Articles | Volume 24, issue 10
https://doi.org/10.5194/nhess-24-3537-2024
https://doi.org/10.5194/nhess-24-3537-2024
Research article
 | 
17 Oct 2024
Research article |  | 17 Oct 2024

Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds

Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho

Related subject area

Hydrological Hazards
Floods in the Pyrenees: a global view through a regional database
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024,https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Algorithmically detected rain-on-snow flood events in different climate datasets: a case study of the Susquehanna River basin
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024,https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024,https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Coupling WRF with HEC-HMS and WRF-Hydro for flood forecasting in typical mountainous catchments of northern China
Sheik Umar Jam-Jalloh, Jia Liu, Yicheng Wang, and Yuchen Liu
Nat. Hazards Earth Syst. Sci., 24, 3155–3172, https://doi.org/10.5194/nhess-24-3155-2024,https://doi.org/10.5194/nhess-24-3155-2024, 2024
Short summary
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary

Cited articles

Abdollahi, A. and Pradhan, B.: Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI), Sensors, 21, 4738, https://doi.org/10.3390/s21144738, 2021. 
Abdrabo, K. I., Kantoush, S. A., Esmaiel, A., Saber, M., Sumi, T., Almamari, M., Elboshy, B., and Ghoniem, S.: An Integrated Indicator-Based Approach for Constructing an Urban Flood Vulnerability Index as an Urban Decision-Making Tool Using the PCA and AHP Techniques: A Case Study of Alexandria, Egypt, Urban Clim., 48, 101426, https://doi.org/10.1016/j.uclim.2023.101426, 2023. 
Abrahart, R., Kneale, P. E., and See, L. M.: Neural Networks for Hydrological Modeling, CRC Press, ISBN 10:905809619X, ISBN 13:978-9058096197, 2004.  
Adamowski, J., Chan, H. F., Prasher, S. O., and Sharda, V. N.: Comparison of Multivariate Adaptive Regression Splines with Coupled Wavelet Transform Artificial Neural Networks for Runoff Forecasting in Himalayan Micro-Watersheds with Limited Data, J. Hydroinform., 14, 731–744, https://doi.org/10.2166/hydro.2011.044, 2011. 
Ahmadisharaf, E. and Kalyanapu, A. J.: A Coupled Probabilistic Hydrologic and Hydraulic Modelling Framework to Investigate the Uncertainty of Flood Loss Estimates, J. Flood Risk Manage., 12, e12536, https://doi.org/10.1111/jfr3.12536, 2019. 
Download
Short summary
Machine learning (ML) algorithms have increasingly received attention for modeling flood events. However, there are concerns about the transferability of these models (their capability in predicting out-of-sample and unseen events). Here, we show that ML models can be transferable for hindcasting maximum river flood depths across extreme events (four hurricanes) in a large coastal watershed (HUC6) when informed by the spatial distribution of pertinent features and underlying physical processes.
Altmetrics
Final-revised paper
Preprint