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Abstract. Landslide inventories have become cornerstones
for estimating the relationship between the frequency and
size of slope failures, thus informing appraisals of hillslope
stability, erosion, and commensurate hazard. Numerous stud-
ies have reported how larger landslides are systematically
rarer than smaller ones, drawing on probability distributions
fitted to mapped landslide areas or volumes. In these models,
much uncertainty concerns the larger landslides (defined here
as affecting areas ≥ 0.1 km2) that are rarely sampled and
often projected by extrapolating beyond the observed size
range in a given study area. Relying instead on size-scaling
estimates from other inventories is problematic because land-
slide detection and mapping, data quality, resolution, sample
size, model choice, and fitting method can vary. To overcome
these constraints, we use a Bayesian multi-level model with
a generalised Pareto likelihood to provide a single, objective,
and consistent comparison grounded in extreme value the-
ory. We explore whether and how scaling parameters vary
between 37 inventories that, although incomplete, bring to-
gether 8627 large landslides. Despite the broad range of
mapping protocols and lengths of record, as well as differ-
ing topographic, geological, and climatic settings, the poste-
rior power-law exponents remain indistinguishable between
most inventories. Likewise, the size statistics fail to separate
known earthquakes from rainfall triggers and event-based
triggers from multi-temporal catalogues. Instead, our model
identifies several inventories with outlier scaling statistics
that reflect intentional censoring during mapping. Our results
thus caution against a universal or solely mechanistic inter-
pretation of the scaling parameters, at least in the context of
large landslides.

1 Introduction

Keeping records of the size and frequency of landslides is key
to estimate rates of erosion, geomorphic work, and hillslope
evolution (Dente et al., 2023; Saito et al., 2014; Marc et al.,
2019); infer material strength and weathering of hillslopes
(Li and Moon, 2021; Alberti et al., 2022); and inform hazard
appraisals of slope instability (Guzzetti et al., 2012), partic-
ularly in response to contemporary climate change (Smith
et al., 2023). A popular way to characterise the relative
frequency of landslide-affected areas or volumes is to fit
probability distributions to size data compiled in inventories
(Malamud et al., 2004). These catalogues contain locations
and geometries of individual footprint areas mapped largely
from air photos or satellite images. The choice of probabil-
ity distribution (or “scaling laws”) has favoured the inverse
power-law or Pareto, the inverse gamma, or the lognormal
distributions (Tebbens, 2020) or combinations thereof (Jain
et al., 2022). All these distributions are skewed, often heavy-
tailed, and capture the widespread observation that larger
landslides are systematically rarer than smaller ones.

Reported values of the parameters that define these distri-
butions have seemingly narrow numerical ranges (Tebbens,
2020). This similarity among model fits has led to a lively
discussion about whether these parameters reflect generic ge-
ometric or mechanistic properties of landslides or the hill-
slopes that they occur on (Bellugi et al., 2021; Bernard et al.,
2021). For example, physical interpretations of the “roll
over” that marks the lower bound of inverse power-law dis-
tributions include that of a hillslope length scale that is sus-
ceptible to failure or the cohesive strength of failure planes
(Tebbens, 2020). While landslide size distributions may re-
flect the nature and spatial intensity of a common trigger such
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Figure 1. Landslide scaling statistics rely on accurate detection, mapping, and statistical inference. These three (colour-coded) steps are
prone to a number of uncertainties at the level of both data (i.e. landslide areas from inventories covering specific single-trigger events or
integrating observations over longer time spans) and model; these uncertainties propagate as errors into the derived landslide statistics. Boxes
with a black outline are most likely directly tied to physical processes of landsliding.

as a strong earthquake (Valagussa et al., 2019), the average
landslide size may contain information about both the cohe-
sive strength of slope material and hillslope relief (Medwed-
eff et al., 2020). Some of these physical interpretations are
backed by, or derived from, numerical simulations of slope
instability (Frattini and Crosta, 2013). Yet, a different line of
argument proposed that the roll over is a statistical artefact of
landslide detection and mapping, approximately marking the
smallest discernible landslide in a given study area (Tebbens,
2020). Either way, this discussion has questioned whether
these scaling laws are universally applicable to landslides ir-
respective of environmental setting, mapping methods, and
trigger mechanisms (Malamud et al., 2004; Tanyaş et al.,
2019). Many of these interpretations have relied on the di-
rect comparison of reported parameter values, and scrutiny
concerning possible effects of data sources and quality, map-
ping method, and statistical errors in the fitted models has
increased in more recent work (Bellugi et al., 2021).

Still, most uncertainty remains about the large landslides
that are rarely sampled. Hence, the bulk of studies on land-
slide size has disclosed little about these large landslides, let
alone their prediction as first-time failures (Fan et al., 2019).
One reason for this knowledge gap is that large landslides are
often elusive in catalogues compiled shortly after a landslide-
triggering earthquake or rainstorm (Hao et al., 2020; Abancó
et al., 2021; Santangelo et al., 2023). Sample sizes often in-
volve only a handful to several dozen large landslides and
thus often remain too small for robust statistics in a given
study area. Hence, inference is mostly based on the simple
extrapolation of model fits beyond the observed size range.
Yet, large landslides may often re-shape hillslope geometry
and dominate erosion (Korup et al., 2007; Marc et al., 2019)
but may involve phases of creep motion and respond differ-
ently to triggering conditions than smaller failures because
of a longer and more complex slope history of accumulated
stress and strain (Lacroix et al., 2020).

In general, the statistics of landslides derive from a
sequence of detection, mapping, and statistical inference
(Fig. 1). Uncertainties that propagate throughout each step
can affect the outcome in terms of landslide scaling statis-
tics.

