Articles | Volume 14, issue 12
https://doi.org/10.5194/nhess-14-3243-2014
https://doi.org/10.5194/nhess-14-3243-2014
Research article
 | 
05 Dec 2014
Research article |  | 05 Dec 2014

Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin

P. Iribarren Anacona, K.P. Norton, and A. Mackintosh

Related authors

Preservation and degradation of ancient organic matter in mid-Miocene Antarctic permafrost
Marjolaine Verret, Sebastian Naeher, Denis Lacelle, Catherine Ginnane, Warren Dickinson, Kevin Norton, Jocelyn Turnbull, and Richard Levy
EGUsphere, https://doi.org/10.5194/egusphere-2025-786,https://doi.org/10.5194/egusphere-2025-786, 2025
Short summary
Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021,https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
IACS: past, present, and future of the International Association of Cryospheric Sciences
Ian Allison, Charles Fierz, Regine Hock, Andrew Mackintosh, Georg Kaser, and Samuel U. Nussbaumer
Hist. Geo Space. Sci., 10, 97–107, https://doi.org/10.5194/hgss-10-97-2019,https://doi.org/10.5194/hgss-10-97-2019, 2019
Short summary
A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates
Rubianca Benavidez, Bethanna Jackson, Deborah Maxwell, and Kevin Norton
Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018,https://doi.org/10.5194/hess-22-6059-2018, 2018
Short summary
U–Th and 10Be constraints on sediment recycling in proglacial settings, Lago Buenos Aires, Patagonia
Antoine Cogez, Frédéric Herman, Éric Pelt, Thierry Reuschlé, Gilles Morvan, Christopher M. Darvill, Kevin P. Norton, Marcus Christl, Lena Märki, and François Chabaux
Earth Surf. Dynam., 6, 121–140, https://doi.org/10.5194/esurf-6-121-2018,https://doi.org/10.5194/esurf-6-121-2018, 2018
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modeling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1255–1292, https://doi.org/10.5194/nhess-25-1255-2025,https://doi.org/10.5194/nhess-25-1255-2025, 2025
Short summary
Causes, consequences and implications of the 2023 landslide-induced Lake Rasac glacial lake outburst flood (GLOF), Cordillera Huayhuash, Peru
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
Nat. Hazards Earth Syst. Sci., 25, 1207–1228, https://doi.org/10.5194/nhess-25-1207-2025,https://doi.org/10.5194/nhess-25-1207-2025, 2025
Short summary
The Avalanche Terrain Exposure Scale (ATES) v.2
Grant Statham and Cam Campbell
Nat. Hazards Earth Syst. Sci., 25, 1113–1137, https://doi.org/10.5194/nhess-25-1113-2025,https://doi.org/10.5194/nhess-25-1113-2025, 2025
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca A. Hetland, Tarjei Tveito Skille, and Andrea Mannberg
Nat. Hazards Earth Syst. Sci., 25, 929–948, https://doi.org/10.5194/nhess-25-929-2025,https://doi.org/10.5194/nhess-25-929-2025, 2025
Short summary

Cited articles

Alean, J.: Ice avalanches: some empirical information about their formation and reach, J. Glaciol., 31, 324–333, 1985.
Allen, S. K., Schneider, D., and Owens, I. F.: First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand's Southern Alps, Nat. Hazards Earth Syst. Sci., 9, 481–499, https://doi.org/10.5194/nhess-9-481-2009, 2009.
Andreassen, L. M., Paul, F., Kääb, A., and Hausberg, J. E.: Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s, The Cryosphere, 2, 131–145, https://doi.org/10.5194/tc-2-131-2008, 2008.
Ayalew, L., Yamagishi, H., Marui, H., and Kanno, T.: Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and veri?cations, Eng. Geol., 81, 432–445, 2005.
Bajracharya, B., Shrestha, A. B., and Rajbhandari, L.: Glacial lake outburst floods in the Sagarmatha region, Mountain Res. Develop., 27, 336–344, 2007.
Download
Short summary
In Patagonia at least 16 moraine-dammed lakes have failed in historical time. Commonly failed lakes were in contact with glaciers at the time of failure and had moderate (≥ 8°) to steep (≥15°) outlet slopes. Seven failed lakes are located in the Baker Basin, Chilean Patagonia, were hydro-electric generation plants are planned. We assessed the outburst susceptibility of moraine-dammed lakes in the Baker Basin and identified 28 lakes with high or very high outburst susceptibility.
Share
Altmetrics
Final-revised paper
Preprint