Articles | Volume 24, issue 11
https://doi.org/10.5194/nhess-24-3815-2024
https://doi.org/10.5194/nhess-24-3815-2024
Research article
 | 
08 Nov 2024
Research article |  | 08 Nov 2024

Size scaling of large landslides from incomplete inventories

Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer

Related authors

Larger lake outbursts despite glacier thinning at ice-dammed Desolation Lake, Alaska
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
The Cryosphere, 19, 1085–1102, https://doi.org/10.5194/tc-19-1085-2025,https://doi.org/10.5194/tc-19-1085-2025, 2025
Short summary
Inferring sediment-discharge event types in an Alpine catchment from sub-daily time series
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024,https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023,https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
INTEGRATING AI HARDWARE IN ACADEMIC TEACHING: EXPERIENCES AND SCOPE FROM BRANDENBURG AND BAVARIA
Z. Xiong, D. Stober, M. Krstić, O. Korup, M. I. Arango, H. Li, and M. Werner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-5-W1-2023, 75–81, https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023,https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023, 2023
Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022,https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Jonathan Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
Nat. Hazards Earth Syst. Sci., 25, 1037–1056, https://doi.org/10.5194/nhess-25-1037-2025,https://doi.org/10.5194/nhess-25-1037-2025, 2025
Short summary
A participatory approach to determine the use of road cut slope design guidelines in Nepal to lessen landslides
Ellen B. Robson, Bhim Kumar Dahal, and David G. Toll
Nat. Hazards Earth Syst. Sci., 25, 949–973, https://doi.org/10.5194/nhess-25-949-2025,https://doi.org/10.5194/nhess-25-949-2025, 2025
Short summary
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci., 25, 709–726, https://doi.org/10.5194/nhess-25-709-2025,https://doi.org/10.5194/nhess-25-709-2025, 2025
Short summary
Identifying unrecognised risks to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
Nat. Hazards Earth Syst. Sci., 25, 647–656, https://doi.org/10.5194/nhess-25-647-2025,https://doi.org/10.5194/nhess-25-647-2025, 2025
Short summary
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary

Cited articles

Abancó, C., Bennett, G. L., Matthews, A. J., Matera, M. A. M., and Tan, F. J.: The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines, Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, 2021. a
Alberti, S., Leshchinsky, B., Roering, J., Perkins, J., and Olsen, M. J.: Inversions of landslide strength as a proxy for subsurface weathering, Nat. Commun., 13, 6049, https://doi.org/10.1038/s41467-022-33798-5, 2022. a
Antinao, J. L. and Gosse, J.: Large rockslides in the Southern Central Andes of Chile (32–34.5° S): Tectonic control and significance for Quaternary landscape evolution, Geomorphology, 104, 117–133, https://doi.org/10.1016/j.geomorph.2008.08.008, 2009. a
Ardizzone, F., Bucci, F., Cardinali, M., Fiorucci, F., Pisano, L., Santangelo, M., and Zumpano, V.: Geomorphological landslide inventory map of the Daunia Apennines, southern Italy, Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, 2023. a, b
Barlow, J., Lim, M., Rosser, N., Petley, D., Brain, M., Norman, E., and Geer, M.: Modeling cliff erosion using negative power law scaling of rockfalls, Geomorphology, 139–140, 416–424, https://doi.org/10.1016/j.geomorph.2011.11.006, 2012. a
Download
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
Share
Altmetrics
Final-revised paper
Preprint