Articles | Volume 24, issue 10
https://doi.org/10.5194/nhess-24-3537-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-24-3537-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Maryam Pakdehi
Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Resilient Infrastructure and Disaster Response Center, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Ebrahim Ahmadisharaf
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Resilient Infrastructure and Disaster Response Center, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Behzad Nazari
Department of Civil Engineering, The University of Texas at Arlington, Arlington, TX 76010, USA
Eunsaem Cho
Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Resilient Infrastructure and Disaster Response Center, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Cited articles
Abdollahi, A. and Pradhan, B.: Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI), Sensors, 21, 4738, https://doi.org/10.3390/s21144738, 2021.
Abdrabo, K. I., Kantoush, S. A., Esmaiel, A., Saber, M., Sumi, T., Almamari, M., Elboshy, B., and Ghoniem, S.: An Integrated Indicator-Based Approach for Constructing an Urban Flood Vulnerability Index as an Urban Decision-Making Tool Using the PCA and AHP Techniques: A Case Study of Alexandria, Egypt, Urban Clim., 48, 101426, https://doi.org/10.1016/j.uclim.2023.101426, 2023.
Abrahart, R., Kneale, P. E., and See, L. M.: Neural Networks for Hydrological Modeling, CRC Press, ISBN 10:905809619X, ISBN 13:978-9058096197, 2004.
Adamowski, J., Chan, H. F., Prasher, S. O., and Sharda, V. N.: Comparison of Multivariate Adaptive Regression Splines with Coupled Wavelet Transform Artificial Neural Networks for Runoff Forecasting in Himalayan Micro-Watersheds with Limited Data, J. Hydroinform., 14, 731–744, https://doi.org/10.2166/hydro.2011.044, 2011.
Ahmadisharaf, E. and Kalyanapu, A. J.: A Coupled Probabilistic Hydrologic and Hydraulic Modelling Framework to Investigate the Uncertainty of Flood Loss Estimates, J. Flood Risk Manage., 12, e12536, https://doi.org/10.1111/jfr3.12536, 2019.
Ahmadisharaf, E., Kalyanapu, A. J., Lillywhite, J. R., and Tonn, G. L.: A Probabilistic Framework to Evaluate the Uncertainty of Design Hydrograph: Case Study of Swannanoa River Watershed, Hydrolog. Sci. J., 63, 1776–1790, https://doi.org/10.1080/02626667.2018.1525616, 2018.
Ahmadisharaf, E., Camacho, R. A., Zhang, H. X., Hantush, M. M., and Mohamoud, Y. M.: Calibration and Validation of Watershed Models and Advances in Uncertainty Analysis in TMDL Studies, J. Hydrol. Eng., 24, 03119001, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001794, 2019.
Allen, D. M.: The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction, Technometrics, 16, 125–127, https://doi.org/10.1080/00401706.1974.10489157, 1974.
Anderson, T. R., Fletcher, C. H., Barbee, M. M., Romine, B. M., Lemmo, S., and Delevaux, J. M. S.: Modeling Multiple Sea Level Rise Stresses Reveals up to Twice the Land at Risk Compared to Strictly Passive Flooding Methods, Sci. Rep., 8, 14484, https://doi.org/10.1038/s41598-018-32658-x, 2018.
Avila, L. A. and Cangialosi, J.: Tropical Cyclone Report – Hurricane Irene (AL092011), 11 April 2013, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf (last access: 1 May 2024), 2013.
Bafitlhile, T. M. and Li, Z.: Applicability of ε-Support Vector Machine and Artificial Neural Network for Flood Forecasting in Humid, Semi-Humid and Semi-Arid Basins in China, Water, 11, 85, https://doi.org/10.3390/w11010085, 2019.
Bales, J. D. and Wagner, C. R.: Sources of Uncertainty in Flood Inundation Maps, J. Flood Risk Manage., 2, 139–147, https://doi.org/10.1111/j.1753-318X.2009.01029.x, 2009.
Bates, P. D.: Flood Inundation Prediction, Annu. Rev. Fluid Mech., 54, 287–315, https://doi.org/10.1146/annurev-fluid-030121-113138, 2022.
