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Abstract. Despite applications of machine learning (ML)
models for predicting floods, their transferability for out-of-
sample data has not been explored. This paper developed
an ML-based model for hindcasting maximum river water
depths during major events in coastal watersheds and evalu-
ated its transferability across other events (out-of-sample).
The model considered the spatial distribution of influen-
tial factors that explain the underlying physical processes
to hindcast maximum river water depths. Our model evalua-
tions in a six-digit hydrologic unity code (HUC6) watershed
in the northeastern USA showed that the model satisfacto-
rily hindcasted maximum water depths at 116 stream gauges
during a major flood event, Hurricane Ida (R? of 0.94). The
pre-trained, validated model was successfully transferred to
three other major flood events, hurricanes Isaias, Sandy, and
Irene (R? > 0.70). Our results showed that ML-based mod-
els can be transferable for hindcasting maximum river water
depths across events when informed by the spatial distribu-
tion of pertinent features, their interactions, and underlying
physical processes in coastal watersheds.

1 Introduction

Floods can damage civil infrastructure, business disrup-
tions, and environmental degradation. Mitigation strategies
are planned and implemented to mitigate this damage. To
propose effective protection strategies, predictive models are
used to evaluate watershed responses under various plausible

flood scenarios (Fernandez-Pato et al., 2016; Kundzewicz et
al., 2019; Viglione et al., 2014). These models are essential
tools to inform decision-makers about suitable risk manage-
ment strategies and actions. Flood models can be broadly cat-
egorized as physically based, morphology-based, and data-
driven.

Physically based models, widely used for predicting hy-
drologic events, are considered reliable tools for assessing
different flood scenarios (Ferndndez-Pato et al., 2016). These
models solve the shallow-water equations to derive flood
characteristics. Developing physically based models requires
certain meteorologic, hydrologic, and geomorphologic data.
If these data are not available at the desired scale, such
models cannot be developed. For instance, global inundation
models are available to model flooding across the world, but
they may not be efficient for small-scale applications. In such
instances, data-driven models can be a flexible alternative as
they can adapt to varying levels of data availability by fo-
cusing on the features with sufficient data. This flexibility
remains one of the advantages of data-driven models over
physically based models. Physically based models also need
significant computational resources, especially in the case of
high-resolution, multidimensional (2D and 3D), or stochastic
models that necessitate numerous simulations. To enhance
the speed of flood simulations, techniques such as parallel
computing, graphics processing units (GPUs), and simplified
models have been utilized (Costabile et al., 2017; Kalyanapu
etal., 2011; Ming et al., 2020; Sridhar et al., 2021; Zahura et
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al., 2020). However, resources for utilizing these approaches
are not always available (Zhang et al., 2014).

Morphology-based models, which approximate flat-water
surfaces over small spatial scales, are also used for
flood predictions (Bates, 2022). Bathtub (Anderson et al.,
2018; Kulp and Strauss, 2019) and height above nearest
drainage (HAND; Renné et al., 2008) modeling are two
widely used approaches in this modeling category. Jafarzade-
gan and Merwade (2019) used a probabilistic function based
on HAND, computed from a digital elevation model (DEM),
and optimized it for accuracy to delineate 100-year flood-
plains. Zheng et al. (2018) developed a synthetic rating curve
using the HAND method, which represents river water depth
measurements and is similar to hydraulic models or stream
gauge readings. While these models are computationally ef-
ficient, they can overestimate flooded area and are limited to
the number of features they use; these models rely on to-
pographic data (Bates, 2022; Bates et al., 2005) and tend
to work well only in confined valleys. The sole use of to-
pographic data makes HAND-based models impractical for
low-lying areas, especially coastal watersheds that experi-
ence a combination of hydrologic and oceanic processes
(e.g., tidal influences, storm surges, and wave action); other
flood-influencing factors, which represent such overlooked
underlying physical processes, are also needed for predic-
tions in such watersheds. Coastal regions also experience
a combination of oceanic and hydrologic processes, which
might not be fully represented by HAND. Both HAND-based
and bathtub models are limited in representing such terrains
as they might not fully capture the intricate interactions be-
tween oceanic and hydrologic factors in coastal areas. Conse-
quently, in coastal watersheds, where unconfined floodplains
and complex interactions are prevalent, alternative modeling
approaches that consider a broader range of factors are cru-
cial for producing reliable flood predictions. Incorporating
these overlooked underlying physical processes becomes es-
sential in providing comprehensive flood predictions in these
intricate environments.

Machine learning (ML) and, in particular, deep learn-
ing (DL) models offer an alternative approach that can
rapidly capture complex relationships between various influ-
encing factors and flood characteristics. ML models have the
potential to provide satisfactory flood predictions (Mishra et
al., 2022). Such data-driven models have gained popularity
due to their overcoming the limitations of physically based
and morphology-based models in flood modeling (Khosravi
et al., 2018). These models mathematically represent the
nonlinearity of flood dynamics with pertinent features and
observed flood data using complex nonlinear structures and
algorithms. Data-driven models have been found as promis-
ing tools due to their quick development time and minimal
input requirements (Guo et al., 2021; Lowe et al., 2021; Za-
hura et al., 2020). Example data-driven models for flood pre-
dictions include multiple linear regression, artificial neural
network (ANN), random forest, support vector machine, and
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support vector regression models (Adamowski et al., 2011;
Kim et al., 2016; Rafiei-Sardooi et al., 2021; Rahmati et al.,
2016; Rezaie et al., 2022; Wang et al., 2015; Youssef et al.,
2022). While there are several issues with these models, in-
cluding interpretability, techniques such as SHapley Additive
exPlanations (SHAP) can enhance understanding of these
models’ decision-making processes (Abdollahi and Pradhan,
2021; Lundberg and Lee, 2017). These models enable the
identification of key features that drive flood characteristics.

