2012.
Carroll, J.: An analytical solution for approximating simple structure in
factor analysis, Psychometrika, 18, 23–38, https://doi.org/10.1007/BF02289025, 1953.
Carroll, J.: Biquartimin criterion for rotation to oblique simple structure in
factor analysis, Science, 126, 1114–1115, https://doi.org/10.1126/science.126.3283.1114, 1957.
Cattell, R.: The scree test for the number of factors, Multivar. Behav. Res., 1, 245–276, https://doi.org/10.1207/s15327906mbr0102_10, 1966.
Chen, Y., Barrett, D., Liu, R., and Gao, L.: A spatial framework for
regional-scale flooding risk assessment, 7th International Congress on
Environmental Modelling and Software, 15–19 June 2014, San Diego, CA, USA, 2014.
Cimmery, B. V.: User Guide for SAGA (version 2.0.5), 2, 2010.
Costa, J.: Rheologic, geomorphic, and sedimentologic differentiation of water
floods, hyperconcentrated flows, and debris flows, in: Flood Geomorphology,
edited by: Baker, V. R., Kochel, R. C., and Patton, P. C., Wiley, New York, USA, 113–122, 1988.
Cutter, S., Boruff, B., and Shirley, W.: Social vulnerability to environmental
hazards, Soc. Sci. Quart., 84, 242–261, https://doi.org/10.1111/1540-6237.8402002, 2003.
Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., and
Webb, J.: A place-based model for understanding community resilience to
natural disasters, Global Environ. Chang., 18, 598–606, 2008.
DPAE: Diagnóstico Técnico 1836, Tech. rep., Direccion de
Prevención y Atención de Emergencias de Bogotá, Bogotá,
Colombia, 2003a.
DPAE: Diagnóstico Técnico 1891, Tech. rep., Direccion de
Prevención y Atención de Emergencias de Bogotá, Bogotá,
Colombia, 2003b.
DPAE: Diagnóstico Técnico 2414, Tech. rep., Direccion de
Prevención y Atención de Emergencias de Bogotá, Bogotá, Colombia, 2005.
Esty, D., Srebotnjak, T., Kim, C., Levy, M., Sherbinin, A., and Anderson, B.:
Pilot 2006 Environmental Performance Index, Tech. rep., Yale Center for
Environmental Law & Policy, New Haven, USA, 2006.
Fekete, A.: Validation of a social vulnerability index in context to
river-floods in Germany, Nat. Hazards Earth Syst. Sci., 9, 393–403,
https://doi.org/10.5194/nhess-9-393-2009, 2009.
Fuchs, S.: Susceptibility versus resilience to mountain hazards in Austria –
paradigms of vulnerability revisited, Nat. Hazards Earth Syst. Sci., 9,
337–352, https://doi.org/10.5194/nhess-9-337-2009, 2009.
Fuchs, S. and Holub, M.: Reducing Physical Vulnerability to Mountain Hazards,
in: 12th Congress INTERPRAEVENT 2012, Grenoble, France, 675–686, 2012.
Fuchs, S., Heiss, K., and Hübl, J.: Towards an empirical vulnerability
function for use in debris flow risk assessment, Nat. Hazards Earth Syst.
Sci., 7, 495–506, https://doi.org/10.5194/nhess-7-495-2007, 2007.
Fuchs, S., Tsao, T.-C., and Keiler, M.: Quantitative Vulnerability Functions
for use in Mountain Hazard Risk Management, in: 12th Congress INTERPRAEVENT
2012, Grenoble, France, 885–896, 2012.
Gallant, J. and Dowling, T.: A multiresolution index of valley bottom flatness
for mapping depositional areas, Water Resour. Res., 39, 1347–1360,
2003.
Greiving, S.: Multi-risk assessment of Europe's regions, Measuring
Vulnerability to Natural Hazards: Toward Disaster Resilient Societies, United Nations University, New York, USA, 2006.
