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Abstract. On 2 April 2024, a Mw 7.4 earthquake struck
Taiwan’s eastern coast, triggering numerous landslides and
severely impacting infrastructure. To create a preliminary in-
ventory of the earthquake-induced landslides in Eastern Tai-
wan (3300 km2), we deployed automated landslide detec-
tion methods by combining Earth observation (EO) data with
AI models. The models identified 7090 landslide events cov-
ering > 75km2 within ≈ 3h of the acquisition of the EO
imagery. This research showcases AI’s role in rapid land-
slide detection for disaster response. The landslide inventory
generated can also be used to improve the understanding of
earthquake–landslide interactions and thus improve seismic
hazard mitigation.

1 Introduction

Taiwan is very prone to landslide hazards due to fre-
quent rainfall and earthquake events (Hung, 2000; Chuang
et al., 2021; Shou and Chen, 2021). A significant por-
tion of Taiwan’s population and its infrastructure are vul-
nerable to these hazards (Lee and Fei, 2015). On 2 April
2024, Taiwan was hit by a Mw 7.4 earthquake (United
States Geological Survey – USGS, 2024). The shaking re-

sulted in a large number of landslides along transport routes
with > 1100 people injured (https://disasterphilanthropy.org/
disasters/2024-taiwan-earthquake/, last access: 10 Novem-
ber 2024). A complete and up-to-date landslide inventory
is important as a support during emergency responses (Am-
atya et al., 2023) and also for a better understanding of the
spatio-temporal relationships between landslide occurrence
and driving factors (Lombardo et al., 2020). Such informa-
tion can redefine triggering thresholds for landslide early
warnings and hazard zoning for land use planning.

Over recent decades, spaceborne Earth observation (EO)
has become a predominant source for mapping landslides,
which are particularly useful to first responders (Amatya
et al., 2023; Novellino et al., 2024). Mapping landslides us-
ing EO data has become crucial for providing vital situational
awareness to first responders during large-scale landslide
events. Recently, there have been significant advances in AI-
based automated landslide detection and mapping (Novel-
lino et al., 2024). These approaches include utilizing crowd-
sourced data (Catani, 2021) and unoccupied aerial vehi-
cles (UAVs) (Dai et al., 2023), as well as analyzing lidar
(Fang et al., 2022) and satellite optical imagery (Amatya
et al., 2021; Bhuyan et al., 2023) and synthetic-aperture radar
(SAR) data (Nava et al., 2022).
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Additionally, there is a growing trend toward training
deep learning (DL) models capable of providing reliable pre-
dictions in new areas for rapid assessment of widespread
multiple-landslide events (MLEs). We find studies focus-
ing on a single data source, such as Copernicus Sentinel-2
(Prakash et al., 2021) and PlanetScope (Meena et al., 2023),
while others have investigated the integration of multisource
data (Fang et al., 2024a; Xu et al., 2024) to enhance accuracy
and improve transferability.

Despite this large amount of research, there remains a
scarcity of real-world applications leveraging AI techniques
in new, unseen large landslide events. Currently, to our best
knowledge, the work of Amatya et al. (2023) stands out as
one of the few studies where automatic landslide mapping
methods have been applied as part of disaster response ac-
tivities, in this case following the 2021 earthquake in Haiti.
However, as areas and methods change, more investigation of
such applications as well as AI-based methods must be un-
dertaken to speed up trust in and understanding of how such
automated systems can efficiently improve disaster response.

In this brief communication, we test state-of-the-art AI
techniques in practice on different EO satellite data for the
automatic detection and mapping of landslides associated
with the event. We further provide suggestions about how
these tools can support future rapid landslide mapping ef-
forts following major disasters worldwide. Lastly, we pro-
vide a preliminary co-seismic landslide inventory for updat-
ing landslide hazard models and supporting resilience to fu-
ture events.

2 Hualien earthquake and study area

On the 2 April 2024 (23:58 UTC), a Mw 7.4 earthquake
struck the eastern coast of Taiwan (USGS, 2024). The event
was located at a depth of 40 km with an epicenter near the
town of Hualien (Fig. 1) as a result of a reverse NE–SW
fault near the boundary between the Eurasian and Philippine
Sea plates. The main earthquake was followed by a Mw 6.5
aftershock 13 min later. Eastern Taiwan is not only tectoni-
cally active but also relentlessly battered by hurricanes, mak-
ing this location particularly prone to the rapid erosion of
the mountain chains built by tectonics. Following informa-
tion about the earthquake epicenter and effect (peak ground
acceleration, PGA) and reports on landslides from social
media through the Global Landslide Detector (Pennington
et al., 2022), we defined a 3300 km2 area of interest (AoI)
for mapping landslides centered around the town of Hualien
(> 0.2% PGA). The extent of the AoI is a trade-off between
the extent of the shaking and the availability of cloud-free
images in the aftermath of the event.