Previous research has shown that various ML algorithms
are effective in predicting flood extents and generating sus-
ceptibility maps, with a focus on classification ML models
(Khosravi et al., 2018; Rahmati et al., 2016; Rezaie et al.,
2022; Youssef et al., 2022). However, these studies have lim-
itations in terms of their experimental design and scope. For
instance, some of these studies created datasets of flooded
and unflooded points using remote sensing. The datasets
were often split into two subsets, and ML models were ex-
amined after being trained on a portion of the dataset (train-
ing set) and then tested for the remainder of the dataset (val-
idation or test set). This approach helps in identifying the
most effective models for flood predictions based on perfor-
mance metrics, such as recall or the area under the receiver
operating characteristic (ROC) curve. Another limitation of
these ML studies is the reliance on a single event for training
and validation. As such, it is unclear whether a trained and
validated model can satisfactorily predict other flood events.
These limitations call for studies that evaluate more complex
methodologies and a broader range of scenarios to assess the
effectiveness of ML algorithms for predicting flood charac-
teristics.

Another application of ML models for flood inundation
prediction has been coupling them with physically based
models for improving their performance. Such applications
are based on the hybrid use of ML and physically based
modeling categories. For instance, Chang et al. (2022) sug-
gested an approach that incorporated principal component
analysis (PCA), self-organizing maps, and nonlinear autore-
gressive models with exogenous inputs to mine spatiotem-
poral data and forecast regional flood inundation. The au-
thors recognized the value of using ML algorithms together
with a 2D hydraulic model to simulate urban flood inunda-
tion considering different rainfall events. Elkhrachy (2022)
developed a hybrid approach to predict flash flood depths
combining 2D hydraulic modeling with ML algorithms; wa-
ter depths simulated by the Hydrologic Engineering Center
River Analysis System (HEC-RAS; Brunner, 2016) model
served as training and test datasets for ML algorithms. Lowe
et al. (2021) trained an ANN model to identify patterns in
rainfall hyetographs and topographic data to enable fast pre-
dictions of flood depths for other rainfall events and loca-
tions (out-of-sample training data) complemented by 2D hy-
drodynamic simulations. Guo et al. (2021) used a convolu-
tional neural network (CNN) model trained on flood simula-
tion patch data from the CADDIES cellular-automata model
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to perform image-to-image translation for rapid urban flood
prediction and risk assessment. To simulate maximum flood
extent and depth, Hosseiny et al. (2020) created a system
that combines a hydraulic model with ML algorithms. Za-
hura et al. (2020) used simulations from high-resolution
1D/2D physically based models as training and test data for
a random forest model that included topographic and envi-
ronmental characteristics to estimate hourly water depths. In
these applications, flood depth, which is important for risk
assessments and damage estimates (Merz et al., 2010), has
been predicted by coupling physically based and ML models.
These coupled modeling studies have demonstrated the com-
plementary benefits of using physically based models along
with ML algorithms in producing flood modeling outputs,
but the computational expense is still an application barrier.
Another significant challenge inherent in these studies lies in
their dependence on hydraulic models for training purposes.
Furthermore, there is a gap in demonstrating the ability of
these studies to successfully predict flood characteristics be-
yond their training samples. For instance, no studies have ex-
plored the capability of ML models to predict events other
than those utilized in their original training datasets (out-of-
sample).

Despite previous efforts, the development of computation-
ally efficient and user-friendly flood prediction models re-
mains a challenge. ML-based models, although promising
and computationally efficient, have not gained widespread
acceptance among practitioners due to concerns about their
reliance on predicting flood characteristics for other events
(out-of-sample). Transferability is particularly crucial given
the growing reliance on ML modeling methods, like ANNS,
as suggested by Wenger and Olden (2012). The term “trans-
ferability” refers to the model’s ability to predict different
flood events beyond the scope of its training data, validating
its applicability to unseen scenarios, potentially with their
unique characteristics (Jiang et al., 2024; Wagenaar et al.,
2018). Furthermore, there has yet to be research investigat-
ing the extent to which flood depth prediction models can be
transferred and applied successfully to different events be-
yond the initial training settings. It, therefore, remains un-
clear whether an ML-based model, which is trained, vali-
dated, and tested against a historical event, performs satisfac-
torily in predicting flood characteristics of other events in the
same watershed. Floods originate from various sources, and
the flood characteristics depend on the unique characteristics
of storm events. High-wind events tend to generate storm
surges that move upstream, while intense rainfall over up-
stream watersheds leads to fluvial flooding that moves down-
stream towards the coast. Conversely, slow-moving storm
systems can cause intense local rainfall, resulting in over-
land runoff entering rivers along their paths rather than a
concentrated-upstream-inflow flood wave. Hence, it is cru-
cial to avoid overfitting an ML model to a single historical
flood event, as it can lead to significant underperformance in
handling other events.
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A further limitation of past research is the sole focus
on predicting the greatest flood extents using classification-
based algorithms, while the performance of regression-based
ML models for predicting other important characteristics like
flood depths has not been investigated. Additionally, the im-
portance of spatial distribution of input features has been
overlooked in past ML-based flood modeling. To hindcast
a flood characteristic at a given location, the features have
been incorporated at that location, but flooding is generated
through contributions by several other factors that are rele-
vant across the upstream contributing watershed (in inland
systems) and/or the downstream coastline (in coastal sys-
tems).