Harris, C. and Kaiser, H.: Oblique factor analytic solutions by orthogonal
transformations, Psychometrika, 29, 347–362, https://doi.org/10.1007/BF02289601, 1964.
Hendrickson, A. and White, P.: Promax: A quick method for rotation to oblique
simple structure, Brit. J. Statist. Psych., 1964.
Holub, M., Suda, J., and Fuchs, S.: Mountain hazards: Reducing vulnerability
by adapted building design, Environ. Earth Sci., 66, 1853–1870,
2012.
Horn, J.: A rationale and test for the number of factors in factor analysis,
Psychometrika, 30, 179–185, https://doi.org/10.1007/BF02289447, 1965.
Hu, K. H., Cui, P., and Zhang, J. Q.: Characteristics of damage to buildings
by debris flows on 7 August 2010 in Zhouqu, Western China, Nat. Hazards Earth
Syst. Sci., 12, 2209–2217, https://doi.org/10.5194/nhess-12-2209-2012, 2012.
Hufschmidt, G., Crozier, M., and Glade, T.: Evolution of natural risk:
research framework and perspectives, Nat. Hazards Earth Syst. Sci., 5,
375–387, https://doi.org/10.5194/nhess-5-375-2005, 2005.
Hyndman, D. W. and Hyndman, D. W.: Natural hazards and disasters, Yolanda
Cossio, Belmont, USA, 4 edn., 2008.
IWR: Flood Risk Management Approaches. As being practiced in Japan, the
Netherlands, United Kingdom and United States, United States Army Corps of Engineers, Washington, DC, USA, 2011.
Jakob, M.: Debris-flow hazard analysis, in: Debris-flow hazards and related
phenomena, edited by: Jakob, M. and Hungr, O., Springer-Verlag, Berlin, Germany, chap. 17, 411–443, 2005.
Jakob, M., Porter, M., Savigny, K. W., and Yaremko, E.: A geomorphic approach
to the design of pipeline crossings of mountain streams, Proceedings of IPC
2004: International Pipeline Conference, 4–8 October 2004,
Calgary, Alberta, Canada, 1–8, 2004.
Jakob, M., Stein, D., and Ulmi, M.: Vulnerability of buildings to debris flow
impact, Nat. Hazards, 60, 241–261, 2012.
Jakob, M., Holm, K., Weatherly, H., Liu, S., and Ripley, N.: Debris flood risk
assessment for Mosquito Creek, British Columbia, Canada, Natural Hazards,
65, 1653–1681, http://link.springer.com/10.1007/s11069-012-0436-6, 2013.
Jha, A., Bloch, R., and Lamond, J.: Cities and Flooding A guide to Integrated
Urban Flood Risk Management for the 21st Century, The World Bank
Location: Washington, DC, USA, 2012.
JICA: Study on monitoring and early warning systems for landslide and floods
in Bogotá and Soacha, Tech. rep., Japanese Internation Cooperation
Agency – JICA, Bogotá, Colombia, 2006.
Jolliffe, I. T.: Principal Component Analysis, Springer Series in Statistics,
Springer-Verlag, New York, USA, 2002.
Jonkman, S., Bočkarjova, M., Kok, M., and Bernardini, P.: Integrated
hydrodynamic and economic modelling of flood damage in the Netherlands,
Ecol. Econ., 66, 77–90, 2008.
Kaiser, H.: The varimax criterion for analytic rotation in factor analysis,
Psychometrika, 23, 187–200, https://doi.org/10.1007/BF02289233,1958.
Kaiser, H.: The application of electronic computers to factor analysis.,
Educ. Psychol. Meas., 20, 141–151, https://doi.org/10.1177/001316446002000116, 1960.
Kappes, M., Papathoma-Köhle, M., and Keiler, M.: Assessing physical
vulnerability for multi-hazards using an indicator-based methodology,
Appl. Geogr., 32, 577–590, http://linkinghub.elsevier.com/retrieve/pii/S0143622811001378, 2012.