At the level of the input data, both landslide detection
and mapping face several constraints. The mapping objec-
tive can dictate whether to focus on landslides attributed to
a single trigger, such as a strong earthquake (Meunier et al.,
2013; Gorum et al., 2014; Tanyaş et al., 2017) or a rainstorm
(Hao et al., 2020; Emberson et al., 2022; Santangelo et al.,
2023), or instead to compile landslide traces that have accu-
mulated over years to millennia (LaHusen et al., 2016; Luet-
zenburg et al., 2022; Fusco et al., 2023). Some of the most
comprehensive catalogues today feature thousands to hun-
dreds of thousands of slope failures across entire nations or
beyond (Luetzenburg et al., 2022; Fusco et al., 2023). The
methods to detect, map, and compile landslide inventories
have become more diverse and elaborate beyond traditional
mapping from air photos, optical satellite data, or historical
records (Xu et al., 2020; Casagli et al., 2023). Newer cata-
logues are derived from laser scanning (Bernard et al., 2021),
radar imagery (Song et al., 2022), object-based image anal-
ysis (Milledge et al., 2022), deep neural networks (Schön-
feldt et al., 2022), text mining (Franceschini et al., 2022),
and seismology (Hibert et al., 2019). Most methods require
specific mapping protocols adjusted to the effective resolu-
tion of imagery that may be compromised by vegetation,
land cover, cloud, and shadow (Brardinoni et al., 2003; Bur-
rows et al., 2022). Debris-flow and snow-avalanche tracks,
moraines, and wind-throw gaps in forests can be mistaken
for landslide evidence. Overlapping landslide source areas
or bodies can obscure the dimensions of slope failure (Marc
and Hovius, 2015), and so can subsequent erosion or deposi-
tion. Varying image quality, resolution, and coverage all af-
fect landslide size estimates, as does the experience of map-
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ping operators (Van Den Eeckhaut et al., 2005). The mapping
outcome may depend on whether a single person or a team
is at work, as well as on the attention to detail in delineating
source, deposit, or total affected areas. Experience and train-
ing aid detection and mapping but also introduce bias, for
example favouring fresh landslides, certain types of failure,
or simply those that are easiest to recognise in the case of
limited time or training. Hence, the size range of a given in-
ventory is bounded by the smallest mappable and the largest
recognisable landslide (Barlow et al., 2012). Inventories can
be incomplete in that they miss out on those large landslides
that have indistinct or less obvious geomorphic evidence and
thus require experience, skill, and time for accurate detection
and mapping. Thus, without any standard mapping protocol
in place, landslide researchers have to deal with catalogues
of varying extent, detail, and quality for the same task of ob-
taining traits of landslide size.

At the model level, estimates of size scaling hinge on the
choice of probability distribution to characterise the mapped
landslides (ten Brink et al., 2009). These estimates also de-
pend on sample size, data pre-processing, fitting method,
residuals, and cross-validation. Numerical experiments show
that small sample sizes yield volatile estimates of scaling
parameters for inverse power-law distributions in particular
(Korup et al., 2012). Most estimation methods involve either
the regression of log-binned – and thus smoothed – landslide
frequencies versus size (Gilham et al., 2018) or maximum
likelihood estimates (Clauset et al., 2009); various biases ap-
ply to both methods. However, reports of confidence intervals
or goodness of fit, and hence ways to assess overfitting, re-
main rare. Still, the basis for the statistical inference of land-
slide size distributions varies at the level of the individual
inventory, each of which embodies the methods of detection
and mapping used and the biases they may induce. In light
of these constraints, a direct comparison of landslide scaling
estimates between different inventories may be misleading.

We propose a compact solution to compare more fairly the
landslide size distributions from diverse inventories by es-
timating scaling parameters with a single, probabilistically
consistent model. We apply this model to large landslides
that affect a total area of > 0.1 km2 and address the prob-
lem of small sample size by using Bayesian inference in a
multi-level model that uses data from multiple inventories to
estimate the variance of scaling parameters within and across
these catalogues (Luna and Korup, 2022). The multi-level
approach acknowledges structure in landslide size data in a
consistent way. One intuitive grouping of data is by inven-
tory and reflects the diversity in data input quality reviewed
above. Our focus on large landslides makes the generalised
Pareto distribution (GPD) a natural model choice because
extreme value theory predicts that data above a high thresh-
old are approximately generalised Pareto distributed (Castro-
Camilo et al., 2022). Another advantage of this distribution is
that its parameters can be translated directly into those used
most widely in studies of landslide size scaling.

2 Data and methods

We consider data on total landslide-affected areas from sev-
eral dozen published landslide inventories with open access.
We excluded many other detailed catalogues that had no
records of landslides meeting our size threshold of 0.1 km2.
Besides information about their size, many databases have
landslide types and triggers reported, and many data were
recorded following recent (i.e. post-1900) major earthquakes
and rainstorms with the intention of characterising the impact
of these events. We also included catalogues spanning time
intervals of several years to millennia, featuring mostly un-
dated large landslides with unknown triggers to test whether
these cumulative inventories have size distributions that dif-
fer from those of event-based inventories.

The choice of probability distribution to model landslide
area often rests on implicit assumptions. For example, the
inverse power law draws on considerations of physical sand-
pile models and the concept of self-organised criticality (Her-
garten and Neugebauer, 1998), whereas the lognormal distri-
bution arises naturally from multiplicative effects of random
variables (ten Brink et al., 2009). Here we model reported
areas of large landslides with the generalised Pareto distribu-
tion (GPD). The GPD is rooted in extreme value theory and
approximates the distribution of a continuous random vari-
able x above a high threshold (or location parameter) µ. The
GPD thus captures what we would expect theoretically from
a sample consisting of observations filtered above a mini-
mum value (Katz et al., 2002). Any physical interpretation of
the GPD parameters may need to account for, or correct, this
statistical expectation first. The probability density function
of the GPD is

GPD(x|µ,σ,k)=
1
σ

(
1+

k(x−µ)

σ

)−1/k−1

, (1)

where x ≥ µ, σ > 0 is a scale parameter, and k ≥ 0 is a shape
parameter. The scale parameter σ is somewhat comparable to
the roll over in studies using an inverse power-law model for
estimating landslide size scaling. This roll over approximates
the modal landslide size, which is the smallest landslide size
above which power-law scaling is assumed. The GPD shape
parameter is the inverse of the “scaling exponent” α of the
inverse power-law distribution such that k = 1/α.