Figure 1. Peak ground velocity (PGV) values, peak ground accel-
eration (PGA) contours, and epicenter for the Hualien earthquake
(from USGS, 2024). The 0.2 % g is marked in black bold and rep-
resents the area of study of this work. Elevation basemap provider:
Esri (2024). Peak ground acceleration: USGS (2024).

3 Automated landslide detection and mapping

The landslide maps have been generated using the Synthetic
Aperture Radar Landslide Rapid Assessment (SAR-LRA)
tool based on convolutional neural networks (Nava et al.,
2024) and a vision transformer (ViT) model (Tang et al.,
2022; Fang et al., 2024a).

The SAR-LRA tool was trained and validated on 11 MLEs
globally distributed and uses pre- and post-event SAR im-
agery in a change-detection-like approach to identify sur-
face changes due to co-seismic slope failures. No trans-
fer learning or fine-tuning was necessary; the model was
directly deployed in the area. The tool is freely available
at https://doi.org/10.5281/zenodo.14898556 (Nava et al.,
2025a). SAR-LRA was applied over five Sentinel-1 acqui-
sitions at 10 m resolution. This included one acquisition on
8 April 2024, for the ascending geometry (over two differ-
ent tracks); five SAR acquisitions within 60 d preceding the
event; and one acquisition on 10 April 2024, for the descend-
ing geometry. SAR data enabled landslide detection even
under cloudy conditions, which prevented the use of opti-
cal Sentinel-2 data for several weeks post-earthquake (see
Fig. 2). SAR-LRA led us to identify preliminary hotspots of
landslide-related surface changes.
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Figure 2. Timeline of satellite image acquisitions and model deployment in April 2024.

The ViT model was pre-trained and validated on a mul-
tisource landslide segmentation dataset (Fang et al., 2024a),
the Globally Distributed Coseismic Landslide Dataset (GD-
CLD). GDCLD integrates multisource remote sensing im-
agery, including PlanetScope, Gaofen-6, Map World, and
UAV data, covering landslides triggered by nine MLEs
across diverse geological and geomorphological settings
worldwide. Since AI models map spectral reflectance,
their performance is influenced by the contrast between
landslide-affected areas and their surroundings. Given that
most landslides in GDCLD occur in densely vegetated
areas similar to Hualien, we expect the model to gen-
eralize well in this context. The GDCLD is available
at https://doi.org/10.5281/zenodo.11369484 (Fang et al.,
2024a). We fine-tune the model (Bhuyan et al., 2023) on
814 landslides manually mapped within the Taiwan study
area affected by the 2024 earthquake. These landslides were
mapped across the affected area rather than all of Taiwan,
and no specific landslide features were pre-selected. How-
ever, we included some negative samples (e.g., riverbeds and
bare land) to improve model generalization (the subset is
available on https://doi.org/10.5281/zenodo.15027165, Nov-
ellino et al., 2025). Satellite images from the Google Earth
Pro archive have been used for the pre-event stage, whose
collection includes data from CNES and Airbus acquired up
to September 2023. For the post-event stage, ViT has been
applied to 33 composited PlanetScope images at 3 m spatial
resolution acquired on 17 and 29 April 2024.

4 Results and discussion

We retrieved a total of 7090 co-seismic landslides along with
2617 pre-seismic ones. SAR-LRA outputs 262 SAR-LRA
bounding boxes: 63 in the ascending geometry and 199 in the

descending geometry (Fig. 3a). The co-seismic landslides en-
compass new failures, reactivations, and/or remobilizations
of existing landslides (Figs. 3b and c). Most co-seismic slope
failures occurred on slopes between 30 and 50° on the SE
slopes (Fig. 3d). The total co-seismic landslide area result-
ing from the earthquake equals 75.3 km2, with an individ-
ual polygon minimum size set to 250 m2 due to the resolu-
tion of Planet images, which is up to a maximum of 2.9 km2

(Fig. 3e).
SAR-LRA yielded results in ≈ 20min, while ViT analy-

sis, including both pre- and post-processing tasks, took about
2 h. This allowed us to produce co-seismic inventories within
hours of satellite image acquisition. The SAR-LRA tool was
fundamental in initially identifying landslide locations, as
cloud cover was persistent for ≈ 15d after the event.

Reflecting on our methodology, our initial concerns re-
garding the suitability of SAR imagery for Taiwan’s steep
slopes were alleviated by its successful validation in cloud-
free areas. Our initial skepticism likely stemmed from the vi-
sual characteristics of SAR data, which makes it difficult for
the human eye to confirm the presence of the landslide pre-
dicted by the AI model. As complete cloud coverage over
an entire region is rare, the SAR-based predictions could
be partially validated using the landslides visible on optical.
This step can increase the trustworthiness of our rapid assess-
ment models. Regarding the optically based predictions, after
model fine-tuning, the results were generally reliable, with a
few false positives in flat areas that were easily masked out
manually. The advantage of this approach is that we get the
exact extent of the landslides. However, since our approach
relied solely on post-event imagery, we also had to deploy the
model on pre-event imagery and subtract the two inventories
to identify the co-seismic landslides. Reflecting on this, ap-
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Figure 3. (a) Overview of the landslide inventory. Elevation basemap provider: Esri (2024). (b–c) Zoomed-in views of the co-seismic
landslides mapped with SAR-LRA squares and ViT polygons. PlanetScope imagery provider: Planet Labs PBC (2024). (d) Density plot of
slope versus aspect for the co-seismic landslides. (e) Frequency–area distribution of pre- and co-seismic landslides.

proaches that integrate change-detection mechanisms within
a single model are preferable and advocated.