This paper aims to fill the abovementioned research
gaps by examining the performance and transferability of
ML models in hindcasting maximum water depths across
various events in a coastal watershed. Our objective is to
develop a transferable, computationally efficient model to
hindcast maximum water depths. We aim to evaluate the
performance of ML models, which are trained and tested
based on an event, and give insights into the application of
the model for predicting maximum river flood depths for
other events as well. Our study developed a modeling frame-
work based on an ML algorithm, with multi-layer percep-
tron (MLP) architecture for our ANN model (ANN-MLP).
This algorithm was coupled with feature selection methods
and geospatial data. We evaluated the performance of this
model against one extreme flood event, Hurricane Ida, across
a coastal watershed (six-digit hydrologic unity code —- HUC6)
— the Lower Hudson — in the northeastern USA. Next, we
assessed the transferability of our developed model across
three other extreme events — hurricanes Isaias, Sandy, and
Irene — in the same watershed. These events encompass var-
ious rainfall intensities, wind speeds, and storm track direc-
tions. Unlike past ML-based modeling studies, which have
focused solely on predicting the flood status (flooded or un-
flooded), our regression-based model estimates maximum
water depths. This model was also examined against multiple
events, which is more than the single events that have been
the focus of past research. The model also considered the
spatial dimension for predicting maximum water depths at a
given location, in which the features were represented either
at that location or across the contributing watershed. This
ML model is generic and can be applied to hindcast maxi-
mum water depths at non-gauge river sites to get a denser
reconstruction of an event along the river network and hind-
cast water depths in watersheds with similar drainage ar-
eas (HUCS6 or larger) and flood types (fluvial and coastal).

2 Methodology
We developed an ML-based model that hindcasts maximum

water depths at stream gauges across a coastal watershed
during a flood event (Fig. 1). A coastal watershed receives
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Table 1. Machine learning model features and the assignment approaches for stream gauges.

Category Feature At Spatial Spatial
point average maximum
across the across the
contributing  contributing
watershed watershed
Geographic Distance to rivers v
location Distance from storm track v
Distance from the coastline v
Hydrologic Height above nearest drainage (HAND) v
Drainage area v
Flow accumulation v
Topographic wetness index (TWI) v v
Antecedent water level v
Meteorologic Rainfall depth v v v
Wind speed v v v
Topographic Elevation v
Ground slope v v
Invariability of slope directions (ASPVAR) v
Curvature v v
Land surface Imperviousness v
Soil Antecedent soil moisture v v
Hydrodynamic  Storm surge v v

flood contributions from the inland and coastal systems (e.g.,
fluvial and tidal). The model uses geospatial analyses and
ML algorithms to hindcast maximum water depths during an
event at river cross-sections of a given watershed. This model
is informed by the underlying physical flood processes rep-
resented by a wide array of features (topographic, meteoro-
logic, hydrologic, land surface, soil, and hydrodynamic).
Geospatial operations were conducted to compute the fea-
tures at stream gauges and/or over their contributing water-
sheds (the upstream area that drains water to the gauge) con-
sidering the underlying physical processes. We used feature
selection techniques to determine the most key features for
our ML model. Applying observed data from stream gauges
during a flood event, the model was trained, cross-validated,
and tested. We then evaluated the model transferability by ex-
amining its performance in three other extreme flood events.

2.1 Selection and calculation of key features

To develop a transferable ML model for complex physical
phenomena of flooding, the selection process should extend
beyond merely choosing features based on their individual
statistical significance. Instead, it should focus on identify-
ing features that collectively contribute to a holistic repre-
sentation of the phenomena. We selected key features for our
ML-based flood model according to past research and the un-
derlying physical processes. Our model considers these fea-
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tures from seven broad categories: geographic location, hy-
drologic, meteorologic, topographic, land surface, soil, and
hydrodynamic (Table 1). Here, we provide information on
how to derive the features to hindcast maximum water depths
during a flood event in a coastal watershed. Aside from the
soil category that represents pre-flood conditions (antecedent
soil moisture), all other features represent conditions during
a flood event.

By integrating all these factors into our methodology, we
developed a flood hindcast model that considers key pro-
cesses in coastal watersheds. We used a two-step process to
assign feature values to a point located on a stream gauge.
Depending on the feature, we assigned specified values to
the gauge itself or its contributing watershed to consider the
spatial dimension in flood generation processes. For the con-
tributing watershed, the spatial mean and maximum across
the contributing watershed of a given stream gauge were
computed. This method ensures that the feature values in-
dicate the overall pertinent physical processes occurring in
the streams and upstream watersheds. Table 1 specifies how
each feature was used in our model.

