Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2455-2025
https://doi.org/10.5194/nhess-25-2455-2025
Research article
 | 
22 Jul 2025
Research article |  | 22 Jul 2025

Automated rapid estimation of flood depth using a digital elevation model and Earth Observation Satellite (EOS-04)-derived flood inundation

Lakshmi Amani Chimata, Suresh Babu Anuvala Setty Venkata, Shashi Vardhan Reddy Patlolla, Durga Rao Korada Hari Venkata, Sreenivas Kandrika, and Prakash Chauhan

Related authors

Emissions of methane from coal fields, thermal power plants, and wetlands and their implications for atmospheric methane across the south Asian region
Mahalakshmi Venkata Dangeti, Mahesh Pathakoti, Kanchana Lakshmi Asuri, Sujatha Peethani, Ibrahim Shaik, Rajan Krishnan Sundara, Vijay Kumar Sagar, Raja Pushpanathan, Yogesh Kumar Tiwari, and Prakash Chauhan
Atmos. Chem. Phys., 24, 12843–12859, https://doi.org/10.5194/acp-24-12843-2024,https://doi.org/10.5194/acp-24-12843-2024, 2024
Short summary
Influence of Meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India
Gaddamidi Sreenivas, Pathakoti Mahesh, Jose Subin, Asuri Lakshmi Kanchana, Pamaraju Venkata Narasimha Rao, and Vinay Kumar Dadhwal
Atmos. Chem. Phys., 16, 3953–3967, https://doi.org/10.5194/acp-16-3953-2016,https://doi.org/10.5194/acp-16-3953-2016, 2016
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
An automated approach for developing geohazard inventories using news: integrating natural language processing (NLP), machine learning, and mapping
Aydoğan Avcıoğlu, Ogün Demir, and Tolga Görüm
Nat. Hazards Earth Syst. Sci., 25, 2421–2435, https://doi.org/10.5194/nhess-25-2421-2025,https://doi.org/10.5194/nhess-25-2421-2025, 2025
Short summary
Prediction of the volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Das Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci., 25, 1481–1499, https://doi.org/10.5194/nhess-25-1481-2025,https://doi.org/10.5194/nhess-25-1481-2025, 2025
Short summary
Monitoring snow depth variations in an avalanche release area using low-cost lidar and optical sensors
Pia Ruttner, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1315–1330, https://doi.org/10.5194/nhess-25-1315-2025,https://doi.org/10.5194/nhess-25-1315-2025, 2025
Short summary
Satellite-based data for agricultural index insurance: a systematic quantitative literature review
Thuy T. Nguyen, Shahbaz Mushtaq, Jarrod Kath, Thong Nguyen-Huy, and Louis Reymondin
Nat. Hazards Earth Syst. Sci., 25, 913–927, https://doi.org/10.5194/nhess-25-913-2025,https://doi.org/10.5194/nhess-25-913-2025, 2025
Short summary
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to the Kathmandu Valley, Nepal
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025,https://doi.org/10.5194/nhess-25-353-2025, 2025
Short summary

Cited articles

Ali, A. and Ansar, M.: Unsupervised Image Classification in ERDAS IMAGINE, ResearchGate, https://doi.org/10.13140/RG.2.2.29403.36649, 2017. 
Bazi, Y., Bruzzone, L., and Melgani, F.: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images, IEEE T. Geosci. Remote, 43, https://doi.org/10.1109/TGRS.2004.842441, 2005. 
Boni, G., Ferraris, L., Pulvirenti, L., Squicciarino, G., Pierdicca, N., Candela, L., Pisani, A. R., Zoffoli, S., Onori, R., Proietti, C., and Pagliara, P.: A prototype system for flood monitoring based on flood forecast combined with COSMO-SkyMed and Sentinel-1 data, IEEE J. Sel. Top. Appl., 9, 2794–2805, https://doi.org/10.1109/JSTARS.2016.2514402, 2016. 
Bovolo, F. and Bruzzone, L.: A split-based approach to unsupervised change detection in large-size multitemporal images: application to tsunami-damage assessment, IEEE T. Geosci. Remote, 45, 1658–1670, https://doi.org/10.1109/TGRS.2007.895835, 2007. 
Brown, K. M., Hambidge, C. H., and Brownett, J. M.: Progress in operational flood mapping using satellite synthetic aperture radar (SAR) and airborne light detection and ranging (LiDAR) data, Prog. Phys. Geogr., 40, 96–214, https://doi.org/10.1177/0309133316633570, 2016. 
Download
Short summary
Fast flood assessments are important for providing effective help during emergencies and planning for future floods. This study presents a new automated way to quickly measure flood depth. Using satellite images and digital elevation models, this method makes it easier to get real-time flood information. We applied this new method to several flood-prone areas in India and found that it provides more accurate results than existing flood measurement tools.
Share
Altmetrics
Final-revised paper
Preprint