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Abstract. Rapid and accurate flood assessment is crucial
for effective disaster response, rehabilitation, and mitiga-
tion strategies. This study presents a fully automated frame-
work for floodwater delineation and depth estimation using
the Earth Observation Satellite 4 (EOS-04) (Radar Imaging
Satellite, RISAT-1A) synthetic aperture radar (SAR) imagery
and a digital elevation model (DEM). This is the first study
to apply the established automatic-tile-based segmentation
method and the height above the nearest drainage (HAND)
tool to EOS-04 data for flood extent delineation. For flood
depth estimation, this study introduces a novel application of
the trend surface analysis (TSA) technique, enabling rapid
and data-efficient assessment. Unlike traditional hydrody-
namic models that demand extensive datasets and computa-
tional resources, TSA operates using only the inundated wa-
ter layer and DEM, providing a highly data-efficient solution.

The methodology is applied to flood-prone regions in
Andhra Pradesh, Assam, Bihar, and Uttar Pradesh, India.
Validation of flood extent against optical data demonstrates
accuracy greater than 90 %. Flood depth estimation using
TSA is validated by comparing water depths derived from
river gauge stations with real-time field measurements and
results from the floodwater depth estimation tool (FwDET).
The TSA method achieves a root-mean-square error (RMSE)
of 0.805, significantly outperforming FwDET’s RMSE of
5.23. This integration of high-resolution SAR imagery and
DEM represents a transformative, automated solution for
real-time flood monitoring and depth estimation, enhancing
disaster management capabilities.

1 Introduction

Floods are frequent natural disasters that can have dev-
astating consequences, including the loss of life, destruc-
tion of property, and disruption of livelihoods. According to
the National Disaster Management Authority (NDMA), In-
dia is highly susceptible to floods, with over 4.0× 107 ha
out of a total geographical area of 3.29× 108 ha prone to
flooding (https://ndma.gov.in/Natural-Hazards/Floods, last
access: 9 July 2025). A satellite-derived flood-affected
area atlas (1998–2022) indicates that the flood-affected
area in India is 1.58× 107 ha, reflecting the impact of
significant flood events and cyclones (https://ndma.gov.in/
flood-hazard-atlases, last access: 9 July 2025). However,
satellite data may have limitations in capturing other flood-
affected regions, such as flash floods of short duration and ar-
eas lacking satellite coverage during the flooding period. Cer-
tain rivers are critical, including the Brahmaputra and Barak
in Assam, the Kosi and Ganga in Bihar, the Ganga and Ya-
muna in Uttar Pradesh, and the Godavari in Andhra Pradesh.
Cyclone-prone states such as Odisha, Andhra Pradesh, West
Bengal, and Gujarat account for 1.0×107 ha of flood-affected
areas, necessitating detailed hazard zonation maps. This
highlights the critical need for real-time flood mapping and
monitoring, the implementation of automated flood mapping
techniques, and the generation of accurate spatial flood depth
information to support disaster management efforts in these
regions.

Satellite data and flood inundation information are widely
used for near-real-time mapping and monitoring of flood
events (Sadiq et al., 2022). Accuracy in flood extent and
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depth is essential for effective relief and rehabilitation ef-
forts in the field. In this context, both optical and microwave
satellite datasets are utilized, with the latter being more fre-
quently used due to its ability to acquire satellite data under
all weather conditions including rain, clouds, and sunlight,
unlike sun-synchronous optical satellite sensors (Greifeneder
et al., 2014). Therefore, space-borne synthetic aperture radar
(SAR) systems are preferred for flood monitoring. The tech-
niques for satellite-derived flood inundation mapping, flood
depth estimation, and various case studies are examined from
the literature. Earth Orbiting Satellite 4 (EOS-04), the latest
launch from the Indian Space Research Organization (ISRO),
is designed to provide near-real-time flood mapping and
monitoring capabilities. Equipped with SAR sensors, it oper-
ates in both ascending and descending modes across coarse-
resolution mode (CRS), medium-resolution mode (MRS),
and fine-resolution mode (FRS) configurations (Suresh Babu
et al., 2024). The present research focuses on using data from
the newly launched EOS-04 to develop a methodology for
automated, rapid estimation of flood inundation mapping and
flood depth estimation using the digital elevation model.

SAR data use the unique properties of water to detect
water-covered areas. Generally, low-backscatter measure-
ments are possible in calm, open-water surfaces with SAR
data (Schlaffer et al., 2015). This property of SAR images
makes distinguishing water from surrounding surfaces more
effective, even though visual interpretation helps flood map-
ping (Pierdicca et al., 2008). A literature survey revealed sev-
eral articles on using SAR images for flood detection using
various methods such as (i) backscatter-value-based thresh-
olding (Boni et al., 2016; Chini et al., 2017; Greifeneder et
al., 2014; Manjusree et al., 2012; Marti-Cardona et al., 2013;
Martinis et al., 2013, 2015), (ii) interferometric coherence
calculation (Chini et al., 2019), (iii) region growing and ac-
tive contour model (Mason et al., 2014; Li et al., 2014; Tong
et al., 2018), (iv) object-oriented classification (Horritt et al.,
2001; Kuenzer et al., 2013; Mason et al., 2010), (iv) fuzzy
classification (Martinis et al., 2015), and (vi) change detec-
tion (Bazi et al., 2005; Mason et al., 2014; Martinis et al.,
2013; Schlaffer et al., 2015; Shen et al., 2019). Among these
methods, thresholding-based methods have been used the
most widely in the literature, in part because they are compu-
tationally less time-consuming and could also yield compara-
ble accuracy to the more complex segmentation approaches
(Kuenzer et al., 2013). Among backscatter histogram thresh-
olding algorithms, the Otsu method has been widely applied
to image segmentation (Otsu, 1979; Kittler and Illingworth,
1986). This method can automatically calculate the global
threshold based on the criterion of maximum between-class
variance and has high classification accuracy for images with
a uniform bimodal distribution of grey histogram. However,
supposing that the histogram is unimodal or has nonuniform
illumination, the traditional Otsu algorithm will fail and will
favour the class with a significant variance to improve the
classification accuracy (Xu and Lin, 2013; Yuan et al., 2015).