For features in the geographic location category, we in-
corporated distance to rivers — a critical factor in deter-
mining flood risks (Cao et al., 2020; Rafiei-Sardooi et al.,
2021); storm track — specific to the flood event from the
National Hurricane Center (2022); and distance to the near-
est coastline. The proximity of a location to waterbodies,
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Figure 1. Schematic view of the machine-learning-based (ML-based) model for hindcasting maximum water depths in coastal watersheds.
PCA: principal component analysis; SHAP: SHapley Additive exPlanations; MAE: mean absolute error; MDAE: median absolute error;

F: ratio of estimated to observed maximum flood depth.

such as rivers or coastlines, directly influences its vulnera-
bility to flooding. Coastal regions are susceptible to storm
surges, which occur during tropical storms or hurricanes.
Storm surges are massive walls of seawater that get pushed
ashore by intense winds. Storm tracks are pathways in the at-
mosphere along which storms (e.g., hurricanes, tropical cy-
clones, or extratropical storms) tend to move. These storms
often carry heavy rainfall, intense winds, and storm surges,
which can lead to severe flooding in areas they pass over or
affect. The distances to the storm track and coastline are both
considered “point-based” as they are specific to individual
locations. However, the distance to rivers is identical (zero)
at these stream gauges but different in the contributing wa-
tersheds; we calculated the spatial average distance of the
contributing watersheds to the rivers.

Under the hydrologic category, we employed four vari-
ables of HAND: drainage area, flow accumulation, topo-
graphic wetness index (TWI), and initial water depth. HAND
represents the elevation of a location relative to the nearest
stream. This feature is widely used in flood modeling due to
its ability to hindcast flood-prone areas by considering topog-
raphy and flow characteristics (Hu and Demir, 2021). As its
value at the stream gauges is zero, its spatial average across
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the contributing watershed was considered. The drainage
area provides information about potential runoff, while the
flow accumulation feature helps predict flow paths during
flood events and was previously used by Lowe et al. (2021)
and Pham et al. (2021). Both drainage area and flow accu-
mulation values at the point of stream gauges (point-based)
were captured. TWI was used by Gudiyangada Nachappa et
al. (2020), Lowe et al. (2021), Pham et al. (2021), Zahura et
al. (2020), and Zhao et al. (2020) and was calculated using
Eq. (1) (Beven and Kirkby, 1979).

TWI:In( ad > (1)
tan(B)

where « is the slope of the contributing watershed per unit
contour length (known as the specific catchment area) and
B is the local slope gradient in radians. The TWI value was
considered both point-based and in terms of the spatial av-
erage across the contributing watershed to represent the spe-
cific location and the overall characteristics of the contribut-
ing watershed. The last feature in this category was initial
water depth, which refers to the stream gauge height 1d be-
fore the event; this feature was considered point-based and
explains initial conditions in the study rivers.
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The meteorologic category features were precipitation
(Rafiei-Sardooi et al., 2021) and wind speed. Rainfall is the
main driving force for floods (Mishra et al., 2022). Storms
can bring intense and prolonged precipitation to certain ar-
eas. If a storm passes over or near a location, it can result
in excessive precipitation, overwhelming local drainage sys-
tems and causing flooding in low-lying or poorly drained
areas. Wind speed is another feature that can influence the
severity and extent of flooding, especially during hurricanes.
Intense winds during storms and hurricanes generate large
and powerful waves in the ocean. These waves can exacer-
bate the impact of storm surges, causing even more coastal
flooding as they crash onto the shore and flood areas even far-
ther inland. We obtained daily precipitation and wind speed
data for the entire period of the flood event from weather
stations of the National Oceanic and Atmospheric Admin-
istration’s National Centers for Environmental Information
(NOAA’s NCEI, 2022). Their maximum values over a flood
event were computed at each stream gauge. Using point-
based precipitation and wind speed data, we then created a
spatially distributed rainfall and wind speed dataset by in-
terpolating the maximum values using the inverse distance
weighting (IDW) method (Hosseini et al., 2020). Rainfall
depth and wind speed are considered point-based, but they
are also represented in terms of the spatial average and max-
imum across the contributing watershed. These values cap-
ture the intensity of the meteorologic conditions at individual
points and the overall average and maximum values across
the upstream watershed.

Elevation, ground slope, slope aspect, aspect invariabil-
ity (ASPVAR), and curvature were features under the to-
pographic category (Cao et al., 2020; Chen et al., 2023;
Huang et al., 2022; Khosravi et al., 2018; Rafiei-Sardooi
et al., 2021; Sun et al., 2020; Fereshtehpour et al., 2024).
A DEM with a resolution of 1/3 arcsec (~ 10m) was ac-
quired from the United States Geological Survey (USGS,
2022) National Elevation Dataset (NED). To remove any
spurious depressions, the DEM sinks were filled to account
for artificial depressions that can impede the realistic sim-
ulation of water flow, ensuring that the derived water path-
ways and other hydrologic computations reflect true surface
conditions (Khosravi et al., 2018; Zhu et al., 2013). Eleva-
tion, ground slope, slope aspect, invariability of slope di-
rections (ASPVAR), and curvature were all derived from
the DEM. Elevation allows us to identify low-lying regions
prone to floods and hindcast the maximum water depths.
Ground slope is a key factor in driving water movement. The
ground slope plays a crucial role in determining the direc-
tion and velocity at which water flows across the landscape.
On sloped terrains, water flows along the path of least re-
sistance. The slope angle determines the speed and volume
of surface runoff, influencing the potential for flooding. The
slope aspect provides insights into the surface runoff distri-
bution and flow accumulation by indicating the direction of
the ground slope that affects hydrologic processes (Gudiyan-
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gada Nachappa et al., 2020; Rafiei-Sardooi et al., 2021). Sim-
ilarly to Gudiyangada Nachappa et al. (2020), we divided the
slope aspect into 10 categories: north (0-22.5°; 337.5-360°),
northeast (22.5-67.5°), east (67.5-112.5°), southeast (112.5—
157.5°), south (157.5-202.5°), southwest (202.5-247.5°),
west (247.5-292.5°), northwest (292.5-337.5°), and flat (0°).
ASPVAR values near zero indicate diverse watershed slope
aspects, while values approaching 1.0 imply a dominant di-
rection (Wan Jaafar and Han, 2012). This feature provided
information about surface runoff distribution and flow con-
centration by specifying the direction that water would flow
across the terrain (Dawson et al., 2006). Additionally, an-
alyzing the curvature helped us understand how it impacts
flood events (Khosravi et al., 2018). Elevation was consid-
ered point-based, while ground slope and curvature were
considered both point-based and in terms of the spatial av-
erage across the contributing watershed. ASPVAR concep-
tually represents the spatial average across the contributing
watershed.