Bates, P. D., Dawson, R. J., Hall, J. W., Horritt, M. S., Nicholls, R. J., Wicks, J., and Mohamed Hassan, M. A. A.: Simplified Two-Dimensional Numerical Modelling of Coastal Flooding and Example Applications, Coast. Eng., 52, 793–810, https://doi.org/10.1016/j.coastaleng.2005.06.001, 2005.
Berkhahn, S., Fuchs, L., and Neuweiler, I.: An Ensemble Neural Network Model for Real-Time Prediction of Urban Floods, J. Hydrol., 575, 743–754, https://doi.org/10.1016/j.jhydrol.2019.05.066, 2019.
Beven II, J. L., Hagen, A., and Berg, R.: Tropical Cyclone Report – HURRICANE IDA (AL092021), 4 April 2022, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL092021_Ida.pdf (last access: 1 May 2024), 2022.
Beven, K. J. and Kirkby, M. J.: A Physically Based, Variable Contributing Area Model of Basin Hydrology/Un Modèle à Base Physique de Zone d'appel Variable de l'hydrologie Du Bassin Versant, Hydrolog. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Bhuyian, M. N. M. and Kalyanapu, A.: Predicting Channel Conveyance and Characterizing Planform Using River Bathymetry via Satellite Image Compilation (RiBaSIC) Algorithm for DEM-Based Hydrodynamic Modeling, Remote Sens., 12, 2799, https://doi.org/10.3390/rs12172799, 2020.
Blake, E. S., Kimberlain, T. B., Berg, R. J., Cangialosi, J. P., and Beven II, J. L.: Tropical Cyclone Report – Hurricane Sandy (AL182012), 12 February 2013, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf (last access: 1 May 2024), 2013.
Brunner, G. W.: HEC-RAS, River Analysis System Hydraulic Reference Manual, February 2016, https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Reference Manual.pdf (last access: 1 August 2023), 2016.
Cao, Y., Jia, H., Xiong, J., Cheng, W., Li, K., Pang, Q., and Yong, Z.: Flash Flood Susceptibility Assessment Based on Geodetector, Certainty Factor, and Logistic Regression Analyses in Fujian Province, China, ISPRS Int. J. Geo-Inf., 9, 748, https://doi.org/10.3390/ijgi9120748, 2020.
Chang, L.-C., Liou, J.-Y., and Chang, F.-J.: Spatial-Temporal Flood Inundation Nowcasts by Fusing Machine Learning Methods and Principal Component Analysis, J. Hydrol., 612, 128086, https://doi.org/10.1016/j.jhydrol.2022.128086, 2022.
Chen, Y., Zhang, X., Yang, K., Zeng, S., and Hong, A.: Modeling Rules of Regional Flash Flood Susceptibility Prediction Using Different Machine Learning Models, Front. Earth Sci., 11, 1117004, https://doi.org/10.3389/feart.2023.1117004, 2023.
Costabile, P., Costanzo, C., and Macchione, F.: Performances and Limitations of the Diffusive Approximation of the 2-d Shallow Water Equations for Flood Simulation in Urban and Rural Areas, Appl.Numer. Math., 116, 141–156, https://doi.org/10.1016/j.apnum.2016.07.003, 2017.
Dawson, C. W., Abrahart, R. J., Shamseldin, A. Y., and Wilby, R. L.: Flood Estimation at Ungauged Sites Using Artificial Neural Networks, J. Hydrol., 319, 391–409, https://doi.org/10.1016/j.jhydrol.2005.07.032, 2006.
Dixit, A., Sahany, S., Rajagopalan, B., and Choubey, S.: Role of Changing Land Use and Land Cover (LULC) on the 2018 Megafloods over Kerala, India, Clim. Res., 89, 1–14, https://doi.org/10.3354/cr01701, 2022.
Ebrahimian, A., Ardeshir, A., Zahedi Rad, I., and Ghodsypour, S. H.: Urban Stormwater Construction Method Selection Using a Hybrid Multi-Criteria Approach, Automat. Construct., 58, 118–128, https://doi.org/10.1016/j.autcon.2015.07.014, 2015.