Here, the location parameter µ sets the minimum land-
slide size for data to be admitted to the GPD and is known as
the peak-over-threshold approach in extreme value statistics
(Katz et al., 2002). For large landslides, we let µ= 0.1 km2.
Empirical relationships between landslide volume and total
affected area across a wide range of environmental settings
show that an area of 0.1 km2 corresponds to an average vol-
ume of roughly 106 m3 (Larsen et al., 2010), which is the
suggested lower threshold for large landslides (McColl and
Cook, 2024). This particular choice of µ is a compromise be-
cause fewer samples and landslide inventories are available
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for higher values of µ, whereas the GPD becomes a less and
less valid approximation of the data for lower values of µ.

Fitting the GPD to data can involve maximum likelihood
estimates or, in case of few samples (n< 30), probability-
weighted (L-)moments to avoid volatile parameter estimates
(Katz et al., 2002). We use Bayesian inference to learn the
GPD parameters from the data, acknowledging explicitly that
these come from different inventories that reflect different
environmental conditions across study areas and that land-
slides are likely detected at varying resolution and mapped
with different techniques. A Bayesian treatment of this fit-
ting problem seeks a compromise between a likelihood func-
tion and a probability distribution of prior knowledge about
the model parameters. This approach obviates the need for
binned landslide size data to use frequency density (Mala-
mud et al., 2004). Instead, we work with the joint probability
that is the numerator of Bayes’ rule:

p(θ |D)=
p(D|θ)p(θ)
p(D)

, (2)

where θ is the vector of model parameters that we wish to
update from both the landslide size data D and prior knowl-
edge. We use the GPD as the likelihood function p(D|θ) and
choose (hyper-)prior distributions p(θ) to approximate what
we know about landslide size distributions so far and irre-
spective of the data D studied here.

Our model uses a multi-level set-up, in which i ∈ {1, . . .,n}
indexes each landslide observation xi from a sample of size n
and j ∈ {1, . . .,J } indexes each of J different landslide in-
ventories. The idea of the multi-level model is that the size
distribution in each landslide inventory j is characterised by
an individual set of GPD parameters σj and kj . We further
assume that the values of each of these inventory-specific pa-
rameter pairs are drawn from the same two probability dis-
tributions:

xi ∼ GPD(µ,σj [i],kj [i]), (3)
σj ∼ gamma(ασ ,βσ ), (4)
kj ∼ gamma(αk,βk). (5)

Here we choose independent gamma distributions for
both σj and kj to ensure that the parameters are positive
and uncorrelated; ασ and αk are the corresponding shape pa-
rameters, and βσ and βk are the inverse-scale (or rate) pa-
rameters. The multi-level model thus learns the parameters
for each catalogue informed by both its data, the overarching
gamma distributions, and prior knowledge. While the model
allows σj and kj to vary between landslide inventories, it also
draws on information from the full data set via this multi-
level structure.

Bayesian reasoning requires that we specify our prior
knowledge explicitly. We do this by choosing the hyper-
parameters of the two gamma distributions of σj and kj .
These hyper-parameters describe the distribution of landslide

scaling parameters across all inventories and offer a global
summary from all data. Here, we draw on the growing liter-
ature of landslide scaling: recent reviews have summarised
that the power-law scaling exponent α for landslide invento-
ries is most often reported in the range of 1<α< 3 (Tebbens,
2020). Recalling that the GPD shape parameter k equals 1/α,
we can use this reported range to constrain our (hyper-)prior
distributions accordingly. We choose hyper-parameter values
such that they contain findings from landslide scaling stud-
ies based on data other than the ones used here. The exact
shape of these distributions may matter little in light of the
large sample size that informs our likelihood function. We
disregard any correlation between the hyper-parameters and
simplistically assume independent distributions:

ασ ∼N (1,0.25), (6)
βσ ∼N (5,5), (7)
αk ∼N (6,1), (8)
βk ∼N (9,1). (9)

We assume independent Gaussian distributions for these
hyper-parameters and choose the prior means and standard
deviations informed by previous research on landslide scal-
ing properties (Tebbens, 2020).

To avoid having too many inventories with only a hand-
ful of large landslides, we consider only those data collec-
tions with at least 25 landslides that exceed the threshold
size µ. This means that we had to discard many published
landslide inventories that only contain smaller slope failures.
The data that we need for obtaining the posterior distribu-
tion of all GPD parameters consist of the total affected ar-
eas by individual landslides and labels of the inventories they
belong to. Our data consist of 8627 large landslides filtered
from 37 different inventories (Table 1). Together, these large
slope failures affected an area of 6407 km2 or 59 % of the to-
tal landslide-affected area recorded in these catalogues. The
largest landslide is unnamed and extends over 201 km2 in the
Caspian Sea basin (Pánek et al., 2016). Our data thus span
more than 3 orders of magnitude in landslide area; the largest
mapped landslide areas per inventory differ by up to 2 orders
of magnitude. We note that 19 (or 51 %) of our selected land-
slide inventories were compiled following an earthquake, in-
cluding five cases of two inventory versions each for the same
event mapped by different research teams. Only 3 catalogues
(8 %) are attributed to a rainfall trigger, while 15 catalogues
(41 %) are geomorphological inventories that contain infor-
mation about landslides that accumulated over many years
and thus likely reflect various triggers.