Kiers, H.: SIMPLIMAX: Oblique rotation to an optimal target with simple
structure, Psychometrika, 59, 567–579, https://doi.org/10.1007/BF02294392, 1994.
Koks, E., Jongman, B., Husby, T., and Botzen, W.: Combining hazard, exposure
and social vulnerability to provide lessons for flood risk management,
Environ. Sci. Pol., 47, 42–52, http://linkinghub.elsevier.com/retrieve/pii/S1462901114002056, 2015.
Larsen, M., Wieczorek, G., Eaton, L., and Torres-Sierra, H.: Natural Hazards
on Aluvial Fans: The Debris Flow and Flash flood disaster of December 1999,
Vargas State, Venezuela, in: Proceedings of the Sixth Caribbean Islands
Water Resources Congress, edited by: Sylva, W., Mayagüez, Puerto Rico, 00965, 1–7, 2001.
Lavigne, F. and Suwa, H.: Contrasts between debris flows, hyperconcentrated
flows and stream flows at a channel of Mount Semeru, East Java, Indonesia,
Geomorphology, 61, 41–58, 2004.
Liu, D. L. and Li, Y.: Social vulnerability of rural households to flood
hazards in western mountainous regions of Henan province, China, Nat. Hazards
Earth Syst. Sci. Discuss., 3, 6727–6744, https://doi.org/10.5194/nhessd-3-6727-2015,
2015.
Liu, X. and Lei, J.: A method for assessing regional debris flow risk: an
application in Zhaotong of Yunnan province (SW China), Geomorphology, 52,
181–191, http://linkinghub.elsevier.com/retrieve/pii/S0169555X02002428, 2003.
Liu, Y., Zhou, J., Song, L., Zou, Q., Guo, J., and Wang, Y.: Efficient
GIS-based model-driven method for flood risk management and its application
in central China, Nat. Hazards Earth Syst. Sci., 14, 331–346,
https://doi.org/10.5194/nhess-14-331-2014, 2014.
Lo, W.-C., Tsao, T.-C., and Hsu, C.-H.: Building vulnerability to debris flows
in Taiwan: a preliminary study, Nat. Hazards, 64, 2107–2128, http://www.springerlink.com/index/10.1007/s11069-012-0124-6,
2012.
Luino, F., Cirio, C. G., Biddoccu, M., Agangi, A., Giulietto, W., Godone, F.,
and Nigrelli, G.: Application of a model to the evaluation of flood damage,
Geoinformatica, 13, 339–353, 2009.
Luino, F., Turconi, L., Petrea, C., and Nigrelli, G.: Uncorrected land-use
planning highlighted by flooding: the Alba case study (Piedmont, Italy), Nat.
Hazards Earth Syst. Sci., 12, 2329–2346, https://doi.org/10.5194/nhess-12-2329-2012,
2012.
Luna, B., Blahut, J., Kappes, M., Akbas, S. O., Malet, J. P., Remaître,
A., and Jaboyedoff, M.: Methods for Debris Flow Hazard and Risk Assessment,
in: Mountain Risks: From Prediction to Management and Governance, pp.
133–177, http://www.springer.com/us/book/9789400767683, 2014.
Mazzorana, B., Levaggi, L., Keiler, M., and Fuchs, S.: Towards dynamics in
flood risk assessment, Nat. Hazards Earth Syst. Sci., 12, 3571–3587,
https://doi.org/10.5194/nhess-12-3571-2012, 2012.
Molinari, D., Molini, S., and Ballio, F.: Flood Early Warning Systems:
Knowledge and Tools for Their Critical Assessment, WIT Press, Southampton,
UK, 2013.
Müller, A., Reiter, J., and Weiland, U.: Assessment of urban vulnerability
towards floods using an indicator-based approach – a case study for Santiago
de Chile, Nat. Hazards Earth Syst. Sci., 11, 2107–2123,
https://doi.org/10.5194/nhess-11-2107-2011, 2011.