Ebrahimian, A., Gulliver, J. S., and Wilson, B. N.: Effective Impervious Area for Runoff in Urban Watersheds: EIA in Urban Watersheds, Hydrol. Process., 30, 3717–3729, https://doi.org/10.1002/hyp.10839, 2016.
Elkhrachy, I.: Flash Flood Water Depth Estimation Using SAR Images, Digital Elevation Models, and Machine Learning Algorithms, Remote Sens., 14, 440, https://doi.org/10.3390/rs14030440, 2022.
Fereshtehpour, M., Esmaeilzadeh, M., Saleh Alipour, R., and Burian, S. J.: Impacts of DEM Type and Resolution on Deep Learning-Based Flood Inundation Mapping, Earth Sci. Inform., 17, 1125–1145, https://doi.org/10.1007/s12145-024-01239-0, 2024.
Fernández-Pato, J., Caviedes-Voullième, D., and García-Navarro, P.: Rainfall/Runoff Simulation with 2D Full Shallow Water Equations: Sensitivity Analysis and Calibration of Infiltration Parameters, J. Hydrol., 536, 496–513, https://doi.org/10.1016/j.jhydrol.2016.03.021, 2016.
Gallegos, H. A., Schubert, J. E., and Sanders, B. F.: Structural Damage Prediction in a High-Velocity Urban Dam-Break Flood: Field-Scale Assessment of Predictive Skill and Modeling Efficiency, J. Eng. Mech., 138, 1249–1262, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000427, 2012.
Geisser, S.: The Predictive Sample Reuse Method with Applications, J. Am. Stat. Assoc., 70, 320–328, https://doi.org/10.1080/01621459.1975.10479865, 1975.
Gudiyangada Nachappa, T., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., and Blaschke, T.: Flood Susceptibility Mapping with Machine Learning, Multi-Criteria Decision Analysis and Ensemble Using Dempster Shafer Theory, J. Hydrol., 590, 125275, https://doi.org/10.1016/j.jhydrol.2020.125275, 2020.
Guo, Z., Leitão, J. P., Simões, N. E., and Moosavi, V.: Data-Driven Flood Emulation: Speeding up Urban Flood Predictions by Deep Convolutional Neural Networks, J. Flood Risk Manage., 14, e12684, https://doi.org/10.1111/jfr3.12684, 2021.
Horel, E. and Giesecke, K.: Computationally Efficient Feature Significance and Importance for Machine Learning Models, arXiv [preprint], https://doi.org/10.48550/ARXIV.1905.09849, 2019.
Hosseini, F. S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., and Haghighi, A. T.: Flash-Flood Hazard Assessment Using Ensembles and Bayesian-Based Machine Learning Models: Application of the Simulated Annealing Feature Selection Method, Sci. Total Environ., 711, 135161, https://doi.org/10.1016/j.scitotenv.2019.135161, 2020.
Hosseiny, H., Nazari, F., Smith, V., and Nataraj, C.: A Framework for Modeling Flood Depth Using a Hybrid of Hydraulics and Machine Learning, Sci. Rep., 10, 8222, https://doi.org/10.1038/s41598-020-65232-5, 2020.
Hu, A. and Demir, I.: Real-Time Flood Mapping on Client-Side Web Systems Using HAND Model, Hydrology, 8, 65, https://doi.org/10.3390/hydrology8020065, 2021.
Huang, F., Tao, S., Li, D., Lian, Z., Catani, F., Huang, J., Li, K., and Zhang, C.: Landslide Susceptibility Prediction Considering Neighborhood Characteristics of Landslide Spatial Datasets and Hydrological Slope Units Using Remote Sensing and GIS Technologies, Remote Sens., 14, 4436, https://doi.org/10.3390/rs14184436, 2022.
Jafarzadegan, K. and Merwade, V.: Probabilistic Floodplain Mapping Using HAND-Based Statistical Approach, Geomorphology, 324, 48–61, https://doi.org/10.1016/j.geomorph.2018.09.024, 2019.
Jafarzadegan, K., Moradkhani, H., Pappenberger, F., Moftakhari, H., Bates, P., Abbaszadeh, P., Marsooli, R., Ferreira, C., Cloke, H. L., Ogden, F., and Duan, Q.: Recent Advances and New Frontiers in Riverine and Coastal Flood Modeling, Rev. Geophys., 61, e2022RG000788, https://doi.org/10.1029/2022RG000788, 2023.