The Bayesian implementation of our GPD model requires
a numerical approximation of the joint posterior distribution.
We use the probabilistic programming language STAN (Car-
penter et al., 2017) to code our model and call it via the sta-
tistical programming environment R. We ran four indepen-
dent Hamiltonian Monte Carlo chains to explore the model
parameter space with the No U-Turn Sampler (NUTS) coded
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Table 1. List of 37 landslide inventories with sample size of landslides ≥ 0.1 km2, the largest and smallest landslides reported, the count
of discarded landslides below µ, and the trigger. Three-letter codes are ISO country identifiers, and numbers refer to different catalogue
versions of the same triggering event; catalogues related to earthquakes show estimated magnitude. The ∗ denotes inventories derived from
deep learning.

Inventory Samples Max area (km2) Min area (km2) n below µ Trigger Reference

Campania ITA 1854 7.3 0.0000 79 362 Various Fusco et al. (2023)
Caspian Sea KAZ 303 201.1 0.0170 18 Various Pánek et al. (2016)
Central East NPL 108 0.7 0.0003 12 730 Rainfall Jones et al. (2021)
Daunia Apennines ITA 712 6.8 0.0001 10 091 Various Ardizzone et al. (2023)
Far Western NPL 58 0.7 0.0000 26 292 Rainfall Muñoz-Torrero (2020)
Glacier Bay N.P. CAN 1 52 22.2 0.0972 1 Various Kim et al. (2022)
High Mountain Asia 96 7.8 0.0155 31 Various Liu et al. (2021)
Himalayas 35 0.9 0.0219 32 Various Marc et al. (2019)
Kluane CAN-USA 369 7.0 0.0190 89 Various Smith et al. (2023)
M6.2 Aisen CHL 1 29 1.0 0.0004 488 Earthquake Gorum et al. (2014)
M6.2 Aisen CHL 2 43 1.0 0.0002 495 Earthquake Sepúlveda et al. (2010)
M6.8 Elazig TUR 68 3.0 0.0905 5 Earthquake Karakas et al. (2021)
M6.9 Nyingchi CHN 1 54 4.9 0.0001 712 Earthquake Hu et al. (2019)
M6.9 Nyingchi CHN 2 49 3.9 0.0914 10 Earthquake Zhao et al. (2019)
M7.5 GTM 1 90 1.3 0.0000 6134 Earthquake Harp et al. (1981)
M7.5 Tari PNG 1 239 5.0 0.0001 11 369 Earthquake Tanyaş et al. (2022b)
M7.6 PAK 2 84 2.0 0.0000 1369 Earthquake Basharat et al. (2014)
M7.6 PAK 3 209 1.9 0.0000 2721 Earthquake Basharat et al. (2016)
M7.8 Gorkha NPL 3 31 1.7 0.0000 24 884 Earthquake Roback et al. (2018)
M7.8 Gorkha NPL 5 105 2.0 0.0000 21 046 Earthquake Valagussa et al. (2021)
M7.8 Kaikoura NZL 1 42 1.1 0.0920 5 Earthquake Tanyaş et al. (2022a)
M7.9 Alaska USA 1 147 9.0 0.0009 1432 Earthquake Gorum et al. (2014)
M7.9 Sichuan CHN 1 556 7.0 0.0000 196 925 Earthquake Xu et al. (2014)
M7.9 Sichuan CHN 2 373 7.2 0.0000 69 233 Earthquake Li et al. (2014)
M8 Haiyuan CHN 519 1.5 0.0902 70 Earthquake Xu et al. (2020)
M9.1 Tohoku JPN 2 162 62.0 0.0600 4 Earthquake Tanyaş et al. (2017)
Owyhee USA 412 39.6 0.1253 0 Various Safran et al. (2011)
Porgera∗ PNG 41 1.7 0.0002 1516 Earthquake Bhuyan et al. (2023)
South Central CHL 571 123.9 0.0116 101 Various Antinao and Gosse (2009)
Southern KGZ 1 56 2.9 0.0905 3 Various Behling et al. (2016)
St. Elias USA 220 4.5 0.1096 0 Various Belair et al. (2022)
TC Morakot TWN 340 2.8 0.0000 9896 Rainfall Emberson et al. (2022)
Tongass USA 2 195 5.3 0.1002 0 Various Belair et al. (2022)
Utah USA 1 68 2.2 0.0926 9 Various Belair et al. (2022)
Washington WGS USA 80 58.6 0.1012 0 Various Belair et al. (2022)
Wenchuan CHN 96 0.6 0.0000 9933 Various Domènech et al. (2018)
Wenchuan∗ CHN 161 2.5 0.0000 10 174 Earthquake Bhuyan et al. (2023)

in STAN and verified that the numerical solutions converged.
Unless stated otherwise, we use medians and 95 % highest-
density intervals (HDIs) to summarise all posterior distribu-
tions. A 95 % HDI means that there is a 95 % probability
that a given parameter is in the specified interval (McElreath,
2016).

3 Results

3.1 Model fits and residuals

We express the size distributions of large landslides in cu-
mulative form using the exceedance probability p for a
given landslide area (Fig. 2). To measure how well the GPD
model fits the data, we compute the residuals in terms of the
log-odds ratios between the empirical exceedance probabil-
ities (p) and the predicted averages (p̂) for each inventory.
The log-odds ratio is log p̂(1−p)

p(1−p̂) , conditioned on each ob-
served landslide. A positive (negative) log-odds ratio means
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Figure 2. Size and frequency of large landslides from 37 inventories that reported at least 25 slope failures affecting≥ 0.1 km2 each (Table 1).
Circles are observed data ranked by their empirical exceedance probabilities, and lines are posterior medians of a fitted multi-level generalised
Pareto distribution (GPD) with shaded 95 % highest-density intervals (HDIs). Three-letter codes are ISO country identifiers, and numbers
refer to different catalogue versions of the same triggering event; catalogues related to earthquakes show estimated magnitude. The ∗ denotes
inventories derived from deep learning.
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that the model overestimates (underestimates) the empirical
exceedance probability of a given landslide area.