Nardi, F., Vivoni, E. R., and Grimaldi, S.: Investigating a floodplain scaling
relation using a hydrogeomorphic delineation method, Water Resour.
Res., 42, 1–15, 2006.
Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., and
Giovannini, E.: Handbook on Constructing Composite Indicators, OECD
publishing, Ispra, Italy, 2008.
Neuhaus, J. O.: The Quartimax Method: An Analytic Approach to Orthogonal
Simple Structure, Brit. J. Statist. Psych., 7, 81–91, 1954.
Nkwunonwo, U., Whitworth, M., and Baily, B.: Relevance of Social Vulnerability
Assessment to Flood Risk Reduction in the Lagos Metropolis of Nigeria,
British Journal of Applied Science & Technology, 8, 366–382, http://www.sciencedomain.org/abstract.php?iid=1072&id=5&aid=8949, 2015.
Osorio, J. A.: El río Tunjuelo en la historia de Bogotá, 1900–1990,
Alcaldia Mayor de Bogotá, Bogotá, Colombia, 2007.
Pacific Disaster Center: Bogotá, Colombia Disaster Risk Management
Profile, 3CD City Profiles Series, Bogotá, Colombia, 2006.
Papathoma-Köhle, M., Kappes, M., Keiler, M., and Glade, T.: Physical
vulnerability assessment for alpine hazards: state of the art and future
needs, Nat. hazards, 58, 645–680, http://link.springer.com/10.1007/s11069-010-9632-4, 2011.
Papathoma-Köhle, M., Keiler, M., Totschnig, R., and Glade, T.:
Improvement of vulnerability curves using data from extreme events: debris
flow event in South Tyrol, Natural Hazards, 64, 2083–2105, http://link.springer.com/10.1007/s11069-012-0105-9, 2012.
Quan Luna, B., Blahut, J., van Westen, C. J., Sterlacchini, S., van Asch, T.
W. J., and Akbas, S. O.: The application of numerical debris flow modelling
for the generation of physical vulnerability curves, Nat. Hazards Earth Syst.
Sci., 11, 2047–2060, https://doi.org/10.5194/nhess-11-2047-2011, 2011.
Rogelis, M. C. and Werner, M.: Regional debris flow susceptibility analysis
in mountainous peri-urban areas through morphometric and land cover
indicators, Nat. Hazards Earth Syst. Sci., 14, 3043–3064,
https://doi.org/10.5194/nhess-14-3043-2014, 2014.
Ruiz-Pérez, M. and Gelabert Grimalt, M.: Análisis De La
Vulnerabilidad Social Frente a Desastres Naturales: El Caso De La Isla De
Mallorca, GeoSig, 4, 1–26, 2012.
Rygel, L., O'sullivan, D., and Yarnal, B.: A method for constructing a social
vulnerability index: an application to hurricane storm surges in a developed
country, Mitigation and Adaptation Strategies for Global Change, 11, 741–764, https://doi.org/10.1007/s11027-006-0265-6 , 2006.
Safaripour, M., Monavari, M., and Zare, M.: Flood risk assessment using GIS
(case study: Golestan province, Iran), Pol. J. Environ.
Stud., 21, 1817–1824, 2012.
Santo, A., Santangelo, N., Di Crescenzo, G., Scorpio, V., De Falco, M., and
Chirico, G. B.: Flash flood occurrence and magnitude assessment in an
alluvial fan context: the October 2011 event in the Southern Apennines,
Nat. Hazards, http://link.springer.com/10.1007/s11069-015-1728-4, 2015.
Schanze, J., Zeman, E., and Marsalek, J.: Flood risk management: hazards,
vulnerability and mitigation measures, Springer, Dordrecht, the
Netherlands, 2006.
Schmidtlein, M. C., Deutsch, R., Piegorsch, W. W., and Cutter, S. L.: Building
indexes of Vulnerability : a sensitivity analysis of the Social Vulnerability
Index, Risk Anal., 28, 1099–1114, 2008.
