Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2371-2025
https://doi.org/10.5194/nhess-25-2371-2025
Brief communication
 | 
15 Jul 2025
Brief communication |  | 15 Jul 2025

Brief communication: AI-driven rapid landslide mapping following the 2024 Hualien earthquake in Taiwan

Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani

Related authors

A Workflow to Identify and Monitor Slow-Moving Landslides through Spaceborne Optical Feature Tracking
Lorenzo Nava, Maximilian Van Wyk de Vries, and Louie Elliot Bell
EGUsphere, https://doi.org/10.5194/egusphere-2025-2795,https://doi.org/10.5194/egusphere-2025-2795, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Sentinel-1 SAR-based Globally Distributed Co-Seismic Landslide Detection by Deep Neural Networks
Lorenzo Nava, Alessandro Mondini, Kushanav Bhuyan, Chengyong Fang, Oriol Monserrat, Alessandro Novellino, and Filippo Catani
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-230,https://doi.org/10.5194/gmd-2024-230, 2025
Preprint under review for GMD
Short summary
A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024,https://doi.org/10.5194/essd-16-4817-2024, 2024
Short summary
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023,https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary

Cited articles

Amatya, P., Kirschbaum, D. B., Stanley, T., and Tanyaş, H.: Landslide mapping using object-based image analysis and open-source tools, Eng. Geol., 282, 106000, https://doi.org/10.1016/j.enggeo.2021.106000, 2021. a
Amatya, P., Scheip, C., Déprez, A., Malet, J.-P., Slaughter, S. L., Handwerger, A. L., Emberson, R., Kirschbaum, D. B., Jean-Baptiste, J., Huang, M.-H., Clark, M. K., Zekkos, D., Huang, J.-R., Pacini, F., and Boissier, E.: Learnings from rapid response efforts to remotely detect landslides triggered by the August 2021 Nippes earthquake and Tropical Storm Grace in Haiti, Nat. Hazards, 118, 2337–2375, https://doi.org/10.1007/s11069-023-06096-6, 2023. a, b, c
Bhuyan, K., Tanyaş, H., Nava, L., Puliero, S., Meena, S. R., Floris, M., Van Westen, C. J., and Catani, F.: Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data, Sci. Rep., 13, 162, https://doi.org/10.1038/s41598-022-27352-y, 2023. a, b, c, d
Catani, F.: Landslide detection by deep learning of non-nadiral and crowdsourced optical images, Landslides, 18, https://doi.org/10.1007/s10346-020-01513-4, 2021. a
Chang, J. M., Chao, W. A., Yang, C. M., and Huang, M. W.: Coseismic and subsequent landslides of the 2024 Hualien earthquake (M7.2) on April 3 in Taiwan, Landslides, 21, 2591–2595, https://doi.org/10.1007/s10346-024-02312-x, 2024. 
Download
Short summary
On 2 April 2024, a Mw 7.4 earthquake hit Taiwan's eastern coast, causing extensive landslides and damage. We used automated methods combining Earth observation (EO) data with AI to quickly inventory the landslides. This approach identified 7090 landslides over 75 km2 within 3 h of acquiring the EO imagery. The study highlights AI's role in improving landslide detection efforts in disaster response.
Share
Altmetrics
Final-revised paper
Preprint