We find that the log-odds ratios reveal the most mis-
matches at either extreme end of the size range, though with-
out any consistency across the inventories (Fig. 3). For ex-
ample, the model underestimates the exceedance probabil-
ities of landslides < 0.8 km2 in the M9.1 Tohoku JPN 2
(Tanyaş et al., 2017) and Owyhee USA (Safran et al., 2011)
catalogues but overestimates the exceedance probabilities of
landslides> 1.7 km2 in the Daunia Apennines ITA catalogue
(Ardizzone et al., 2023).

3.2 Effects of different landslide inventories

Our model estimates that shape parameters kj vary across the
landslide inventories with posterior medians ranging from
k̃j = 0.21 in catalogue M8 Haiyuan CHN (Xu et al., 2020)
to k̃j = 0.92 in catalogue M7.9 Alaska USA 1 (Gorum et al.,
2014) (Fig. 4). Narrower posterior distributions mean less
uncertainty, mainly owing to more large landslides that in-
form the model in the relevant catalogue. For example, the
Campania ITA inventory (Fusco et al., 2023) contains the
most, i.e. 1854, large landslides, and its 95 % HDI is narrow-
est (0.57<kj < 0.72). In contrast, the M6.2 Aisen CHL 1
catalogue (Gorum et al., 2014) has the fewest, i.e. 29, large
landslides; its broad posterior distribution is thus informed
more by the pooled estimate from all inventories together.

The mean of the gamma prior distribution is k = αk/βk by
definition, and we derive the power-law exponent α from the
identity α = 1/k. Similarly, we obtain the mean pooled pos-
terior σ = ασ /βσ from the sampled hyper-parameters. We
find that most of the 95 % credible intervals of kj overlap
with that of the mean k learned from the pooled model (verti-
cal grey line, flanked by dashed lines marking its 95 % HDI).
Only two inventories, i.e. one on historic rock avalanches in
the St. Elias Mountains of Alaska, United States (Bessette-
Kirton and Coe, 2020), and one on landslides triggered by
the 1920 Haiyuan earthquake, China (Xu et al., 2020), stand
out with a kj that is credibly below that of the population
average.

Estimates of kj differ credibly between inventories in the
same geographic region, e.g., western Canada and Alaska
when comparing St. Elias USA (Bessette-Kirton and Coe,
2020), Kluane CAN-USA (William Smith, personal com-
munication, 2022), and M7.9 Alaska USA 1 (Gorum et al.,
2014). In contrast, inventories covering very different ge-
ographic regions and time spans have largely overlapping,
and thus statistically indifferent, posterior distributions of kj .
This is the case, for example, for a catalogue of landslides
triggered by the M7.6 Kashmir earthquake in 2005, M7.6
PAK 3 (Basharat et al., 2016), and one on mostly Quater-
nary landslides in the Caspian Sea basin, Caspian Sea KAZ
(Pánek et al., 2016). Similarly, the inventory of rainfall-
triggered landslides in far western Nepal covering 79 time
steps between 2002 and 2018, Far Western NPL (Muñoz-

Torrero, 2020), and the one for landslides following the 2018
M7.5 Porgera earthquake in Papua New Guinea, a database
fully compiled by a deep learning algorithm, Porgera* PNG
(Bhuyan et al., 2023), have indistinguishable posterior distri-
butions of kj . The same goes for inventories mapped by dif-
ferent teams in response to the same earthquake trigger, such
as the 2008 Wenchuan earthquake: M7.9 Sichuan CHN 1
(Xu et al., 2014) and M7.9 Sichuan CHN 2 (Li et al., 2014)
(Fig. 4).

The spread of the posterior scale parameter σj is more pro-
nounced across the inventories, and the pooled estimate over-
laps with those of seven inventories only (Fig. 5). Inventory-
specific medians range over 2 orders of magnitude from
σ̃j = 0.04 km2 in the M7.9 Sichuan CHN 1 catalogue (Xu
et al., 2014) to σ̃j = 2.56 km2 in the Caspian Sea KAZ cata-
logue (Pánek et al., 2016). Higher values of σ̃j mark inven-
tories with the more curved fits in Fig. 2, especially those
of Quaternary landslides, such as those of the Caspian Sea,
Caspian Sea KAZ (Pánek et al., 2016), or the Columbia
River basins, Owyhee USA (Safran et al., 2011), but also
the above-mentioned inventories of rock avalanches that hap-
pened in the past few decades (St. Elias USA and Kluane
CAN-USA). Again, inventories with different environmen-
tal settings and landslide triggers have very similar posterior
distributions of σj , such as the one for landslides triggered
during Typhoon Morakot, Taiwan, in 2009, TC Morakot
TWN (Emberson et al., 2022), and the one for landslides
triggered by the M7.6 Kashmir earthquake in 2005, M7.6
PAK 3 (Basharat et al., 2016). Catalogues addressing the
same earthquake trigger have largely overlapping posteriors
of σj .