The land surface category was represented by only one
variable, imperviousness. The greater the imperviousness,
the larger the volume of surface runoff. Impervious surfaces
increase both the volume and the velocity of runoff due to
their high surface smoothness and low friction to resist water
movement. This rapid flow of water can overwhelm natural
waterways, increasing the risk of flooding. We used the spa-
tial average of imperviousness across the contributing water-
shed in our model.

The soil category included antecedent soil moisture, which
reflects the pre-storm saturation extent, essential for runoff
estimates and high moisture flux production from rain-
bearing systems (Ahmadisharaf et al., 2018; Jafarzadegan et
al., 2023; Karamouz et al., 2022; Mishra et al., 2022). Soil
moisture was calculated 1 d before the storm and considered
both point-based (local soil moisture adjacent to the stream
gauge) and in terms of the spatial average across the con-
tributing watershed. This feature explains initial conditions
in the study watershed.

In the hydrodynamic category, we used the storm surge
from tidal gauges on the coast (NOAA, 2023). The storm
surge was estimated as the difference between the maximum
water depth and the astronomical tide during a flood event.
This feature is crucial in hindcasting coastal contributions to
flood events. If the flood event does not receive any coastal
contributions, this category can be removed from the list of
model features. It is considered both point-based and in terms
of the spatial average across the contributing watershed.

Feature selection method

We employed multiple feature selection methods: Pearson’s
correlation coefficients (Cao et al., 2020; Chen et al., 2023;
Lee et al., 2020) and PCA — a widely used technique in
many ML modeling studies (Abdrabo et al., 2023; Chang et
al., 2022; Reckien, 2018) — and forward feature selection,
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which accounts for interactions among the model features.
We applied a step-by-step approach to utilize these three
techniques.

First, Pearson’s correlation coefficients were used to as-
sess the linear relationships among the features and tar-
get variable. The strength and direction of linear relation-
ships were evaluated using Pearson’s correlation coefficients.
These analyses enabled us to narrow down the initial list of
the features.

Next, PCA was applied to the features retained after Pear-
son’s correlation analysis. In the PCA method, the contribu-
tion of each feature to the overall variance is quantified by ex-
amining the eigenvalues associated with each principal com-
ponent (Abdrabo et al., 2023). Compared to Pearson’s linear
correlation, PCA can reveal underlying patterns or structures
in the data that are not immediately apparent. PCA allows
us to understand how much variance each principal compo-
nent considers in the dataset, providing a clear measure of
feature significance in terms of explaining the data variance.
By aggregating the absolute values across all features, we ob-
tained the importance for each feature, which enabled us to
rank them in a descending order and omit the least important
features.

Last, the forward selection method was applied to the fea-
tures retained. This method then incrementally added vari-
ables, weighing both their individual impact and their in-
teractions, enhancing the model predictive performance by
focusing on features with substantial influence on flood
depths (Horel and Giesecke, 2019; Macedo et al., 2019).
This method adds variables to a model based on their pre-
dictive power. This iterative process starts with no variables
and includes the most predictive one at each step, considering
both its individual impact and its interactions with already-
included variables. This selection continues until adding
more features does not significantly enhance the model per-
formance metric in terms of the Akaike information criterion.

2.2 Machine learning (ML) models
2.2.1 Artificial neural networks (ANNSs)

To hindcast flood depth, our target variable, we employed
an ANN with MLP architecture. This algorithm was trained
via observed maximum water depths from stream gauges us-
ing the key features selected through our feature selection
(Sect. 2.1). The choice of ANN was based on previous suc-
cessful applications in flood depth modeling (e.g., Dawson
et al., 2006; Abrahart et al., 2004; Bafitlhile and Li, 2019;
Berkhahn et al., 2019; Rumelhart et al., 1986; Zhu et al.,
2023). One of the strengths of using ANNs in modeling tasks
like flood predictions is their notable flexibility and capabil-
ity to approximate complex nonlinear relationships, poten-
tially enhancing their performance for unseen data. It is es-
sential, however, to acknowledge that the capacity to gener-
alize depends on selecting relevant features that explain the
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underlying physical processes and the spatiotemporal vari-
ability, model selection, parameterization, and training the
model. ANNs are designed to simulate the behavior of bi-
ological systems composed of “neurons”. These algorithms
composed of nodes, or “artificial neurons”, are connected and
operate in parallel. Each connection is assigned a weight that
represents its relative importance. During the learning phase,
the network learns by adjusting these weights based on the
input data it is processing (McCulloch and Pitts, 1943). Here,
the ANN was implemented using Python’s Keras library with
TensorFlow backend.