If the object size is less than 10 % of the whole area, the per-
formance of the Otsu method degrades significantly, and it
will not be helpful for water detection methods (Cao et al.,
2019).

Bovolo et al. (2007) used an unsupervised split-based ap-
proach (SBA) that involved dividing the SAR image for
change detection. This method automatically splits the im-
age into a set of nonoverlapping sub-images of a user-defined
size. Then, the sub-images are sorted according to their prob-
ability of containing many changed pixels. Afterward, a sub-
set of splits with a high likelihood of containing changes
is selected and analysed. This same change detection tech-
nique was applied by Bovolo and Bruzzone (2007) to iden-
tify tsunami-induced changes in multi-temporal imagery for
flood detection and by Martinis et al. (2015) to map floods
in TerraSAR-X data. In view of the above limitation of the
Otsu method and considering the merits of the change detec-
tion method, the present study introduced a novel approach
combining the Otsu threshold method with a tile-based seg-
mentation strategy for flood extent delineation in EOS-04 im-
ages.

However, there is a limitation to this technique when map-
ping in hilly areas. On very steep slopes, the hillside may
appear completely dark, as no radar signal is returned at all,
potentially leading to a false interpretation of water pixels.
In addressing this issue, Giacomelli et al. (1995) integrated a
SAR image with a digital terrain model and employed a sim-
ple technique to exclude this false interpretation by utilizing
slope, slope direction, and drainage information. Addition-
ally, the height above the nearest drainage (HAND) tool has
been used to exclude hilly areas, enhancing the efficiency of
the extracted water layer output, as demonstrated by Nobre
et al. (2011). In this approach, the HAND raster values are
appropriately classified to eliminate false interpretations in
the water layer.

In addition to the availability of flood inundation informa-
tion in near real time, it is crucial to have access to spatial
flood depth maps for directing rescue and relief operations,
pooling necessary resources, determining road closures and
accessibility, and conducting post-event analysis (Islam and
Sadu, 2001). Flood depth identification during or after flood
events is critical to assess hazard levels and create risk zone
maps, which are essential for post-disaster flood mitigation
planning. While direct surveying methods used to determine
floodwater depth can be highly accurate, they are often in-
fluenced by weather conditions, are costly, and may require
field crews to obtain authorization to access sensitive flooded
areas. In light of this, remote-sensing-based techniques and
digital elevation models (DEMs) are valuable for estimating
flood depth (Elkhrachy, 2022). Various hydrodynamic mod-
els such as HEC-RAS, Delft-3D, and LISFLOOD-FP have
been developed to simulate water levels and flood depths
(Yalcin, 2018; Costabile et al., 2021). However, these models
require extensive data inputs, such as rainfall, soil moisture,
flood maps, gauge discharge, cross-sections, and other hy-
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drological inputs, which result in significant computational
time and resource requirements.

Cohen et al. (2017) developed a floodwater depth calcula-
tion model based on high-resolution flood extent and DEM
layers, known as the FwDET (floodwater depth estimation
tool). The FwDET model identifies the floodwater elevation
for each cell within the flooded domain based on its near-
est flood boundary grid cell. While FwDET has been evalu-
ated as one of the most effective tools to estimate flood depth
from remote-sensing-derived water extent and DEM (Teng et
al., 2022), it has inherent limitations. One critical limitation
is that FwDET’s floodwater depth maps are not continuous,
often showing sharp transitions in values, which leads to lin-
ear stripes across the flooded domain (Cohen et al., 2022).
Trend surface analysis has long been used by geographers,
geologists, and ecologists to fit surfaces to data recorded at
sample points scattered across a 2D sample space (Chorley
and Haggett, 1965). In this paper, flood depth is estimated
using a novel application of trend surface analysis, which
utilizes only the inundated water layer and a digital eleva-
tion model (DEM). This study introduces a novel approach
to an end-to-end fully automated framework for floodwater
delineation and depth estimation, utilizing real-time EOS-04
(RISAT-1A) synthetic aperture radar (SAR) imagery and a
digital elevation model (DEM).

2 Study area

The research focused on four significantly flood-affected re-
gions in India’s river plains: the Godavari, Brahmaputra,
Kosi, and Ganga River basins. Table 1 provides detailed char-
acteristics of flood proneness in these regions, while Fig. 1
illustrates a location map and the input EOS-04 images of
the study areas.

3 Data used

Comprehensive details regarding the satellite data and the
associated digital elevation model (DEM) utilized for esti-
mating flood inundation and depth are provided in Table 2.
To validate the flood extent layers, optical datasets were em-
ployed, with additional specifics outlined in Table 3. Figure 2
illustrates the locations of river gauge stations and the field-
measured water levels provided by the Central Water Com-
mission (CWC) of India. In Fig. 2, permanent water bodies
within each study area are clearly highlighted in blue.