Validating AI-based landslide detection during an emer-
gency is challenging due to the lack of an immediate ground-
truth inventory for comparison. To validate our inventory, we
conducted a visual inspection of pre- and post-event Plan-
etScope imagery, which allowed us to confirm that detected
landslides corresponded to actual surface changes. This pro-
cess also helped us correct minor errors, particularly where
the AI model slightly overestimated landslide extents or
merged nearby landslides. We also analyzed the frequency–
area distribution (FAD) exponent of our co-seismic inventory
and compared it with distributions from other earthquake-
triggered landslide inventories. Landslide size distributions
typically follow a power-law relationship, with exponents
≈ 2–3 for seismic events. Our AI-derived exponent (2.0)
aligns well with values reported for previous earthquake-
triggered MLEs, including Gorkha 2015 (2.15; Roback et al.,

2018), Papua New Guinea 2018 (2.04; Tanyas et al., 2022),
and Wenchuan 2008 (2.13; Fan et al., 2018). This consistency
suggests that our AI-mapped inventory captures a realistic
landslide size distribution.

Overall, when performing automated landslide mapping
in new events, we need to maximize the chances that our
AI model will predict landslides accurately. To do so, trans-
fer learning and/or fine-tuning a generalized model within
the affected area is a well-established approach that sig-
nificantly improves AI model performance in new regions
(Bhuyan et al., 2023). This allows us to assume that the
model will perform reliably despite the absence of imme-
diate field validation. Additionally, checking FAD exponents
serves as a further control to ensure that anomalous detec-
tions are minimized. Lastly, while AI-based predictions pro-
vide a rapid mapping solution, a semi-automated approach
remains preferable. Double-checking AI results with manual
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verification using pre- and post-event imagery will continue
to be necessary to refine outputs and improve accuracy.

Following the availability of the inventory published by
Chen et al. (2025), we compared our AI-based inventory
with it. Their inventory identified 1243 landslides, whereas
ours has ≈ 7000. While there is overlap between many poly-
gons in the two inventories, our approach mapped many more
landslides. Chen et al. (2025) noted that cloud cover and res-
olution limitations likely led to an underestimation of smaller
landslides. Additionally, the FAD rollover point (computed
as the most frequent landslide size) is significantly lower in
the AI-based inventory (≈ 342.5m2 vs. ≈ 2345m2 in the
manual inventory), confirming that AI effectively detects
smaller landslides. However, this also introduces well-known
artifacts, such as amalgamation (merging of adjacent land-
slides) and fragmentation (splitting of single landslides), as
observed in previous studies (Bhuyan et al., 2023).

5 Conclusions

Following the Hualien earthquake event, we semi-
automatically map ≈ 7090 co-seismic landslides from
satellite imagery at different resolutions and with different
data modalities using AI-based approaches. While there is a
wealth of literature on the use of AI for landslide detection,
there are few documented cases of its application for rapid
mapping in the aftermath of major disasters. This research
makes two primary contributions. First, we demonstrate and
evaluate the application of AI for rapid landslide assessment
in disaster response. Specifically, we highlight how the SAR-
based automated approach (SAR-LRA tool) played a crucial
role in accurately identifying landslide locations despite
persistent cloud coverage. In contrast, optical data, while
offering higher precision, became available only after signif-
icant delays. Second, we provide an open-source inventory
that delivers essential information for situational awareness,
aids emergency responders during disaster aftermath, and
facilitates the updating of landslide hazard models, thereby
enhancing resilience to future events. Overall, given the
demonstrated effectiveness of these approaches and tools,
we are confident that they can be successfully deployed
in future large-scale earthquake-triggered landslide events,
provided that manual quality checks are implemented.
Integrating SAR and optical AI approaches will further
improve the reliability and performance of rapid assessment
models, especially in challenging weather conditions. These
advancements will provide disaster responders with valuable
information in future MLEs.

Code and data availability. The generated inventory and the sub-
set used to fine-tune the ViT are freely available on Zenodo via
the following link: https://doi.org/10.5281/zenodo.11519683 (Nov-
ellino et al., 2024b). The code and weights of the SAR-LRA tool are

available at https://doi.org/10.5281/zenodo.15159492 (Nava et al.,
2025b). The Globally Distributed Coseismic Landslide Dataset
(GDCLD) is available at https://doi.org/10.5281/zenodo.11369484
(Fang et al., 2024b).
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