2.2.2 Machine learning (ML) model pre-processing
and implementation

The observed water depths and features were split into train-
ing and testing sets, with 70% to 90 % of the data used
for training and 10 % to 30 % for testing as suggested by
Joseph (2022) and Nguyen et al. (2021). After exploring var-
ious splits within the 70 % to 90 % range for training data, the
90 % allocation for training (104 out of 116 stream gauges)
was determined to be optimal for our specific dataset and
model based on preliminary testing, the model complexity,
and the desire to maximize the number of data used for train-
ing while still retaining satisfactory results for the test phase
(12 out of 116 stream gauges). While the train percent (90 %)
seems high and suggests potential for model overfitting, this
same model was the most successful in the transferability
across three other flood events (out-of-sample). The alloca-
tion of 10 % of the data for testing serves to provide an un-
biased appraisal of the model generalization performance af-
ter training and hyperparameter optimization. This evalua-
tion process, complemented by methodologies such as cross-
validation and hyperparameter optimization, is structured to
identify a model configuration that is likely to perform well
across unseen data. This approach aims to ensure that the
final model, selected based on its performance on the vali-
dation set during hyperparameter optimization, is tested on
entirely unseen data to confirm its generalization ability. In
preparing our dataset for the neural network model, numeri-
cal features were standardized to have a mean value of zero
and a standard deviation of 1. This scaling process ensured
that each feature contributes proportionately to the model
predictions, mitigating the potential bias towards variables
with larger scales.

Hyperparameter optimization is a step in improving the
performance of ML models. This process involves identify-
ing the optimal hyperparameter values. We used Bayesian
search to perform hyperparameter optimization. Cross-
validation, particularly through methodologies like the pre-
diction sum of squares criterion for predictor selection and
for parameter estimation and predictive error assessment,
has been foundational in improving predictive models. This
approach distinguishes between model selection and as-
sessment (Allen, 1974; Geisser, 1975; Stone, 1974). Cross-
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validation was performed using a 5-fold cross-validation
strategy during the hyperparameter optimization process.
Opting for 5-fold cross-validation over hold-out validation in
our hyperparameter optimization process reflects a balance
between comprehensive model evaluation and computational
efficiency. The hyperparameters we optimized here included
the number of layers, units, activation functions, optimizer,
regularization rate, batch size, and epochs. Bayesian search
offered a targeted search based on probabilistic modeling, it-
eratively refining the search area based on past evaluations
to efficiently select the most promising hyperparameter sets.
The selection of the optimal hyperparameters was guided by
minimizing the cross-validation mean square error (MSE),
ensuring the chosen configuration significantly improved the
model predictive performance for maximum water depths.
The ANN-MLP model was trained using the training data
and the best hyperparameters obtained from the optimization
process.

To prevent overfitting, we used early stopping and model
checkpointing during the model training. Early stopping
was implemented to stop training when the validation loss
stopped improving, and model checkpointing was used to
save the model with the lowest validation loss. The strategy
involved splitting the training data into five subsets and train-
ing the model five times, each time using a different subset as
the validation set. This evaluation process, complemented by
methodologies such as cross-validation and hyperparameter
optimization, is structured to identify a model configuration
that is most likely to perform well across unseen data.

2.2.3 Model performance evaluation

The performance of the ANN-MLP model was evaluated us-
ing the coefficient of determination (Rz), mean absolute er-
ror (MAE), normalized root mean square error (NRMSE),
median absolute error (MDAE), and ratio of the estimated
to the observed maximum flood depth (Fgp; Schubert and
Sanders, 2012). The R? metric measures the proportion of
variance in the dependent variable predictable from the in-
dependent variables. The MAE measures the average mag-
nitude of the errors in a set of estimations without consider-
ing their direction (i.e., overestimation or underestimation).
The NRMSE is a metric that quantifies the normalized av-
erage magnitude of the prediction error. It assesses the rel-
ative size of the root mean square error (RMSE) by consid-
ering the RMSE in relation to the average value of the ob-
servations. It is commonly used in regression analyses, and
a smaller NRMSE value indicates a higher level of agree-
ment between the estimated values and the actual observa-
tions (Ahmadisharaf et al., 2019; Stow et al., 2003). The
MDAE is a metric that measures the median of the absolute
differences between predicted values and actual (observed)
values. Unlike the MAE, which averages these differences
out, the MDAE focuses on the midpoint of these differences,
making it less sensitive to the outliers. This characteristic can
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make the median error a more robust metric in the regional
water depth estimation where the data contain significant out-
liers. It is a common metric used in ML models such as those
used in Sheridan et al. (2019), Dixit et al. (2022), and Park
et al. (2020). These metrics were calculated for both training
and testing datasets to assess the model performance.

2.2.4 Model explainability

To interpret the model and explore the contribution of each
feature to the estimation, we used the SHAP technique,
which is a game-theoretic approach to explain the output of
an ML model (Lundberg and Lee, 2017). It connects opti-
mal credit allocation with local explanations using the clas-
sic Shapley values from game theory and their related ex-
tensions. The SHAP values interpret the impact of having
a certain value for a given feature in comparison with the
estimations we would make if that feature took some base-
line value (Abdollahi and Pradhan, 2021). In other words,
SHAP estimates how much each feature contributes to the
model prediction output for a particular instance. The SHAP
results regarding the feature importance and their impacts on
the model prediction can be presented using a plot to visually
show the distribution of impacts of each feature on the model
output. A positive SHAP value indicates that the feature’s
presence increases the model output, while a negative SHAP
value indicates that it decreases the model output. Further, we
visually evaluated the performance of our model in terms of
bias (overestimation and underestimation) using scatterplots.