3.1 Satellite data and digital elevation models

The Earth Observation Satellite 4 (EOS-04) is a syn-
thetic aperture radar (SAR) satellite operating in the C-
band frequency range of 5.4 GHz. Positioned in a sun-
synchronous orbit at an altitude of 524.87 km, it offers var-
ious imaging modes, including fine-resolution strip mode

(FRS), medium-resolution scanSAR mode (MRS), coarse-
resolution scanSAR mode (CRS), and high-resolution spot-
light mode (HRS). These modes allow the satellite to capture
data with different levels of detail and coverage. The resolu-
tion ability of EOS-04 ranges from 1 to 50 m, enabling data
acquisition at various spatial resolutions.

3.2 Field measurements

Typically, water levels are measured using gauge stations in-
stalled along rivers. The Central Water Commission (CWC)
of India provides hourly field measurements from these
gauge stations, as illustrated in Fig. 2 for various sites, and
makes the information available on their website (https://ffs.
india-water.gov.in/, last access: 11 July 2025). Water levels
recorded at the times corresponding to satellite acquisitions
across all study areas are compared with the interpolated lev-
els derived from the trend surface analysis (TSA). Table 3
presents the field-measured water levels from gauge stations
corresponding to the specific dates and times of satellite ac-
quisitions.

4 Methodology

The process of quickly estimating flood depth using the dig-
ital elevation model and EOS-04 imagery involves several
steps. These include generating a radar backscatter coeffi-
cient image from the raw satellite image, extracting the flood
inundation layer using an automated tile-based segmentation
method, obtaining terrain information prior to the flood event
using a digital elevation model, interpolating floodwater sur-
face levels through trend surface analysis, and determining
the spatial flood depth. The methodology is illustrated in the
flow chart shown in Fig. 3a and b. Customized Python code
has been developed specifically for automated flood mapping
and depth estimation using the ArcGIS and GDAL libraries.

4.1 Data acquisition and preprocessing

Any multi-sensor satellite data that are acquired after the
flood event by satellite are hosted in the Indian Space Re-
search Organization (ISRO)’s Bhoonidhi portal and can be
downloaded. Preprocessing of EOS-04 data involves both ge-
ometric and radiometric corrections before the application of
data for flood extraction (A. V. Suresh Babu et al., 2024). Ge-
ometric correction ensures the spatial accuracy of the SAR
data by aligning it with a coordinate system or by correct-
ing distortions caused by sensor geometry, Earth’s curvature,
and terrain variations. Radiometric correction involves ad-
justing the pixel values in the SAR data to accurately reflect
the actual backscattered signal (converts raw digital numbers
(DNs) into physical quantities such as backscatter intensity),
compensating for system and environmental effects. This en-
sures consistency across sensors and acquisition times. Radar
backscatter represents the intensity of the radar signal re-
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Table 1. Study area locations and its characteristics.

No. Location (lat/long) in decimal
degrees

States and districts
covered, river basin

Study area (km2) Characteristics of the study
area

1 17.4008 to 17.8592° N and
80.9720 to 81.6582° E

Andhra Pradesh-Alluri
Sitaram Raju district

72 km× 50 km Receives maximum rainfall
during the southwest monsoon;
84 % of annual rainfall falls
during the period starting in
mid-June and ending by
mid-October

2 25.9885 to 26.7132° N and
90.6755 to 91.8661° E

Guwahati and Barpeta
areas of Assam State

120 km× 80 km The Brahmaputra River, known
as the lifeline of Assam, is one
of the largest rivers in the
world in terms of discharge

3 25.0975 to 25.7142° N and
86.2874 to 87.6618° E

Bhagalpur of Bihar
State

138 km× 68 km Floods frequently occur in
Bihar over the Kosi River
basin; hence the Kosi River is
known as the “sorrow of
Bihar”. Floods are generally
caused by a breach of the
embankment along the Kosi
river owing to intense rainfall
during the monsoon season

4 27.0138 to 27.6943° N and
79.1919 to 80.1584° E

Farrukhabad area of
Uttar Pradesh

95 km× 75 km The vast majority of the state
lies within the Gangetic Plain.
The weather is of the tropical
monsoon type

Table 2. Satellite data and the DEMs used for the flood extent and depth estimation.

No. Study area Satellite Satellite data Satellite date DEM used for DEM spatial Size of study
sensor spatial and time the study area resolution area

resolution (m) (m) (km2)

1. Andhra EOS-04, 36 28 July 2023 Lidar DEM 5 3300
Pradesh CRS mode at 18:00 IST

2. Assam EOS-04, 36 20 June 2023 FAB (forest and buildings 30 9600
CRS mode at 18:00 IST removed) DEM Copernicus

3. Bihar EOS-04, 18 3 September 2023 FAB (forest and 30 9384
MRS mode at 06:00 IST buildings removed)

DEM Copernicus

4. Uttar EOS-04, 18 15 August 2023 FAB-DEM 30 7600
Pradesh MRS mode at 06:00 IST Copernicus

flected back to the sensor from the Earth’s surface, providing
valuable insights into surface roughness, moisture content,
and material properties. By analysing radar backscatter, wa-
ter bodies can be accurately identified, surface conditions can
be properly assessed, and land and water classification can be
improved in remote sensing applications. Radar backscatter
coefficient values, i.e. sigma nought (σo), for the EOS-04 im-

age are computed using the following equation (Eq. (1)):

σo (dB)= 20× log10 (DN)+ 10× log10 sinθinc−CF, (1)

where DN represents the digital number (amplitude in level-
2 products), θinc is the per-pixel local incidence angle, and
CF is the calibration factor.
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Figure 1. Publisher’s remark: please note that the above figure contains disputed territories. Map showing four study area locations: Andhra
Pradesh, Assam, Bihar, and Uttar Pradesh.

Table 3. Optical data used for the validation of flood extent.

