Articles | Volume 25, issue 8
https://doi.org/10.5194/nhess-25-2771-2025
https://doi.org/10.5194/nhess-25-2771-2025
Research article
 | 
18 Aug 2025
Research article |  | 18 Aug 2025

Seismic signal characterization of snow avalanches using distributed acoustic sensing in Grasdalen, western Norway

Franz Kleine, Charlotte Bruland, Andreas Wuestefeld, Volker Oye, and Martin Landrø

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Simulation of cold-powder snow avalanches considering daily snowpack and weather situations
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025,https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Supershear crack propagation in snow slab avalanche release: new insights from numerical simulations and field measurements
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025,https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
The effect of slab touchdown on anticrack arrest in propagation saw tests
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci., 25, 1975–1991, https://doi.org/10.5194/nhess-25-1975-2025,https://doi.org/10.5194/nhess-25-1975-2025, 2025
Short summary
Proglacial lake development and outburst flood hazard at Fjallsjökull glacier, southeast Iceland
Greta H. Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
Nat. Hazards Earth Syst. Sci., 25, 1913–1936, https://doi.org/10.5194/nhess-25-1913-2025,https://doi.org/10.5194/nhess-25-1913-2025, 2025
Short summary
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary

Cited articles

Biescas, B., Dufour, F., Furdada, G., Khazaradze, G., and Suriñach, E.: Frequency Content Evolution of Snow Avalanche Seismic Signals, Surv. Geophys., 24, 447–464, https://doi.org/10.1023/B:GEOP.0000006076.38174.31, 2003. a
Bjordal, H. and Larsen, J.: Avalanche Risk in a Changing Climate Development of a Landslide and Avalanche Risk Model, https://www.semanticscholar.org/paper/Avalanche-Risk-in-a-Changing-Climate-Development-of-Bjordal (last access: 17 October 2024), 2009. a
Bouffaut, L., Taweesintananon, K., Kriesell, H. J., Rørstadbotnen, R. A., Potter, J. R., Landrø, M., Johansen, S. E., Brenne, J. K., Haukanes, A., Schjelderup, O., and Storvik, F.: Eavesdropping at the Speed of Light: Distributed Acoustic Sensing of Baleen Whales in the Arctic, Front. Mar. Sci., 9, 901348, https://doi.org/10.3389/fmars.2022.901348, 2022. a
Buisman, M., Draganov, D., and Kirichek, A.: Monitoring tidal water-column changes in ports using distributed acoustic sensing, 84th EAGE Annual Conference & Exhibition, 2023, 1–5, https://doi.org/10.3997/2214-4609.2023101115, 2023. a
Crameri, F.: Scientific colour maps, Zenodo, https://doi.org/10.5281/zenodo.8409685, 2023. a
Download
Short summary
We used a fiber optic cable along a road in western Norway to study snow avalanches signals. Our study shows that avalanches create distinct signals in the 20–50 Hz frequency range, with larger ones having weak early warning signals. However, road traffic interference complicates automatic detection. This research highlights the potential of using existing infrastructure for avalanche monitoring. Further improvements are needed for automated detection.
Share
Altmetrics
Final-revised paper
Preprint