2.3 Model transferability across flood events

The ML-based model, which was initially developed,
trained, and validated based on one flood event, was subse-
quently examined as is (with no additional parameter tuning)
against other events in terms of the performance and gen-
eralizability in hindcasting maximum water depths. By ex-
amining our model against different flood events, we aimed
to evaluate its effectiveness in hindcasting maximum water
depths across diverse events. This evaluation allowed us to
assess the ML model ability to handle varying flood condi-
tions and its potential for application in different events in
the same watershed.

3 Study area

The study area is a HUC6 watershed, the Lower Hud-
son watershed (HUC 020301). The 10068 km? watershed
is in the northeastern United States (Fig. 2), spanning
parts of three states: Connecticut, New Jersey, and New
York. This watershed has a humid subtropical climate
with hot summers and mild winters. The highest eleva-
tion is ~450ma.m.s.l. (above mean sea level). Residen-
tial, agricultural, and forest are the dominant land uses in
the watershed according to the 2021 National Land Cover
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Figure 2. Lower Hudson River watershed.

Database (NLCD) (USGS, 2022). Large metropolitan areas
like New York are in the study watershed. Several major
rivers drain into the watershed, including the Hudson River,
which flows for 496 km (about the length of New York State).
The ground slope varies from 87.5 % in the mountainous
parts to near zero in the coastal parts.

We studied four major flood events in the study area.
The primary event for model development was Hurricane
Ida in 2021, while three other hurricanes — Isaias (2020),
Sandy (2012), and Irene (2011) — were used to assess the
model transferability. Hurricane Ida, a devastating Atlantic
Category 4 hurricane that made landfall in September 2021,
hit Louisiana and progressed towards the northeastern United
States. The hurricane caused considerable floods and sig-
nificantly impacted both the West South Central region, in-
cluding New Orleans, and the northeastern region, with se-
vere damage reported in New York City and Philadelphia
(Beven et al., 2022; Wang et al., 2022). The storm remnants
sent record-breaking rainfall to the New York region as they
headed northeast, resulting in flash flooding (Beven et al.,
2022). The extensive flooding and severe property destruc-
tion caused by Hurricane Ida’s record-breaking rains high-
lighted the importance of comprehending the hurricane ef-
fects on affected areas. Furthermore, strengthening regional
resilience to catastrophic flooding episodes requires the de-

https://doi.org/10.5194/nhess-24-3537-2024

€8 Lower-Hudson Watershed

Elevation (m
s — 454 (m)

0

velopment of effective mitigation strategies. The three other
events, which were used to evaluate the model transferability,
were also major recent hurricanes after 2000, with available
streamflow data and differing tracks and intensities. In 2020,
Hurricane Isaias, a Category 1 hurricane, made a quick trip
along the East Coast, bringing with it severe rain and floods,
especially in the Mid-Atlantic and northeast. The storm’s
rapid passage caused several deaths and extensive power
losses (Latto et al., 2021). In 2012, Superstorm Sandy, com-
monly known as Hurricane Sandy, struck the northeast and
caused severe damage. It produced significant flooding due to
the intense storm surge and torrential rains, especially in New
York and New Jersey, where the storm surge reached record
heights (Blake et al., 2013). In 2011, a huge and catastrophic
storm named Hurricane Irene affected a major portion of the
Eastern Seaboard. Heavy rains from the storm caused signif-
icant flooding, especially in Vermont, where it was the worst
flooding in over a century for that state (Avila and Cangialosi,
2013).

3.1 Data collection
Table 2 lists the data used for the study area alongside their
sources and spatiotemporal resolutions. We acquired instan-

taneous stream gauge height data from USGS’s National Wa-
ter Information System to analyze water depths during the
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Figure 3. Stream and tidal gauges and weather stations in the study watershed.

four flood events. While the features’ data had different spa-
tial resolutions, we did not make them consistent because
only at-point (stream gauges) or aggregated spatial statistics
of contributing watersheds were used in the ML model; no
combinations of the features were needed.

The study watershed embraces 116 stream gauges, 7
weather stations, and 2 tidal gauges (Fig. 3). These gauges
and stations recorded data for all four events (hurricanes
Ida, Isaias, Sandy, and Irene). The drainage area of the
contributing watersheds of the stream gauges varies from
5.5 to 2104 km?. The ranges of recorded maximum water
depths, rainfall, and antecedent soil moisture near the stream
gauges during the four hurricanes are presented in Table 3.

Nat. Hazards Earth Syst. Sci., 24, 3537-3559, 2024

It shows that hurricanes Ida and Irene were associated with
much higher rainfall depths. Such increased precipitation
levels contribute directly to flood severity, as they can over-
whelm drainage systems and lead to runoff exceeding river-
bank capacities. The percent soil moisture before the storms
ranged from fairly dry conditions (9 %) to nearly half satu-
rated (43 %). Ida and Irene had similar antecedent soil mois-
ture conditions, which influenced their respective river water
depths. Hurricane Sandy had a higher antecedent soil mois-
ture percentage range of 17 % to 38 % compared to both
Ida and Isaias, indicating a potentially higher level of sat-
uration before the storm arrival. This likely contributed to
Sandy’s significant storm surge, which ranged from 1.97 to
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Table 2. Model features and data sources and resolutions in the study area. NHDPlus: National Hydrography Dataset Plus; NED: National

Elevation Dataset; NWIS: National Water Information System.