No. Study area Optical dataset Satellite data spatial resolution (m) Satellite date

1 Bihar Resourcesat-2 LISS-4 sensor 5.8 m 3 September 2023
2 Uttar Pradesh Landsat-8 15 m 15 August 2023

4.2 Water layer extraction

The water layer from the radiometrically calibrated im-
age is extracted using the automatic-tile-based segmentation
method, which involves partitioning the image into tiles and
specific criteria-based tile selection, calculating thresholds,
and classifying the image into water and non-water areas
(Martinis et al., 2015), as illustrated in Fig. 4. The image is
partitioned into non-overlapping tiles of equal size (n×n pix-
els), referred to as parent tiles. If perfect partitioning is not
possible, the last row and column tiles are adjusted to ensure
that they remain n× n pixels. Each parent tile is then subdi-

vided into four equal-sized child tiles. For threshold calcula-
tion, tiles are selected based on two conditions.

1. The mean radar backscatter value of the parent tile
should be lower than the mean backscatter value of the
entire image, ensuring that the tiles are located near the
boundary between water and non-water areas.

2. The standard deviation of the parent tile must exceed
95 % of the image’s overall standard deviation, indicat-
ing significant variation within the tile, which enhances
the classification of water and non-water areas.
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Figure 2. River gauge station locations in Andhra Pradesh, Assam, Bihar, and Uttar Pradesh. Note that the blue colour represents permanent
water bodies in each study area.

Table 4. Field-measured water levels from gauge stations in the study area.

No Study area Water gauge station name Field-measured water levels (m)

1 Andhra Pradesh Kunavaram 41.02
2 Koida 39.72

3 Assam Beki Rd bridge 44.92
4 Pangladiya NT Rd crossing 52.84
5 Pandu 47.25
6 Guwahathi 48.19

7 Bihar Baltara 34.90
8 Kahalgaon 31.08
9 Azamabad 30.54
10 Kursela 29.98

11 Uttar Pradesh Dabri 137.18
12 Fathegarh 137.78
13 Kannauj 125.67
14 Bewar 138.32

If parent tiles that meet the specified conditions are less
than 5 % of the total tiles, the image is subdivided into
smaller tiles (n/2 × n/2), the standard deviation threshold
is then relaxed to 90 %, and the process is repeated until the
selected tile is sufficient. Once the necessary tiles are cho-
sen, all parent tiles that satisfy both conditions are processed
using the Otsu thresholding technique. The global threshold
value is calculated as the average of the individual thresh-
olds from the selected tiles and is used to classify the SAR
image into water and non-water areas. This methodology is
summarized in the flowchart presented in Fig. 3b.

4.3 Refinement of the water layer

To improve the accuracy of water classification and eliminate
false water areas such as shadows and stray pixels caused
by speckle noise, the height above nearest drainage (HAND)
tool is employed. HAND is a terrain model that standard-
izes topography relative to the drainage network and char-
acterizes local drainage potential. In a HAND raster, each
pixel represents the vertical distance (in m) from that point
to the nearest drainage channel. The HAND tool facilitates
the rapid identification of non-flooded areas by restricting the
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Figure 3. Methodology overview: (a) steps in the methodology and (b) a detailed flowchart illustrating the methodology.

flood areas up to a HAND value of 15 m, following the lo-
cal drainage direction toward the channel where water flows.
According to Nobre et al. (2015), regions with HAND values
greater than 15 m are less vulnerable to flooding. Thus, ap-
plying the HAND mask refines the water layer, significantly
reducing misclassification and subsequently producing the

flood layer by subtracting a permanent river mask. The cre-
ation of a HAND raster from a DEM involves several steps,
illustrated in Fig. 3b. These steps include the following:

– generating a seamless, hydrologically corrected DEM
using the fill tool,
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Figure 4. Automatic-tile-based segmentation of the SAR image. (a) Division of the SAR image into n parent tiles. (b) Division of the parent
tile into four child tiles. (c) Histogram of one child tile.

– defining flow paths using the flow direction function,

– identifying the drainage network through flow accumu-
lation,

– calculating the HAND values using the D8 (eight-
connectivity) flow distance algorithm.

4.4 Generation of the water surface

To estimate flood depth, it is necessary to generate a water
surface using only a 2D inundated water layer and a dig-
ital elevation model (DEM) as input data with trend sur-
face analysis (TSA). The TSA-generated water surface offers
a notable advantage over traditional hydrodynamic models,
which are often data-intensive. This streamlined approach
provides a simplified yet effective solution for flood depth
estimation. Trend surface analysis uses global polynomial in-
terpolation to generate a smooth surface defined by a math-
ematical function derived from input sample points. This
technique effectively captures gradual changes and coarse-
scale patterns in the data, producing a smooth surface that
reflects the overall trend across the area of interest (Morton
and Pennycuick, 1974). TSA achieves this by fitting a poly-
nomial function to known data points (outer-boundary eleva-
tion points) and using this function to predict values at loca-
tions where data are unavailable inside the flood extent. In
this study, the outer-boundary elevation values derived from
the DEM for the inundated water layer are used as input for
the interpolation process. Based on the findings of Cohen et
al. (2017), Huang et al. (2014), Brown et al. (2016), and Cian
et al. (2018), it is assumed that the water surface in flooded
areas is flat when calculating flood depth. In natural flood
scenarios, water does not flow in abrupt steps like it would
over steep or terraced terrain. Instead, floodwaters tend to
spread out smoothly, forming a surface with a gentle slope or
remaining nearly flat across large areas. This occurs because
floodwater follows the path of least resistance, gradually fill-
ing depressions and expanding outward rather than forming
sharp elevation differences. Given this characteristic, using a
first-degree polynomial equation in the trend surface analy-

sis (TSA) is a rational approach for modelling the floodwater
surface. A first-degree polynomial represents a linear trend,
which effectively captures the gradual variation in water sur-
face elevation across the flooded area. This ensures that the
estimated water surface reflects the actual spread of flood-
water rather than introducing artificial discontinuities that
would arise if higher-degree polynomials or abrupt elevation
changes were assumed. By implementing this method, the
study enhances flood depth estimation accuracy, as it aligns
with the natural behaviour of floodwaters. The approach pro-
vides a more realistic representation of inundation, ensuring
that calculated flood depths are consistent with the actual hy-
drodynamic conditions observed during flooding events.

