Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2371-2025
https://doi.org/10.5194/nhess-25-2371-2025
Brief communication
 | 
15 Jul 2025
Brief communication |  | 15 Jul 2025

Brief communication: AI-driven rapid landslide mapping following the 2024 Hualien earthquake in Taiwan

Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani

Data sets

AI-driven rapid landslides mapping following the 2024 Hualien City Earthquake in Taiwan Alessandro Novellino https://doi.org/10.5281/zenodo.11519683

GDCLD C. Fang et al. https://doi.org/10.5281/zenodo.11369484

SAR-LRA: A Synthetic Aperture Radar-Based Landslide Rapid Assessment Tool Lorenzo Nava et al. https://doi.org/10.5281/zenodo.15159492

Interactive computing environment

SAR-LRA Tool V1 for Google Colaboratory Lorenzo Nava et al. https://doi.org/10.5281/zenodo.14898555

Download
Short summary
On 2 April 2024, a Mw 7.4 earthquake hit Taiwan's eastern coast, causing extensive landslides and damage. We used automated methods combining Earth observation (EO) data with AI to quickly inventory the landslides. This approach identified 7090 landslides over 75 km2 within 3 h of acquiring the EO imagery. The study highlights AI's role in improving landslide detection efforts in disaster response.
Share
Altmetrics
Final-revised paper
Preprint