Jiang, J., Shu, Y., Wang, J., and Long, M.: Transferability in Deep Learning: A Survey, arXiv [preprint], https://doi.org/10.48550/arXiv.2201.05867, 2024.
Joseph, V. R.: Optimal Ratio for Data Splitting, Stat. Anal. Data Min., 15, 531–538, https://doi.org/10.1002/sam.11583, 2022.
Kalyanapu, A. J., Shankar, S., Pardyjak, E. R., Judi, D. R., and Burian, S. J.: Assessment of GPU Computational Enhancement to a 2D Flood Model, Environ. Model. Softw., 26, 1009–1016, https://doi.org/10.1016/j.envsoft.2011.02.014, 2011.
Karamouz, M., Saleh Alipour, R., Roohinia, M., and Fereshtehpour, M.: A Remote Sensing Driven Soil Moisture Estimator: Uncertain Downscaling With Geostatistically Based Use of Ancillary Data, Water Resour. Res., 58, e2022WR031946, https://doi.org/10.1029/2022WR031946, 2022.
Khosravi, K., Pham, B. T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I., and Bui, D. T.: A Comparative Assessment of Decision Trees Algorithms for Flash Flood Susceptibility Modeling at Haraz Watershed, Northern Iran, Sci. Total Environ., 627, 744–755, https://doi.org/10.1016/j.scitotenv.2018.01.266, 2018.
Kim, S., Matsumi, Y., Pan, S., and Mase, H.: A Real-Time Forecast Model Using Artificial Neural Network for after-Runner Storm Surges on the Tottori Coast, Japan, Ocean Eng., 122, 44-53, https://doi.org/10.1016/j.oceaneng.2016.06.017, 2016.
Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B., and Thieken, A. H.: Is Flow Velocity a Significant Parameter in Flood Damage Modelling?, Nat. Hazards Earth Syst. Sci., 9, 1679–1692, https://doi.org/10.5194/nhess-9-1679-2009, 2009.
Kulp, S. A. and Strauss, B. H.: New Elevation Data Triple Estimates of Global Vulnerability to Sea-Level Rise and Coastal Flooding, Nat. Commun., 10, 4844, https://doi.org/10.1038/s41467-019-12808-z, 2019.
Kundzewicz, Z. W., Su, B., Wang, Y., Xia, J., Huang, J., and Jiang, T.: Flood Risk and Its Reduction in China, Adv. Water Resour., 130, 37–45, https://doi.org/10.1016/j.advwatres.2019.05.020, 2019.
Latto, A., Hagen, A., and Berg, R.: Tropical Cyclone Report – HURRICANE ISAIAS (AL092020), 11 June 2021, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL092020_Isaias.pdf (last access: 1 May 2024), 2021.
Lee, D.-H., Kim, Y.-T., and Lee, S.-R.: Shallow Landslide Susceptibility Models Based on Artificial Neural Networks Considering the Factor Selection Method and Various Non-Linear Activation Functions, Remote Sens., 12, 1194, https://doi.org/10.3390/rs12071194, 2020.
Löwe, R., Böhm, J., Jensen, D. G., Leandro, J., and Rasmussen, S. H.: U-FLOOD – Topographic Deep Learning for Predicting Urban Pluvial Flood Water Depth, J. Hydrol., 603, 126898, https://doi.org/10.1016/j.jhydrol.2021.126898, 2021.
Lundberg, S. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, arXiv [preprint], https://doi.org/10.48550/arXiv.1705.07874, 2017.
Macedo, F., Oliveira, M. R., Pacheco, A., and Valadas, R.: Theoretical Foundations of Forward Feature Selection Methods Based on Mutual Information, Neurocomputing, 325, 67–89, https://doi.org/10.1016/j.neucom.2018.09.077, 2019.
McCulloch, W. S. and Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity, Bull. Math. Biophys., 5, 115–133, https://doi.org/10.1007/BF02478259, 1943.