Mathematically, the elevation observed at any point along
the outer boundary of the inundated water surface can be ex-
pressed as the sum of the predicted elevation from TSA and
the residual error at that point:

Zobserved = f (xi,yi)+ ri .

Zobserved is the observed elevation value at the ith point in-
side the water surface, and f (xi,yi) is the polynomial func-
tion that predicts the elevation based on the coordinates xi
(latitude) and yi(longitude). ri represents the residual at the
ith point, which is the difference between the observed and
predicted elevations.

The first-degree polynomial equation used in this study is
defined as follows :

f (xi,yi)= axi + byi + c,

where a, b, and c are constants that define the coefficients of
the polynomial.

In real-world topographic surfaces, observed elevations
rarely align perfectly with the predicted trend. Residuals ri
quantify the discrepancy:

– a positive residual indicates that the observed elevation
is above the trend surface

– a negative residual indicates that the observed elevation
is below the trend surface.
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To determine the optimal coefficients a, b, and c, the
least-squares criterion is employed, minimizing the sum of
squared residuals (S):

S =
∑N

i=1

(
r2
i

)
,

where S represents the sum of squared residuals and ri is the
residual at the ith point.

The process used to derive the TSA-interpolated surface
is illustrated in Fig. 5. First, the 2D water layer, obtained
from the automatic-tile-based segmentation method, and the
HAND tool, as shown in Fig. 5a, need to be converted into
polygon form. This layer is then transformed into a poly-
gon that retains only the outer-boundary segments. Next, the
polygon is converted into raster format, and the correspond-
ing outer-boundary elevation values are assigned from the
digital elevation model (DEM). Since the TSA technique op-
erates exclusively on point data, the raster is then converted
to point form, as depicted in Fig. 5b. A first-degree polyno-
mial surface is fit to the outer-boundary elevation values.

Predicted elevations are computed across the inundated
area, producing an interpolated TSA water surface, as illus-
trated in Fig. 5c. The resulting TSA interpolated surface pro-
vides estimated water surface levels in metres.

4.5 Flood depth

The calculation of flood depth is achieved by subtracting the
digital elevation model (DEM) from the water levels interpo-
lated by the TSA. The resulting depth is expressed in metres,
as depicted in Fig. 5d.

5 Results

This research focuses on automated rapid flood inundation
and depth estimation using synthetic aperture radar (SAR)
imagery (EOS-04 data); the integration of the automatic-
tile-based segmentation method and the height above nearest
drainage (HAND) tool is validated for flood extent against
cloud-free optical satellite data for Bihar and Uttar Pradesh,
as detailed in Sect. 5.1. Floodwater depth is estimated in all
study areas and validated according to Sect. 5.2. Accurate
digital elevation models (DEMs) are critical for determining
floodwater depth, but highly accurate DEMs are not available
in all places; hence the assessment of the sensitivity of flood
depth against DEM characteristics is required. This study
uses a high-resolution 5 m lidar DEM and the 30 m Coperni-
cus FAB-DEM for the Godavari River to assess flood depth
sensitivity, as described in Sect. 5.2.1. Flood depth estimation
using trend surface analysis (TSA) is conducted for the Go-
davari, Ganga, Brahmaputra, and Kosi rivers. The accuracy
of TSA-derived flood depth estimates is assessed by com-
paring them with field-measured river water levels recorded
by the Central Water Commission (CWC) for corresponding
dates and times. Additionally, further comparisons with the

floodwater depth estimation tool (FwDET) are comprehen-
sively detailed in Sect. 5.2.2.

5.1 Flood inundation area estimation and validation

The flood inundation layer is created using the proposed
method from EOS-04 data. Conducting fieldwork for flood
map validation during a flood disaster is often challeng-
ing. Therefore, the accuracy of the delineated flood layer
is assessed using a cloud-free optical satellite image from
Landsat-8 at a 15 m resolution, which was acquired on the
same date, i.e. 15 August 2023, as the EOS-04 data at an
18 m resolution in the Uttar Pradesh study area. Additionally,
a Resourcesat-2 LISS-4 image at a 5.8 m resolution, also ob-
tained on the same date as the EOS-04 image, i.e. 3 Septem-
ber 2023, was used for the Bihar study area. To extract water
extent from the optical images, standard unsupervised classi-
fication techniques were applied using ERDAS Imagine soft-
ware (Ali and Ansar, 2017). The results of this analysis are
presented in Fig. 6, as shown below. Delineated flood pixels
are shown in blue.

As a part of the accuracy test for flood extent using the pro-
posed method, the confusion matrix and performance met-
rics are computed for the Bihar and Uttar Pradesh study area
using the respective optical datasets, as detailed in Tables 5
and 6.

The flood delineation accuracy for the Bihar and Uttar
Pradesh study areas exceeds 90 % when compared to the op-
tical data in Table 6. However, certain discrepancies are ob-
served when compared to Table 5 due to the characteristics of
microwave data. In shallow flowing water areas, microwave
sensors may incorrectly classify these regions as dry, un-
like optical data, which accurately identifies the presence of
water. Additionally, microwave data sometimes misinterpret
moisture-laden areas as flooded, leading to overestimation.