3.3 Pooled estimates of landslide scaling

The pooled estimates in our multi-level model express the
variance of the learned parameters across all inventories. The
sampled hyper-parameters of kj that describe the shape αk
and rate (or inverse scale) βk of the gamma-distributed pa-
rameter kj are positively correlated; the same applies for the
hyper-parameters ασ and βσ (Fig. 6). From these, we find
that the numerical approximation of the joint posterior dis-
tribution has a distinct maximum. We obtain a mean power-
law exponent of 1.37<α< 1.85 across all inventories with
95 % probability; the posterior median of α is 1.6 (Fig. 7).
Compared to the prior distribution based on published values
of this exponent, our model has gained more certainty from
the data considered in this study, yielding a much narrower
posterior.

The mean scale parameter is 0.18 km2<σ < 0.38 km2

across all inventories with 95 % probability; the posterior me-
dian of σ is 0.27 km2. This posterior shifted up from the prior
distribution that we centred on our arbitrary size threshold
for large landslides. Our model has learned much from the
inventory data compared to the priors, especially concerning
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Figure 3. Residuals of multi-level GPD fit to large landslide size distributions (Fig. 2); residuals are expressed as log-odds ratios of ob-
served versus predicted values. Dashed horizontal lines mark perfect fits; positive (negative) ratios indicate over-estimated (under-estimated)
exceedance probabilities. Shaded areas are point-wise 95 % HDIs estimated at each landslide observation.

the high variance of σj across the individual landslide cata-
logues.

3.4 Comparison with maximum likelihood estimate

To assess how our choice of Bayesian inference aligns with
alternative approaches, we compare our results to maximum
likelihood estimates (MLEs) of the exponent αj of the in-
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Figure 4. Posterior shape parameters kj of the multi-level GPD
model; this parameter is the inverse of the scaling exponent in
power-law distributions. White circles are the medians per inven-
tory, and horizontal black lines are 95 % HDIs; the vertical grey
line is the posterior median of the pooled model, and dashed lines
delimit its 95 % HDI.

verse power-law distribution, based on the Hill estimator
(Clauset et al., 2009). By definition, the MLE standard er-
ror for each inventory decays with the inverse square root of
sample size, whereas the Bayesian estimates are informed by
all data via the multi-level model structure. Hence we do not
expect a 1 : 1 correspondence from this comparison. Instead,
it underlines how variable and uncertain landslide scaling es-
timates can be for different inventories, regardless of method
(Fig. 8).

We obtain inventory-specific MLEs of 0.33< α̂j < 2.39.
This spread encompasses most reported values in the lit-
erature (Tebbens, 2020). In contrast, the posterior me-

Figure 5. Posterior estimates of the GPD scale parameter σj from
the multi-level model. White circles are the medians per inventory,
and horizontal black lines are 95 % HDIs; the vertical grey line is the
posterior median of the pooled model, and dashed lines delimit its
95 % HDI. The dashed vertical red line is the landslide size thresh-
old µ fixed at 0.1 km2.

dians of αj = 1/kj occupy a seemingly broader range
(1.09< α̃ < 4.81), though it is nominally similar to that of
the MLE method for most inventories within the respective
errors. However, the coefficient of variation is narrower for
the Bayesian median estimates. Two inventories stand out
with very high scaling exponents, i.e. M8 Haiyuan CHN and
St. Elias USA. Both inventories have only a few landslides
that we censored because they were below the size thresh-
old µ= 0.1 km2; in other words, these catalogues contained
mostly large landslides originally.
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Figure 6. Numerical approximations of the hyper-parameter distri-
butions of the GPD multi-level model; sample densities are used
to infer probability densities (ns is sample size). (a) Posterior dis-
tribution of the hyper-parameters of the gamma distribution from
which the inventory-specific posterior kj values are drawn (Eq. 5).
(b) Posterior distribution of the hyper-parameters of the gamma dis-
tribution from which the inventory-specific posterior σj values are
drawn (Eq. 4).

4 Discussion

4.1 Implications

We offer estimates of scaling statistics that characterise the
size distribution of rare, large landslides (≥ 0.1 km2), in-
formed by thousands of data points from dozens of inven-
tories, as well as findings from previous research. Instead
of extrapolating models fit to mainly smaller landslides,
we use a dedicated peak-over-threshold approach that uses
observations on large landslides exclusively. The narrow-
est 95 % HDI of αj , and thus the best we can constrain
this parameter, is that of the Campania ITA catalogue with
1.39<αj < 1.74. This numerical range has much overlap
with that of previously reported scaling exponents that were
obtained for mostly smaller landslides though (Tebbens,
2020). Still, the nearly triangular posterior distribution has
much of its probability mass near its peak (Fig. 4), and the
same goes for the pooled estimate (Fig. 7a). Except for two
cases, the posterior αj values for landslide inventories re-
main indistinguishable from the pooled estimate. This low
variance of αj across inventories is striking if we consider
the diverse mapping techniques, levels of data quality, cov-
erage, environmental setting, and landslide triggers. The in-
ventories we selected cover several climatic zones with dif-
ferent vegetation and land cover characteristics that likely af-
fect the preservation, detection, and mapping of evidence of
large landslides. Moreover, some inventories were generated
from deep learning algorithms (Bhuyan et al., 2023), whereas
most others were mapped manually. While many posterior
estimates of σj are close to our arbitrary size threshold for
large landslides of 0.1 km2, the variance in this parameter is
high compared to the pooled estimate. Overall, the median
estimates of both αj and σj are unaffected by the number of
large landslides reported in a given inventory (Fig. 9).