Merwade, V., Olivera, F., Arabi, M., and Edleman, S.: Uncertainty in Flood Inundation Mapping: Current Issues and Future Directions, J. Hydrol. Eng., 13, 608–620, https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608), 2008.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review Article “Assessment of Economic Flood Damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Ming, X., Liang, Q., Xia, X., Li, D., and Fowler, H. J.: Real-Time Flood Forecasting Based on a High-Performance 2-D Hydrodynamic Model and Numerical Weather Predictions, Water Resour. Res., 56, e2019WR025583, https://doi.org/10.1029/2019WR025583, 2020.
Mishra, A., Mukherjee, S., Merz, B., Singh, V. P., Wright, D. B., Gabriele, V., Paul, S., Kumar D. N., Khedun, C. P., Niyogi, D., Schumann, G., and Stedinger, J. R.: An Overview of Flood Concepts, Challenges, and Future Directions, J. Hydrol. Eng., 27, 03122001, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002164, 2022.
National Hurricane Center: Storm track maps, https://www.nhc.noaa.gov/index.shtml (last access: 1 May 2023), 2022.
Nguyen, Q. H., Ly, H.-B., Ho, L. S., Al-Ansari, N., Le, H. V., Tran, V. Q., Prakash, I., and Pham, B. T.: Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil, Math. Probl. Eng., 2021, e4832864, https://doi.org/10.1155/2021/4832864, 2021.
NOAA: NOAA Tides & Currents, CO-OPS Map – NOAA Tides & Currents, https://tidesandcurrents.noaa.gov/map/index.html (last access: 1 May 2023), 2023.
NOAA's NCEI: Data Search|National Centers for Environmental Information (NCEI), https://www.ncei.noaa.gov/access/search/data-search/local-climatological-data (last access: 1 May 2023), 2022.
Pakdehi, M.: ANN_MLP-flood-depth-model, GitHub [code], https://github.com/mpakdehi/ANN_MLP-flood-depth-model (last access: 13 October 2024), 2024a.
Pakdehi, M.: mpakdehi/ANN_MLP-flood-depth-model: ANN_MLP-flood-depth-model (ANN_MLP-flood-depth-model), Zenodo [data set], https://doi.org/10.5281/zenodo.13924231, 2024b.
Park, M. H., Ju, M., and Kim, J. Y.: Bayesian Approach in Estimating Flood Waste Generation: A Case Study in South Korea, J. Environ. Manage., 265, 110552, https://doi.org/10.1016/j.jenvman.2020.110552, 2020.
Pham, B. T., Luu, C., Phong, T. V., Trinh, P. T., Shirzadi, A., Renoud, S., Asadi, S., Le, H. V., von Meding, J., and Clague, J. J.: Can Deep Learning Algorithms Outperform Benchmark Machine Learning Algorithms in Flood Susceptibility Modeling?, J. Hydrol., 592, 125615, https://doi.org/10.1016/j.jhydrol.2020.125615, 2021.
Qi, H. and Altinakar, M. S.: A Conceptual Framework of Agricultural Land Use Planning with BMP for Integrated Watershed Management, J. Environ. Manage., 92, 149–155, https://doi.org/10.1016/j.jenvman.2010.08.023, 2011a.
Qi, H. and Altinakar, M. S.: Vegetation Buffer Strips Design Using an Optimization Approach for Non-Point Source Pollutant Control of an Agricultural Watershed, Water Resour. Manage., 25, 565–578, https://doi.org/10.1007/s11269-010-9714-9, 2011b.
Qi, H. and Altinakar, M. S.: GIS-Based Decision Support System for Dam Break Flood Management under Uncertainty with Two-Dimensional Numerical Simulations, J. Water Resour. Pl. Manage., 138, 334–341, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000192, 2012.
Rafiei-Sardooi, E., Azareh, A., Choubin, B., Mosavi, A. H., and Clague, J. J.: Evaluating Urban Flood Risk Using Hybrid Method of TOPSIS and Machine Learning, Int. J. Disast. Risk Reduct., 66, 102614, https://doi.org/10.1016/j.ijdrr.2021.102614, 2021.
Rahmati, O., Pourghasemi, H. R., and Zeinivand, H.: Flood Susceptibility Mapping Using Frequency Ratio and Weights-of-Evidence Models in the Golastan Province, Iran, Geocarto Int., 31, 42–70, https://doi.org/10.1080/10106049.2015.1041559, 2016.
