Articles | Volume 16, issue 12
https://doi.org/10.5194/nhess-16-2455-2016
https://doi.org/10.5194/nhess-16-2455-2016
Research article
 | 
29 Nov 2016
Research article |  | 29 Nov 2016

Development of fragility curves for railway embankment and ballast scour due to overtopping flood flow

Ryota Tsubaki, Jeremy David Bricker, Koji Ichii, and Yoshihisa Kawahara

Related authors

A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary

Related subject area

Hydrological Hazards
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024,https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024,https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024,https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024,https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary

Cited articles

Apel, H., Thieken, A. H., Merz, B., and Blöschl, G.: Flood risk assessment and associated uncertainty, Nat. Hazards Earth Syst. Sci., 4, 295–308, https://doi.org/10.5194/nhess-4-295-2004, 2004.
Apel, H., Merz, B., and Thieken, A.: Influence of dike breaches on flood frequency estimation, Comput. Geosci., 35, 907–923, https://doi.org/10.1016/j.cageo.2007.11.003, 2009.
Argyroudis, S. and Kaynia, A. M.: Fragility Functions of Highway and Railway Infrastructure, Springer Netherlands, Dordrecht, 299–326, https://doi.org/10.1007/978-94-007-7872-6_10, 2014.
Bates, P. D., Marks, K. J., and Horritt, M. S.: Optimal use of high-resolution topographic data in flood inundation models, Hydrol. Process., 17, 537–557, https://doi.org/10.1002/hyp.1113, 2003.
Brammer, H.: Floods in Bangladesh: II. Flood Mitigation and Environmental Aspects, Geogr. J., 156, 158–165, 1990.
Download
Short summary
Railways in floodplains and coastal areas are frequently damaged by floods. Railway systems suffering scour damage face interruption of operation for weeks. This substantially limits the socioeconomic activities that rely on the transport service provided by the railway. This paper proposes new fragility curves for railway embankment and ballast scour. This contributes to expand our ability to estimate risk of flood hazard on our society more holistic than ever.
Altmetrics
Final-revised paper
Preprint