Articles | Volume 15, issue 1
Nat. Hazards Earth Syst. Sci., 15, 119–134, 2015
https://doi.org/10.5194/nhess-15-119-2015
Nat. Hazards Earth Syst. Sci., 15, 119–134, 2015
https://doi.org/10.5194/nhess-15-119-2015

Research article 15 Jan 2015

Research article | 15 Jan 2015

Evaluating snow weak-layer failure parameters through inverse finite element modelling of shaking-platform experiments

E. A. Podolskiy et al.

Related authors

Thinning leads to calving-style changes at Bowdoin Glacier, Greenland
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021,https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Healing of snow surface-to-surface contacts by isothermal sintering
E. A. Podolskiy, M. Barbero, F. Barpi, G. Chambon, M. Borri-Brunetto, O. Pallara, B. Frigo, B. Chiaia, and M. Naaim
The Cryosphere, 8, 1651–1659, https://doi.org/10.5194/tc-8-1651-2014,https://doi.org/10.5194/tc-8-1651-2014, 2014

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How is avalanche danger described in textual descriptions in avalanche forecasts in Switzerland? Consistency between forecasters and avalanche danger
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021,https://doi.org/10.5194/nhess-21-3879-2021, 2021
Short summary
Data-based wildfire risk model for Mediterranean ecosystems – case study of the Concepción metropolitan area in central Chile
Edilia Jaque Castillo, Alfonso Fernández, Rodrigo Fuentes Robles, and Carolina G. Ojeda
Nat. Hazards Earth Syst. Sci., 21, 3663–3678, https://doi.org/10.5194/nhess-21-3663-2021,https://doi.org/10.5194/nhess-21-3663-2021, 2021
Short summary
The mud volcanoes at Santa Barbara and Aragona (Sicily, Italy): a contribution to risk assessment
Alessandro Gattuso, Francesco Italiano, Giorgio Capasso, Antonino D'Alessandro, Fausto Grassa, Antonino Fabio Pisciotta, and Davide Romano
Nat. Hazards Earth Syst. Sci., 21, 3407–3419, https://doi.org/10.5194/nhess-21-3407-2021,https://doi.org/10.5194/nhess-21-3407-2021, 2021
Short summary
Impact of information presentation on interpretability of spatial hazard information: lessons from a study in avalanche safety
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 21, 3219–3242, https://doi.org/10.5194/nhess-21-3219-2021,https://doi.org/10.5194/nhess-21-3219-2021, 2021
Short summary
ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-3141-2021,https://doi.org/10.5194/nhess-21-3141-2021, 2021
Short summary

Cited articles

Abe, O. and Nakamura, T.: A new method of measurements of the shear strength of snow, horizontal vibration method, Snow Life Tohoku, 15, 13–14, 2000.
Abe, O. and Nakamura, T.: Shear fracture strength of snow measured by the horizontal vibration method, J. Snow Eng., 21, 11–12, 2005.
Bader, H. and Salm, B.: On the mechanics of snow slab release, Cold Reg. Sci. Technol., 17, 287–300, 1990.
Baroudi, D., Sovilla, B., and Thibert, E.: Effects of flow regime and sensor geometry on snow avalanche impact-pressure measurements, J. Glaciol., 57, 277–288, https://doi.org/10.3189/002214311796405988, 2011.
Bazant, Z. P., Zi, G., and McClung, D.: Size effect law and fracture mechanics of the triggering of dry snow slab avalanches, J. Geophys. Res., 108, 2119, https://doi.org/10.1029/2002JB001884, 2003.
Download
Altmetrics
Final-revised paper
Preprint