Reckien, D.: What Is in an Index? Construction Method, Data Metric, and Weighting Scheme Determine the Outcome of Composite Social Vulnerability Indices in New York City, Reg. Environ. Change, 18, 1439–1451, https://doi.org/10.1007/s10113-017-1273-7, 2018.
Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G., Tomasella, J., and Waterloo, M. J.: HAND, a New Terrain Descriptor Using SRTM-DEM: Mapping Terra-Firme Rainforest Environments in Amazonia, Remote Sens. Environ., 112, 3469–3481, https://doi.org/10.1016/j.rse.2008.03.018, 2008.
Rezaie, F., Panahi, M., Bateni, S. M., Jun, C., Neale, C. M. U., and Lee, S.: Novel Hybrid Models by Coupling Support Vector Regression (SVR) with Meta-Heuristic Algorithms (WOA and GWO) for Flood Susceptibility Mapping, Nat. Hazards, 114, 1247–1283, https://doi.org/10.1007/s11069-022-05424-6, 2022.
Rumelhart, D. E., McClelland, J. L., and PDP Research Group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, The MIT Press, https://doi.org/10.7551/mitpress/5236.001.0001, 1986.
Salvati, A., Moghaddam Nia, A., Salajegheh, A., Ghaderi, K., Talebpour Asl, D., Al-Ansari, N., Solaimani, F., and Clague, J. J.: Flood Susceptibility Mapping Using Support Vector Regression and Hyper-Parameter Optimization, J. Flood Risk Manage., 16, e12920, https://doi.org/10.1111/jfr3.12920, 2023.
Schubert, J. E. and Sanders, B. F.: Building Treatments for Urban Flood Inundation Models and Implications for Predictive Skill and Modeling Efficiency, Adv. Water Resour., 41, 49–64, https://doi.org/10.1016/j.advwatres.2012.02.012, 2012.
Schubert, J. E., Luke, A., AghaKouchak, A., and Sanders, B. F.: A Framework for Mechanistic Flood Inundation Forecasting at the Metropolitan Scale, Water Resour. Res., 58, e2021WR031279, https://doi.org/10.1029/2021WR031279, 2022.
Sheridan, S. C., Lee, C. C., Adams, R. E., Smith, E. T., Pirhalla, D. E., and Ransibrahmanakul, V.: Temporal Modeling of Anomalous Coastal Sea Level Values Using Synoptic Climatological Patterns, J. Geophys. Res.-Oceans, 124,6531–6544, https://doi.org/10.1029/2019JC015421, 2019.
Sridhar, V., Ali, S. A., and Sample, D. J.: Systems Analysis of Coupled Natural and Human Processes in the Mekong River Basin, Hydrology, 8, 140, https://doi.org/10.3390/hydrology8030140, 2021.
Stone, M.: Cross-Validatory Choice and Assessment of Statistical Predictions, J. Roy. Stat. Soc. Ser. B, 36, 111–133, https://doi.org/10.1111/j.2517-6161.1974.tb00994.x, 1974.
Stow, C. A., Roessler, C., Borsuk, M. E., Bowen, J. D., and Reckhow, K. H.: Comparison of Estuarine Water Quality Models for Total Maximum Daily Load Development in Neuse River Estuary, J. Water Resour. Pl. Manage., 129, 307–314, https://doi.org/10.1061/(ASCE)0733-9496(2003)129:4(307), 2003.
Sun, D., Xu, J., Wen, H., and Wang, Y.: An Optimized Random Forest Model and Its Generalization Ability in Landslide Susceptibility Mapping: Application in Two Areas of Three Gorges Reservoir, China, J. Earth Sci., 31, 1068–1086, https://doi.org/10.1007/s12583-020-1072-9, 2020.
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S.: Flood Inundation Modelling: A Review of Methods, Recent Advances and Uncertainty Analysis, Environ. Model. Softw., 90, 201–216, https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.
USGS.: TNM Download V2, https://apps.nationalmap.gov/downloader/ (last access: 1 May 2023), 2022.
Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A., and Blöschl, G.: Insights from Socio-Hydrology Modelling on Dealing with Flood Risk – Roles of Collective Memory, Risk-Taking Attitude and Trust, J. Hydrol., 518, 71–82, https://doi.org/10.1016/j.jhydrol.2014.01.018, 2014.
Wagenaar, D., Lüdtke, S., Schröter, K., Bouwer, L. M., and Kreibich, H.: Regional and Temporal Transferability of Multivariable Flood Damage Models, Water Resour. Res., 54, 3688–3703, https://doi.org/10.1029/2017WR022233, 2018.
Wang, J., Tang, Q., Yun, X., Chen, A., Sun, S., and Yamazaki, D.: Flood Inundation in the Lancang-Mekong River Basin: Assessing the Role of Summer Monsoon, J. Hydrol., 612, 128075, https://doi.org/10.1016/j.jhydrol.2022.128075, 2022.
Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., and Bai, X.: Flood Hazard Risk Assessment Model Based on Random Forest, J. Hydrol., 527, 1130–1141, https://doi.org/10.1016/j.jhydrol.2015.06.008, 2015.
Wan Jaafar, W. Z. and Han, D.: Uncertainty in Index Flood Modelling Due to Calibration Data Sizes, Hydrol. Process., 26, 189–201, https://doi.org/10.1002/hyp.8135, 2012.
Wenger, S. J. and Olden, J. D.: Assessing Transferability of Ecological Models: An Underappreciated Aspect of Statistical Validation, Meth. Ecol. Evol., 3, 260–267, https://doi.org/10.1111/j.2041-210X.2011.00170.x, 2012.
Youssef, A. M., Pradhan, B., Dikshit, A., and Mahdi, A. M.: Comparative Study of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Flood Susceptibility Mapping: A Case Study at Ras Gharib, Red Sea, Egypt, Geocarto Int., 37, 11088–11115, https://doi.org/10.1080/10106049.2022.2046866, 2022.
Zahura, F. T., Goodall, J. L., Sadler, J. M., Shen, Y., Morsy, M. M., and Behl, M.: Training Machine Learning Surrogate Models From a High-Fidelity Physics-Based Model: Application for Real-Time Street-Scale Flood Prediction in an Urban Coastal Community, Water Resour. Res., 56, e2019WR027038, https://doi.org/10.1029/2019WR027038, 2020.
Zhang, F., Zhu, X., and Liu, D.: Blending MODIS and Landsat Images for Urban Flood Mapping, Int. J. Remote Sens., 35, 3237–3253, https://doi.org/10.1080/01431161.2014.903351, 2014.
Zhao, G., Pang, B., Xu, Z., Peng, D., and Zuo, D.: Urban Flood Susceptibility Assessment Based on Convolutional Neural Networks, J. Hydrol., 590, 125235, https://doi.org/10.1016/j.jhydrol.2020.125235, 2020.
Zheng, X., Tarboton, D. G., Maidment, D. R., Liu, Y. Y., and Passalacqua, P.: River Channel Geometry and Rating Curve Estimation Using Height above the Nearest Drainage, J. Am. Water Resour. Assoc., 54, 785–806, https://doi.org/10.1111/1752-1688.12661, 2018.
Zhu, D., Ren, Q., Xuan, Y., Chen, Y., and Cluckie, I. D.: An Effective Depression Filling Algorithm for DEM-Based 2-D Surface Flow Modelling, Hydrol. Earth Syst. Sci., 17, 495–505, https://doi.org/10.5194/hess-17-495-2013, 2013.
Zhu, J.-J., Yang, M., and Ren, Z. J.: Machine Learning in Environmental Research: Common Pitfalls and Best Practices, Environ. Sci. Technol., 57, 17671–17689, https://doi.org/10.1021/acs.est.3c00026, 2023.
Short summary
Machine learning (ML) algorithms have increasingly received attention for modeling flood events. However, there are concerns about the transferability of these models (their capability in predicting out-of-sample and unseen events). Here, we show that ML models can be transferable for hindcasting maximum river flood depths across extreme events (four hurricanes) in a large coastal watershed (HUC6) when informed by the spatial distribution of pertinent features and underlying physical processes.
Machine learning (ML) algorithms have increasingly received attention for modeling flood events....
Altmetrics
Final-revised paper
Preprint