Articles | Volume 24, issue 11
https://doi.org/10.5194/nhess-24-3815-2024
https://doi.org/10.5194/nhess-24-3815-2024
Research article
 | 
08 Nov 2024
Research article |  | 08 Nov 2024

Size scaling of large landslides from incomplete inventories

Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer

Related authors

Hillslope-Torrential Hazard Cascades in Tropical Mountains
Maria Isabel Arango-Carmona, Paul Voit, Marcel Hürlimann, Edier Aristizábal, and Oliver Korup
EGUsphere, https://doi.org/10.5194/egusphere-2025-1698,https://doi.org/10.5194/egusphere-2025-1698, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Larger lake outbursts despite glacier thinning at ice-dammed Desolation Lake, Alaska
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
The Cryosphere, 19, 1085–1102, https://doi.org/10.5194/tc-19-1085-2025,https://doi.org/10.5194/tc-19-1085-2025, 2025
Short summary
Inferring sediment-discharge event types in an Alpine catchment from sub-daily time series
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024,https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023,https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
INTEGRATING AI HARDWARE IN ACADEMIC TEACHING: EXPERIENCES AND SCOPE FROM BRANDENBURG AND BAVARIA
Z. Xiong, D. Stober, M. Krstić, O. Korup, M. I. Arango, H. Li, and M. Werner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-5-W1-2023, 75–81, https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023,https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023, 2023

Related subject area

Landslides and Debris Flows Hazards
From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025,https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping
Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger
Nat. Hazards Earth Syst. Sci., 25, 1425–1437, https://doi.org/10.5194/nhess-25-1425-2025,https://doi.org/10.5194/nhess-25-1425-2025, 2025
Short summary
Topographic controls on landslide mobility: modeling hurricane-induced landslide runout and debris-flow inundation in Puerto Rico
Dianne L. Brien, Mark E. Reid, Collin Cronkite-Ratcliff, and Jonathan P. Perkins
Nat. Hazards Earth Syst. Sci., 25, 1229–1253, https://doi.org/10.5194/nhess-25-1229-2025,https://doi.org/10.5194/nhess-25-1229-2025, 2025
Short summary
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Jonathan Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
Nat. Hazards Earth Syst. Sci., 25, 1037–1056, https://doi.org/10.5194/nhess-25-1037-2025,https://doi.org/10.5194/nhess-25-1037-2025, 2025
Short summary
A participatory approach to determine the use of road cut slope design guidelines in Nepal to lessen landslides
Ellen B. Robson, Bhim Kumar Dahal, and David G. Toll
Nat. Hazards Earth Syst. Sci., 25, 949–973, https://doi.org/10.5194/nhess-25-949-2025,https://doi.org/10.5194/nhess-25-949-2025, 2025
Short summary

Cited articles

Abancó, C., Bennett, G. L., Matthews, A. J., Matera, M. A. M., and Tan, F. J.: The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines, Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, 2021. a
Alberti, S., Leshchinsky, B., Roering, J., Perkins, J., and Olsen, M. J.: Inversions of landslide strength as a proxy for subsurface weathering, Nat. Commun., 13, 6049, https://doi.org/10.1038/s41467-022-33798-5, 2022. a
Antinao, J. L. and Gosse, J.: Large rockslides in the Southern Central Andes of Chile (32–34.5° S): Tectonic control and significance for Quaternary landscape evolution, Geomorphology, 104, 117–133, https://doi.org/10.1016/j.geomorph.2008.08.008, 2009. a
Ardizzone, F., Bucci, F., Cardinali, M., Fiorucci, F., Pisano, L., Santangelo, M., and Zumpano, V.: Geomorphological landslide inventory map of the Daunia Apennines, southern Italy, Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, 2023. a, b
Barlow, J., Lim, M., Rosser, N., Petley, D., Brain, M., Norman, E., and Geer, M.: Modeling cliff erosion using negative power law scaling of rockfalls, Geomorphology, 139–140, 416–424, https://doi.org/10.1016/j.geomorph.2011.11.006, 2012. a
Download
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
Share
Altmetrics
Final-revised paper
Preprint