Articles | Volume 14, issue 12
https://doi.org/10.5194/nhess-14-3243-2014
https://doi.org/10.5194/nhess-14-3243-2014
Research article
 | 
05 Dec 2014
Research article |  | 05 Dec 2014

Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin

P. Iribarren Anacona, K.P. Norton, and A. Mackintosh

Related authors

Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021,https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
IACS: past, present, and future of the International Association of Cryospheric Sciences
Ian Allison, Charles Fierz, Regine Hock, Andrew Mackintosh, Georg Kaser, and Samuel U. Nussbaumer
Hist. Geo Space. Sci., 10, 97–107, https://doi.org/10.5194/hgss-10-97-2019,https://doi.org/10.5194/hgss-10-97-2019, 2019
Short summary
A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates
Rubianca Benavidez, Bethanna Jackson, Deborah Maxwell, and Kevin Norton
Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018,https://doi.org/10.5194/hess-22-6059-2018, 2018
Short summary
U–Th and 10Be constraints on sediment recycling in proglacial settings, Lago Buenos Aires, Patagonia
Antoine Cogez, Frédéric Herman, Éric Pelt, Thierry Reuschlé, Gilles Morvan, Christopher M. Darvill, Kevin P. Norton, Marcus Christl, Lena Märki, and François Chabaux
Earth Surf. Dynam., 6, 121–140, https://doi.org/10.5194/esurf-6-121-2018,https://doi.org/10.5194/esurf-6-121-2018, 2018
Short summary
The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016,https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024,https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary

Cited articles

Alean, J.: Ice avalanches: some empirical information about their formation and reach, J. Glaciol., 31, 324–333, 1985.
Allen, S. K., Schneider, D., and Owens, I. F.: First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand's Southern Alps, Nat. Hazards Earth Syst. Sci., 9, 481–499, https://doi.org/10.5194/nhess-9-481-2009, 2009.
Andreassen, L. M., Paul, F., Kääb, A., and Hausberg, J. E.: Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s, The Cryosphere, 2, 131–145, https://doi.org/10.5194/tc-2-131-2008, 2008.
Ayalew, L., Yamagishi, H., Marui, H., and Kanno, T.: Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and veri?cations, Eng. Geol., 81, 432–445, 2005.
Bajracharya, B., Shrestha, A. B., and Rajbhandari, L.: Glacial lake outburst floods in the Sagarmatha region, Mountain Res. Develop., 27, 336–344, 2007.
Download
Short summary
In Patagonia at least 16 moraine-dammed lakes have failed in historical time. Commonly failed lakes were in contact with glaciers at the time of failure and had moderate (≥ 8°) to steep (≥15°) outlet slopes. Seven failed lakes are located in the Baker Basin, Chilean Patagonia, were hydro-electric generation plants are planned. We assessed the outburst susceptibility of moraine-dammed lakes in the Baker Basin and identified 28 lakes with high or very high outburst susceptibility.
Altmetrics
Final-revised paper
Preprint