Seethapathi, P., Dutta, D., and Kumar, R.: Hydrology of small watersheds, The
Energy and Resources Institute, New Deli, India, 2008.
Seifert, I., Thieken, A. H., Merz, M., Borst, D., and Werner, U.: Estimation
of industrial and commercial asset values for hazard risk assessment,
Nat. Hazards, 52, 453–479, 2009.
Sterlacchini, S., Akbas, S. O., Blahut, J., Mavrouli, O.-C., Garcia, C., Luna,
B. Q., and Corominas Dulcet, J.: Methods for the characterization of the
vulnerability of elements at risk, in: Mountain risks: from prediction to
management and governance, Springer Netherlands, Dordrecht, the Netherlands, 33–273, http://hdl.handle.net/2117/20764, 2014.
Su, M. and Kang, J.: A grid-based GIS approach to regional flood damage
assessment, J. Mar. Sci. Technol., 13, 184–192, 2005.
Thieken, A., Merz, B., Kreibich, H., and Apel, H.: Methods for flood risk
assessment: Concepts and challenges, International Workshop
on Flash Floods in Urban Areas Muscat, 4–6 September 2006,
Oman, 1–12 2006.
Totschnig, R. and Fuchs, S.: Mountain torrents: Quantifying vulnerability and
assessing uncertainties, Eng. Geol., 155, 31–44,
https://doi.org/10.1016/j.enggeo.2012.12.019, 2013.
Totschnig, R., Sedlacek, W., and Fuchs, S.: A quantitative vulnerability
function for fluvial sediment transport, Nat. Hazards, 58, 681–703,
http://link.springer.com/10.1007/s11069-010-9623-5,
2011.
Tsao, T.-C., Hsu, W.-K., Cheng, C.-T., Lo, W.-C., and Chen, C.-Y.: A
preliminary study of debris flow risk estimation and management in Taiwan,
International symposium interpraevent in the Pacific Rim, 26–30 April 2010, Taipei, 930–939, 2010.
UNEP: Assessing Human Vulnerability to Environmental Change: Concepts, Issues,
Methods and Case Studies, Nairobi, Kenya, 57 pp., 2003.
UNISDR: Living with risk: a global review of disaster reduction
initiatives, vol. 1, 2004.
UNISDR: Terminology on Disaster Risk Reduction, Tech. rep., United Nations
International Strategy for Disaster Reduction, Geneva, Switzerland, 2009.
United Nations General Assembly: Resolution adopted by the General Assembly
on 3 June 2015, Sendai Framework for Disaster Risk Reduction 2015–2030,
08955, 1–24, http://www.preventionweb.net/files/resolutions/N1516716.pdf,
2015.
van Westen, C., Kappes, M., Luna, B., Frigerio, S., Glade, T., and Malet,
J.-P.: Medium-Scale Multi-hazard Risk Assessment of Gravitational
Processes, in: Mountain Risks: From Prediction to Management and Governance
SE – 7, 34, 201–231, http://dx.doi.org/10.1007/978-94-007-6769-0_7, 2014.
Varnes, D. J.: Landslide hazard zonation: a review of principles and
practice, Tech. rep., Commission on landslides of the IAEG, UNESCO, 1984.
Wisner, B., Blaikie, P., and Cannon, T.: At Risk: natural hazards, people's
vulnerability and disasters, Routledge, second edn., 2003.
Short summary
A method to identify mountainous watersheds with the highest flood risk at the regional level is proposed and applied in Bogotá (Colombia). Vulnerability at the regional level was assessed and combined with an existing flood susceptibility indicator, thus providing an index that allows the watersheds to be prioritised. Results show that vulnerability can be expressed in terms of four constituent indicators and a sensitivity analysis shows that the classification of vulnerability is robust.
A method to identify mountainous watersheds with the highest flood risk at the regional level is...
Altmetrics
Final-revised paper
Preprint