Our model highlights several inventories with scaling
statistics that stand out. The M8 Haiyuan CHN and St. Elias
USA catalogues have high estimates of αj , while Caspian
Sea KAZ, M9.1 Tohoku JPN 2, and Owyhee USA have high
estimates of σj well beyond the central tendency of most
other catalogues (Fig. 9). These inventories consist almost
exclusively of large landslides and have much fewer land-
slides below the size thresholdµ. In contrast, we observe that
inventories with the most landslides falling belowµ have low
values of σj consistently. We infer that landslide catalogues
that were focused on compiling information about larger
landslides tend to have elevated values of σj . In this context,
our selection of inventories is nearly balanced: 20 of them
have less than 10 % large landslides, whereas 17 of them
have more than 50 %. One possible explanation for these out-
lying landslide size statistics is that the GPD is a poor fit
to inventories that mainly feature large landslides, at least
for the chosen threshold µ. The residuals for most of these
inventories show pronounced underestimates for the small-
est landslide range, except for the South Central CHL and
Caspian Sea KAZ catalogues (Fig. 3). Yet, other inventories
with similar residuals (e.g. Glacier Bay N.P. CAN 1) hardly
stand out compared to the pooled estimates. Clearly, extrapo-
lating the model across the full size range, for example to in-
fer the number of seemingly missing, underreported, or over-
looked landslides (Tanyaş et al., 2019), can be misleading in
these cases. Another explanation for the high estimates of kj
and σj is that the original mapping was focused on land-
slides close to, or well above, our choice of µ= 0.1 km2 such
that the undersampling of landslides near this size threshold
may explain some of the variance of scaling estimates. Re-
constructing historic landslide episodes from old air photos
and preserved geomorphic evidence (e.g. M8 Haiyuan CHN)
may also add variance. Either way, the strategy for keep-
ing such mapping practical is to use a size cutoff. Hence,
although smaller landslides may be recognised, they are ex-
cluded and thus censored in these inventories. Some of these
inventories also contain partly overlapping slope failure de-
posits of multiple ages, marking several phases of reactiva-
tion. Such overlaps may cause more landslides to surpass the
size threshold. Hence, the mapping objective would partly
bias estimates of σj for a size threshold that is too low.

We also find that the 95 % credible intervals of both GPD
parameters overlap for landslide inventories regardless of
whether they were attributed to recent earthquakes and rain-
storms or whether they integrate landslide observations, and
thus likely various triggers, over many years (Fig. 10). We
infer that the scaling statistics disclose very little about the
type of landslide trigger. In this context, our findings cau-
tion against a mechanistic interpretation of scaling parame-
ters, at least for large slope failures. These can have longer
and more complex histories of precursory slope deformation
and failure than smaller landslides (Korup et al., 2007), and
they likely respond to stresses that accumulate over repeated
episodes of earthquake shaking or rainstorms.
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Figure 7. (a) Prior and posterior distributions of inverse power-law scaling exponent α for the pooled model across all landslide inventories.
The white circle is the pooled posterior median, and the horizontal black line is 95 % HDI. (b) Prior and posterior distributions of GPD scale
parameter σ for the pooled model. The white circle is the pooled posterior median, and the horizontal black line is 95 % HDI.

Figure 8. Comparison between posterior GPD estimates and the maximum likelihood estimates (MLEs) of scaling exponents α for each
inventory. The dashed 1 : 1 line is for visual comparison only. Colour scale shows the fraction of (discarded) landslides below the size
threshold µ in each inventory; bubbles are scaled to the sample size of large landslides used for parameter estimation. Vertical grey bars
span 2 standard errors around the mean; grey horizontal bars are 95 % HDIs. Axes are scaled equally.

4.2 Role of size threshold and sample size

The heavy-tailed distribution of landslides means that we dis-
carded many samples for small increases in µ. To test the
sensitivity of our results to the choice of size threshold µ,
we replicated our analyses and recorded the variation in the
pooled estimates α and σ as a function of both µ and the
minimum number of large landslides that an inventory needs
to have to be included in our model. We find that varying
the size threshold such that 0.075 km2<µ< 0.3 km2 returns
posterior pooled values of α that decrease slightly with in-

creasing µ and the minimum number of samples per inven-
tory, though with much overlap (Fig. 11). Overall, the α
value is 1.23<α< 1.9 with 95 % probability regardless of
the threshold or sample size that we pick. Estimates of σ in-
crease slightly with µ but also with some overlap. Preferring
larger inventories for a given size threshold reduces the total
sample size such that the pooled posterior distributions of σ
get broader.

We infer that the choice of µ, and hence the definition of
“large” landslides (McColl and Cook, 2024), has limited in-
fluence on the scaling statistics and especially α. Values of µ
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Figure 9. Median posterior parameter estimates as a function of the number of large landslides per inventory (bubble size) and the fraction
of discarded landslides below the size threshold (colour scale). Grey bars span the 95 % HDIs.

Figure 10. Median posterior parameter estimates as a function of sample size (bubble size) and type of trigger (colour scale).

Nat. Hazards Earth Syst. Sci., 24, 3815–3832, 2024 https://doi.org/10.5194/nhess-24-3815-2024



O. Korup et al.: Large landslide scaling 3827

Figure 11. Effect of varying size threshold µ and minimum sample size n in each inventory on posterior estimates of the pooled scaling
exponent α and the pooled parameter σ . White bubbles are posterior medians, and horizontal black bars delimit the 95 % HDIs.

below the range that we tested violate the assumption of a
high threshold with the result that a GPD would be inap-
propriate, whereas values above this range suffer from sam-
ple sizes that are too small. The pooled scale parameter σ
shows less variation with µ and has largely overlapping pos-
teriors. Hence, our choice of the minimum number of large
landslides per inventory (n= 25) limits both the number of
groups and the overall sample size in our model. Admitting
more inventories that contain fewer large landslides changes
the posterior k and σ only slightly, but it does narrow the
uncertainties, especially for higher thresholds µ.

4.3 Benefits

Our Bayesian multi-level approach expands on previous,
though largely separate, efforts of comparing landslide size
statistics across different inventories (Tebbens, 2020). We of-
fer here a single, consistent model that has several benefits.