Despite these limitations, the automatic-tile-based seg-
mentation method combined with the HAND tool proves ef-
fective for generating flood maps rapidly using EOS-04 data.
Since flood depth estimation relies on the delineated flood
extent from SAR images, this method offers a reliable ap-
proach to automatically detect water layers, enabling effi-
cient and accurate flood mapping in critical situations.

5.2 Floodwater depth estimation and validation

5.2.1 Sensitivity of flood depth with DEM
characteristics

The accuracy of floodwater depth measurements depends
significantly on the accuracy and spatial resolution of the
digital elevation model (DEM), as it plays a major role in
the interpolation of floodwater depth. To assess this, an anal-
ysis was conducted in the Godavari flood plain area utilizing
two different DEM datasets. One DEM was derived from li-
dar data with a 5 m spatial resolution and a vertical accuracy
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Figure 5. Methodology for flood depth estimation using the TSA technique. (a) The water layer is created using the automatic-tile-based
segmentation technique and the HAND tool. (b) Elevation values are extracted as points for the outer-boundary water layer from the digital
elevation model (DEM). (c) The interpolated surface is generated using these elevation points through trend surface analysis (TSA). (d) Flood
depth is estimated by subtracting DEM values from the interpolated water levels (above mean sea level).

Figure 6. Comparison of optical satellite data and EOS-04 data. (a) EOS-04 data and the delineated flood layer using the automatic-tile-based
segmentation method and the HAND tool in the Bihar study area. (b) Resourcesat-2 LISS-4 data and the flood inundation layer extracted
using unsupervised classification in the Bihar study area. (c) EOS-04 data and the delineated flood layer using the automatic-tile-based
segmentation method and the HAND tool in the Uttar Pradesh study area. (d) LANDSAT-8 data and the flood inundation layer extracted
using unsupervised classification in the Uttar Pradesh study area.

of 15 cm, while the other was obtained from the public do-
main, specifically the Copernicus FAB-DEM, with an 8 m
vertical accuracy and a 30 m spatial resolution. This com-
parative study aims to evaluate the impact of public domain

DEMs on the accuracy of floodwater depth estimation. Here,
the flood depth is estimated in the Godavari flood plain study
area using the trend surface analysis (TSA) technique. The
results of this analysis are presented in the Fig. 7 below. A
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Table 5. Confusion matrix for flooded and non-flooded pixels in Bihar and Uttar Pradesh study areas.

Bihar Uttar Pradesh

Actual/predicted Flooded Non-flooded Actual/predicted Flooded Non-flooded

Flooded 8 534 283 116 598 Flooded 174 506 6391
Non-flooded 513 381 2 038 290 Non-flooded 11 577 37 686

Table 6. Performance metrics for the flooded pixels in the Bihar and
Uttar Pradesh study areas.

Study area Precision Recall F1 score Accuracy

Bihar 95 % 80 % 87 % 94 %
Uttar Pradesh 86 % 76 % 81 % 92 %

scatter plot is drawn to compare flood depth values estimated
using the TSA technique for lidar and Copernicus DEMs.

The scatter plot above indicates that 90 % of flood depth
points derived from lidar and Copernicus DEMs match
closely. The areas where discrepancies occur are predom-
inantly in steep-slope regions where the elevation changes
rapidly. Therefore, accurate lidar-derived DEMs are essen-
tial for estimating flood depths in steep areas. In contrast, for
gentle-slope areas, Copernicus DEM with a 30 m spacing and
vertical accuracy of 8 m provides sufficiently accurate flood
depth estimates, as the depths are relative heights.

5.2.2 Results of the flood depth estimation and
validation

The shape of flood layers varies across different areas, with
some regions appearing wide, indicating a gentle slope, and
others being narrow along rivers, suggesting a steeper gra-
dient, as observed in the aforementioned case studies. There
is an increasing demand for the accurate determination of
flowing water surfaces to precisely estimate flood depths.
Typically, the flowing water surface is derived through two
steps: firstly, by collecting elevations along the flood inun-
dation boundary, which represent varying heights of discrete
points, and secondly, by fitting a surface across these eleva-
tion points using the proposed interpolation methods.

Derivation of flood depths using the TSA technique in
the study areas

Given the dynamic nature of varying water levels of flowing
rivers at different locations, employing trend surface analysis
becomes essential to simulate the exact water surface, espe-
cially in large flooded areas with gentle slopes. This process
involves calculating floodwater depths based on the DEM
resolution at specific locations, such as pixels. Figure 8 below
illustrates the flood depths in four areas of gentle slope. For
the Andhra Pradesh study area, lidar-DEM-derived floodwa-

ter depth using TSA is illustrated in Fig. 8a. For the remain-
ing three study areas, Bihar, Assam, and Uttar Pradesh, the
publicly available Copernicus DEM is used to estimate flood-
water depth using the TSA technique.

From Fig. 8, it is evident that the flood depth is greater in
river areas, and it is represented in blue. Flood depths derived
from the TSA technique are smooth and continuous.

Validation of flood depth results

The water levels derived using the trend surface analysis
(TSA) technique in four case study areas are compared with
field-based water level measurements from gauge stations
provided by the Central Water Commission (CWC) for the
same date and time. Figure 9 illustrates the method used to
compare the TSA-derived water levels and the field measure-
ments.

At each CWC river gauge station, TSA-interpolated wa-
ter levels were computed. The field-measured water levels
at the corresponding location, date, and time served as ref-
erence points for the comparison study. Table 7 presents the
comparison results and also includes a comparison against
water levels estimated using the floodwater depth estimation
(FwDET) method. The FwDET water level estimations were
performed in the open-source QGIS environment using the
same study area’s inundation water layer and a digital eleva-
tion model (DEM) as inputs.

