Articles | Volume 24, issue 3
https://doi.org/10.5194/nhess-24-999-2024
https://doi.org/10.5194/nhess-24-999-2024
Research article
 | 
21 Mar 2024
Research article |  | 21 Mar 2024

A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index

Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie

Related authors

Analyzing past and future droughts that induce clay shrinkage in France using an index based on water budget simulation for trees
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1079,https://doi.org/10.5194/egusphere-2024-1079, 2024
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Statistical calibration of probabilistic medium-range Fire Weather Index forecasts in Europe
Stephanie Bohlmann and Marko Laine
Nat. Hazards Earth Syst. Sci., 24, 4225–4235, https://doi.org/10.5194/nhess-24-4225-2024,https://doi.org/10.5194/nhess-24-4225-2024, 2024
Short summary
Glide-snow avalanches: a mechanical, threshold-based release area model
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024,https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024,https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca Anne Hetland, Tarjei Tveito Skille, and Andrea Mannberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1628,https://doi.org/10.5194/egusphere-2024-1628, 2024
Short summary
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modelling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-147,https://doi.org/10.5194/nhess-2024-147, 2024
Revised manuscript accepted for NHESS
Short summary

Cited articles

Barthelemy, S.: A new drought index fitted to clay shrinkage induced subsidence over France: benefits of interactive leaf area index, Barthelemy et al. 2023 – Figure data, Figshare [data set], https://doi.org/10.6084/m9.figshare.23559507.v1, 2023. 
Boone, A., Calvet, J. C., and Noilhan, J.: Inclusion of a third soil layer in a land surface scheme using the force-restore method, J. Appl. Meteorol., 38, 1611–1630, https://doi.org/10.1175/1520-0450(1999)038<1611:IOATSL>2.0.CO;2, 1999. 
Boone, A., Masson, V., Meyers, T., and Noilhan, J.: The Influence of the Inclusion of Soil Freezing on Simulations by a Soil–Vegetation–Atmosphere Transfer Scheme, J. Appl. Meteorol., 39, 1544–1569, https://doi.org/10.1175/1520-0450(2000)039<1544:TIOTIO>2.0.CO;2, 2000. 
BRGM: M'informer sur le retrait-gonflement des argiles – Exposition du territoire au phénomène, https://www.georisques.gouv.fr/articles-risques/retrait-gonflement-des-argiles/exposition-du-territoire-au-phenomene, last access: 11 March 2024. 
Bronswijk, J. J. B.: Prediction of actual cracking and subsidence in clay soils, Soil Sci., 148, 87–93, https://doi.org/10.1097/00010694-198908000-00002, 1989. 
Download
Short summary
This work presents a drought index specifically adapted to subsidence, a seasonal phenomenon of soil shrinkage that occurs frequently in France and damages buildings. The index is computed from land surface model simulations and evaluated by a rank correlation test with insurance data. With its optimal configuration, the index is able to identify years of both zero and significant loss.
Altmetrics
Final-revised paper
Preprint