First, the Bayesian set-up can handle the small sample
problem of large landslides. Scaling parameters for large
landslides from a single landslide inventory are commonly
estimated from extrapolating model fits that largely draw
on more numerous, smaller landslides. Yet, even simulated
power-law distributed data have natural scatter in the largest
of observations (Clauset et al., 2009), making it difficult to
validate extrapolations and leading to overconfident param-
eter estimates, especially when ignoring the attached errors
(Fig. 8). Using data from other landslide inventories to vali-
date these estimates tacitly assumes that the scaling param-
eters have similar errors but offers no way of determining
whether this assumption is at all valid. The multi-level model
instead draws on the larger sample size from all inventories

and explicitly refines this shared knowledge in dedicated pos-
terior distributions for each catalogue. These group-level pa-
rameter estimates tend to be closer to the pooled mean than
those derived for separate models using fewer data from each
group alone. This effect is known as parameter shrinkage
(McElreath, 2016) and guards against overfitting, especially
for inventories with few data.

Second, the Bayesian treatment quantifies all parameter
uncertainties explicitly and especially those that capture pre-
vious knowledge about landslide size distributions. We can
thus quantify how much we have learned from the data by
comparing the posterior and prior distributions (Fig. 7). By
design, a Bayesian model seeks a compromise between these
previous findings and the data considered here in a prob-
abilistically consistent way. To this end, we made sure to
include mostly recently published landslide inventories or
those that had not been considered in scaling studies before.

Third, the multi-level model structure enables direct com-
parison of parameter estimates across and between land-
slide inventories (Fig. 10). Any differences in the underlying
workflows of detecting and mapping landslides and the com-
mensurate sample sizes are being accounted for by separate
posterior distributions and their deviation from the pooled
estimates (Figs. 4 and 5). Our model measures objectively
how similar landslide inventories are in terms of the scaling
parameters that jointly, instead of separately, define the size
distributions of large landslides.

Fourth, the peak-over-threshold approach that defines the
GPD is rooted in extreme value theory and thus expresses
what we can expect statistically from the size distribution of
large landslides. The parameters of the GPD contain infor-
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mation about the power-law scaling and translate readily into
parameters of other distributions used to characterise the size
scaling of landslides. Given that most inventories focussing
on large landslides have to operate on a lower size threshold,
we argue that the GPD is a natural choice for characterising
the size distributions of more extreme slope failures.

Finally, we can flexibly modify our multi-level model in
several ways. One option is to group the data in other ways
than by inventories. For example, we can specify the group
levels such that they represent dominant landslide, soil, or
rock type or any other characteristic that may have been col-
lected during the process of compiling the landslide inven-
tory. We discarded the option of using the type of landslide
trigger as a group level because we only have three invento-
ries of rainfall-triggered landslides, so posterior estimates of
scaling parameters might rely too much on the more numer-
ous data in earthquake-triggered and multi-event catalogues.
Adding inventory type as yet another group level would ex-
pand the parameter space and unnecessarily add bias for
multi-event catalogues that are likely dominated by an un-
known fraction of either rainfall- or earthquake-triggered
landslides. Instead, our choice of priors remains impartial
to inventory type. We recall that the GPD is by definition
“blind” to data below the threshold µ in that it truncates all
observations below the threshold. One alternative is to also
directly learn µ from the data, either globally or per inven-
tory, and add further covariates that may control the form of
the GPD.

5 Conclusions

We propose a multi-level model as common ground for con-
sistently estimating and comparing size distributions of large
and rarely observed slope failures across different invento-
ries. In choosing a peak-over-threshold approach, the gen-
eralised Pareto distribution (GPD) reflects what we would
expect statistically from a given landslide size distribution.
The multi-level set-up remediates the problem of low sample
size by making use of all available data for estimating scaling
parameters while acknowledging inherent differences across
inventories. Our model results based on 37 inventories with
8627 large landslides (≥ 0.1 km2) show that the power-law
exponent for each inventory αj = 1/kj discloses little about
the different underlying landslide trigger(s), geographic re-
gion, or time span concerning a given inventory, i.e. whether
it is event-based or compiles landslides of many different
ages. Inventories of mostly undated, prehistoric landslides
have scaling exponents αj that hardly differ from those of
historic, event-based catalogues. While several studies have
attributed a physical meaning to scaling statistics of landslide
size, we argue that some of this meaning might get diluted or
even lost in empirical data that may combine confounding
controls. We surmise that landslide inventories record these
physical processes, though in a mixed way that could admit,

for example, different failure types, rock and soil types, and
groundwater conditions. We suspect that most landslide in-
ventories have mixed size distributions. For example, mix-
ing data from inventories with differing size thresholds could
add variance to σj . At least for the large landslides studied
here, the scaling statistics likely reflect bulk physical charac-
teristics instead of variables of a single deterministic model
of slope stability. Despite thousands of large landslides to
learn from, the uncertainty about αj spans several decimal
points. Taking all inventories together, the pooled α captures
most of this variance. The GPD scale parameter σj has more
spread across inventories and is affected especially by those
with few or no landslides below our size threshold. We in-
fer that σj is sensitive to the desired landslide size range and
likely reflects the influence of mapping choices and specif-
ically the compromise of finding a suitable size threshold.
Regardless, the choice of probability distribution used to
model landslide areas is arbitrary, and parameter estimates
disclose nothing about sample size or completeness. We ad-
vise against inferring any completeness from the GPD or
any other distribution because probability densities are con-
ditional on a model, and models should be fitted to data and
not vice versa. Finally, our model measures objectively how
much the scaling statistics differ across inventories within es-
timation error. Such differences can be vital if using scaling
statistics for predicting future landslide hazard in terms of
size and frequency (Hergarten, 2023).
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