The results of the floodwater surface derived from sur-
face trend analysis and the floodwater depth estimation tool
(FwDET) indicate that the water surface from the trend
analysis closely matches the water surface measurement at
CWC gauge stations, whereas the surface derived from the
FwDET tool shows significant deviations. TSA estimates de-
viate from field-level floodwater depth measurements by less
than 65 cm on average across 14 gauge stations. Most inter-
polated water levels show a small difference (less than 50 cm)
compared to field measurements. The underestimation of wa-
ter levels by the TSA method is primarily due to the presence
of real-time gauge stations on upstream flood plains. Con-
versely, overestimation occurs in areas where gauge stations
are located on downstream flood plains.

The trend surface analysis method provides a more bal-
anced and accurate representation of flood surfaces in such
cases. However, it is observed that the slope of the flood-
affected area plays a significant role in the accuracy of flood
depth estimation. For gentle slopes, the accuracy of the TSA

https://doi.org/10.5194/nhess-25-2455-2025 Nat. Hazards Earth Syst. Sci., 25, 2455–2472, 2025



2466 L. A. Chimata et al.: Automated rapid estimation of flood depth

Figure 7. Plot between lidar-DEM-derived and Copernicus-DEM-derived flood depths.

Figure 8. Flood depths calibrated using the TSA technique for the states of (a) Andhra Pradesh, (b) Assam, (c) Bihar, and (d) Uttar Pradesh.

method is notably higher. Graphs are plotted in Fig. 10 for
the case studies against river gauge station water level and
field measurement and the TSA and FwDET methods.

In all case studies, the trend surface analysis (TSA)
method outperforms the FwDET method when compared
to field measurements. The root-mean-square error (RMSE)
was calculated for both techniques, with TSA yielding an
RMSE of 0.805, whereas FwDET produced an RMSE of
5.23. FwDET estimates generally exhibit sharp transitions
in flood depth, while TSA provides a smoother depth distri-
bution. Since the TSA-estimated depths also depend on the
accuracy of flood extent mapping, the results indicate that
the flood maps generated through the automatic-tile-based

segmentation method appear to be accurate. The turnaround
time for this entire process; i.e. flood mapping and flood
depth, takes around 2 to 5 min on a desktop computer
(3.2 GHz processor and 128 GB RAM) depending on the area
of the case study.

5.3 Discussion

This study introduces a novel approach framework for the
rapid estimation of flood extent and depth using data from
EOS-04, marking the first integration of such a methodology.
The proposed method enhances the process of deriving flood
extent compared to the automatic-tile-based threshold tech-
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Figure 9. Pictorial representation of the flood plain and river gauge station.

Table 7. Comparison study of water levels between field measurements, TSA, and FwDET.

No. Water gauge Field-measured TSA-interpolated FwDET-interpolated
station name water levels water levels in m water levels in m

Andhra Pradesh

1 Kunavaram 41.02 40.63 46.62
2 Koida 39.72 39.68 42.19

Assam

1 Beki Rd bridge 44.92 46.4 41
2 Pangladiya NT Rd crossing 52.84 51.5 50.5
3 Pandu 47.25 47.12 41.5
4 Guwahathi 48.19 48.6 42

Bihar

1 Baltara 34.9 34.08 32.85
2 Kahalgaon 31.08 31.459 24
3 Azamabad 30.54 30.16 24
4 Kursela 29.98 28.98 27

Uttar Pradesh

1 Dabri 137.18 138.6 136.21
2 Fathegarh 137.78 137.4 136.05
3 Kannauj 125.67 126 125.82
4 Bewar 138.32 139.04 150.3

nique proposed by Martinis et al. (2015). While the tiling and
tile selection criteria remain consistent with the earlier ap-
proach, the application of the thresholding technique is a key
differentiator. Specifically, we employed the Otsu threshold-
ing method in this paper instead of the minimum error thresh-
olding method proposed by Kittler and Illingworth (1986).
The minimum error thresholding method determines an opti-
mal threshold by modelling pixel intensity distributions as
two Gaussian distributions and by minimizing the proba-
bility of a classification error. This method is effective for
images where pixel intensities follow a Gaussian distribu-
tion; it may not always be optimal where intensity distribu-
tions are complex. In contrast, Otsu’s method, which max-
imizes between-class variance, is computationally efficient
and more robust for the segmentation of flood extent in vary-

ing conditions. Thus, Otsu’s approach was preferred in this
study for its reliability in handling diverse flood scenarios. To
further improve accuracy, we integrated the height above the
nearest drainage (HAND) tool using digital elevation mod-
els (DEMs) to refine flood extent estimations. This enhance-
ment addresses limitations in the earlier technique, offering a
more topographically accurate representation of flood extent.
Unlike Martinis’s reliance on TerraSAR-X data operating in
the X band, our approach utilizes data from EOS-04, which
operates in the C band, demonstrating its applicability to a
different radar frequency domain. However, the method has
certain limitations; i.e. high-moisture areas are occasionally
interpreted as flooded regions due to the radar’s sensitivity
to water content in soil. Furthermore, the method achieves
optimal performance when the entire satellite scene is cov-
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Figure 10. Comparison plots for water levels among field measured data, TSA, and FwDET for all study areas.
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ered under the tile-fitting framework, ensuring comprehen-
sive data representation.

The study also compares the trend surface analysis (TSA)
method, a global fit interpolation technique, with local fit
methods like the floodwater depth estimation tool (FwDET).
TSA models the entire surface using global slope patterns,
producing a smoother flood depth distribution that captures
overall terrain slopes and gradients. This contrasts with
FwDET, which interpolates at discrete points and often re-
sults in sharp depth transitions (Cohen et al., 2019). TSA
produces a smoother distribution of flood depths, effectively
capturing overall slope direction and gradients, as shown in
Fig. 8. This makes TSA particularly adept at representing
gradual terrain changes and mitigating noise or localized de-
viations, thereby providing a clearer understanding of flood
dynamics over gentle slopes. Also, the TSA technique used
in this study is not dependent on the watershed but rather on
the slope and height of the terrain. The method relies on how
water interacts with the landscape based on the terrain’s in-
cline, which directly influences the accuracy of flood depth
estimation. When evaluating results against real-time field
measurements using RMSEs, TSA consistently outperforms
FwDET across all study areas. The lower RMSE of TSA
indicates its superior accuracy when estimating flood depth
compared to FwDET. A key advantage of TSA is that its ef-
ficiency is not constrained by the size of the study area; in-
stead, the flood extent and hydrologically conditioned DEM
play the most significant roles in its accuracy. In contrast,
FwDET has predominantly been applied to smaller study ar-
eas in previous research, limiting its applicability to large-
scale flood events. However, in real-world flood mapping,
large flood extents are more common, making the scalabil-
ity of an estimation method critical.

TSA has demonstrated superior performance in all as-
pects, providing more reliable flood depth estimations com-
pared to FwDET. Its ability to adapt to different terrain and
flood scenarios highlights its potential as a more effective and
scalable approach for flood mapping applications.

TSA-derived flood depths were tested on both 5 m lidar
DEM and the Copernicus 30 m DEM. The results, shown in
Fig. 7, reveal a close match in depth estimates for areas with
gentle slopes, demonstrating that even coarser DEMs, like
the Copernicus 30 m DEM, can be effectively used for flood
depth estimation in regions with gradual terrain. This broad-
ens the applicability of the method to datasets with vary-
ing spatial resolutions. However, the methodology is sen-
sitive to the DEM resolution and alignment with the flood
layer, sometimes necessitating manual adjustments to ensure
proper alignment between the DEM and flood extent.

While the method performs well in areas with gentle
slopes, it has limitations in steep terrain where TSA may
yield unreliable results. The TSA method fails to accurately
represent flood depth in permanent water bodies and reser-
voir backwaters due to the lack of bathymetric data in DEMs,
which only capture surface elevations. This can lead to un-

derestimation or misinterpretation of flood depths, partic-
ularly in regions affected by backwater effects. Integrat-
ing bathymetric data or hydrodynamic models could signifi-
cantly improve the accuracy of these estimations. Similarly,
using hydrologically conditioned DEMs that account for ar-
tificial structures like bridges could also enhance accuracy.

A further challenge in validating flood depth estimates lies
in the limited availability of field measurements, which are
primarily taken near river gauge stations. This restricts vali-
dation to areas near main rivers, making it difficult to assess
flood depths farther from these regions. Field measurements
are also constrained by accessibility issues, limiting the abil-
ity to validate the model across the entire floodplain.

Although the methodology does not account for dynamic
hydrodynamic characteristics such as flood velocity or tem-
poral variations, the data generated through this approach are
highly useful for real-time flood relief and rehabilitation ef-
forts, particularly in rescue operations. The rapid and auto-
mated nature of this framework enables near-real-time flood
assessment, supporting emergency response teams in deploy-
ing resources such as boats and skilled personnel more effec-
tively. End users can confidently use this tool to plan miti-
gation strategies such as floodplain zoning and infrastructure
protection, while recognizing its limitations when predicting
dynamic flood behaviours, etc.

6 Conclusions

In summary, the integration of the automatic-tile-based seg-
mentation method with the HAND (height above nearest
drainage) tool, applied to EOS-04 data, has proven to be
a highly effective approach to delineate flood layers. This
method addresses key challenges, such as mitigating hill
shadows and stray pixels in SAR data to eliminate false water
classifications. The study also highlights the sensitivity of the
publicly available DEMs, such as the Copernicus 30 m DEM,
in regions with gentle slopes where high-resolution DEMs
are unavailable. However, for steep flood-prone areas, fine-
resolution DEMs remain essential to ensure accurate flood
depth estimation.

The adoption of trend surface analysis (TSA) to interpo-
late water level data further enhances the accuracy and re-
liability of flood depth estimations, particularly in multidi-
mensional river models. TSA effectively captures the spa-
tial trends inherent in river systems, offering improved fitting
and precise representations of flood surfaces. When com-
bined, the automatic-tile-based segmentation and TSA tech-
niques have demonstrated robustness and accuracy, as vali-
dated against field-measured data. Despite some limitations,
this methodology enables rapid flood depth estimation across
any flooded area using only a flood layer extent and a hydro-
logically conditioned DEM. The flood layer defines the inun-
dation extent, while the conditioned DEM ensures accurate
elevation representation. Without relying on complex hydro-
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dynamic models or extensive field data, this approach allows
quick and efficient flood assessment, making it valuable for
emergency responses and large-scale flood mapping.

Future research will aim to test this methodology across
diverse regions of the country to evaluate its broader applica-
bility. Efforts will also focus on refining the approach to bet-
ter accommodate varying terrain conditions, including steep
slopes, and further improving the alignment and sensitivity of
DEM-based flood depth estimations. However, there is a way
forward: focusing on refining TSA to improve flood depth es-
timation in steep terrains, extending validation efforts using
remote sensing data such as UAV-based lidar and Sentinel-
3 altimetry, and integrating the proposed methodology into
real-time flood monitoring systems to enhance disaster re-
sponse and large-scale flood assessment.
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