Category Feature Source Spatial Temporal
resolution  resolution
Geographic location  Distance to rivers - -
Distance from storm track NHDPlus - -
Distance from the coastline - -
Hydrologic Height above nearest drainage (HAND) NED 10m -
Drainage area - -
Flow accumulation - -
Topographic wetness index (TWI) - -
Antecedent water level USGS NWIS
Meteorologic Rainfall depth .
Wind speed NCEI - Daily
Topographic Elevation -
Ground slope -
Invariability of slope directions (ASPVAR) NLCD 10m -
Curvature -
Land surface Imperviousness NLCD 30m -
Soil Antecedent soil moisture ERAS - Daily
Hydrodynamic Storm surge NOAA Tides and Currents - Sub-hourly
Table 3. The range of river water depth, cumulative rainfall depth, and antecedent soil moisture in the flood events.
Event  Year River Cumulative ~ Antecedent Storm Wind Distance
water rainfall soil surge speed to storm
depth depth moisture (m) (ms~1) track
(m) (mm) (%) (m)
Ida 2021 0.85-36.66 121.92-201.81 2143  0.25-0.67 27.64-35.49 0.09-1.1
Isaias 2020 0.22-35.35 17.37-62.22 9-39 0.20-0.76  48.29-65.33  0.23-1.14
Sandy 2012 0.24-35.98 19.83-56.53 17-38 1.97-2.85 63.43-76.97 0.77-2.16
Irene 2011 1.03-37.33  147.29-217.74 1943 1.05-1.37 51.05-60.68 0.00-0.93

2.85 m, compared to Ida and Isaias with storm surge ranges
of 0.25 t0 0.67 m and 0.20 to 0.76 m, respectively. Maximum
wind speeds during these events were quite high, especially
for hurricanes Isaias, Sandy, and Irene. The proximity to the
central path of the storm influences the intensity of the rain-
fall, wind speed, and storm surge experienced. Shorter dis-
tances to the storm track, particularly for Ida and Irene, corre-
lated with more severe weather conditions and, consequently,
greater flood depths.

Figure 4 displays the spatial variability in maximum water
depths and storm tracks for all hurricanes. The total slope as-
pect was south, which resulted in shallower depths at the river
upstream. As we moved southwards along the river main-
stream, water depths became deeper.
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4 Results and discussion
4.1 Feature selection

Using Pearson’s correlation analyses, we eliminated five fea-
tures with absolute correlation coefficients > 0.70, the cut-
off threshold suggested in previous studies (Cao et al., 2020;
Chen et al., 2023; Lee et al., 2020). According to Fig. 5, the
strong correlation coefficient of 0.99 between the drainage
area and flow accumulation indicated that both features cap-
ture similar information about water flow and storage in the
watershed. To avoid collinearity issues, flow accumulation
was excluded from further analyses due to its weaker corre-
lation with flood depth. Similarly, features that demonstrated
weaker correlations with flood depth or were highly corre-
lated with multiple features were excluded. These analyses
ensured that independent variables, which are essential for
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Figure 4. Maximum water depths across the study area during the four study hurricanes.

modeling maximum water depths, are retained in our model-
ing.

Next, we conducted PCA to assess the importance of the
features retained by Pearson’s correlation analyses in hind-
casting maximum water depths. The analyses showed that the
slope at the stream gauge, slope aspect, slope invariability,
curvature at the stream gauge, and average curvature across
the contributing watershed were the least important features
for capturing the overall variability in maximum flood depth.
Consequently, we excluded these features from our analy-
ses. The lesser importance of slope at the stream gauge and
slope aspect may be since river slope is related to bathymetry,
which is typically not represented well by DEMs (Bhuyian
and Kalyanapu, 2020).

The forward feature selection method showed that the ini-
tial water depth, elevation, TWI, antecedent soil moisture,

Nat. Hazards Earth Syst. Sci., 24, 3537-3559, 2024

rainfall, and distance from the storm surge at the stream
gauge (all point-based), as well as the average storm surge
and maximum wind speed across the contributing water-
shed, along with their interactions were selected for the final
ML model. Considering the interactions among the features
improved the model performance. This was expected because
combinations of some of the features better explain the un-
derlying physical processes. For instance, using a combina-
tion of the storm surge and TWI as one unified feature can
be an indication of the physical propagation of storm surges
that occur primarily in waterways.

https://doi.org/10.5194/nhess-24-3537-2024



M. Pakdehi et al.: Transferability of machine-learning-based modeling frameworks across flood events

3549

-1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00
- L \ ) '
Slope
Watershed average
™wWI |
Watershed average
Flow accumulation - 0.10 -0.02
Distance from coastline -/ 0.52 -0.20 -0.02
Slope
Point-based - 0.03 0.03 -0.03 0.12
TWI
Point-based - 0.10 0.02 0.04 -0.46‘
Curvature
Watershed average -0.51 0.14 0.28 -0.04 0.16
Curvature
Point-based --0.14 0.11 -0.18 0.04 0.03 -0.16 -0.09
Drainage area - 0.10 -0.04 -0.03 »0.04ﬁ 0.16 -0.20
HAND
Watershed average — 0.06 0.02 0.08 0.52 -0.11 0.05
Elevation - -0.24 -0.24H 0.11 -0.25 0.47 0.08 -0.23  0.46
Impervious
Watershed average 4 0.14 -0A17»0.13 -0.21 -0.35 0.16 -0.15 -0.44 -0.47
Distance from storm track— -0.32 -0.06 0.48 0.06 -0.04@ 0.00 -0.06 -0.35
Antecedent soil moisture
Point-based --0.29 0.08 0.07 0.15 0.02 0.03 -0.40 -0.07 0.06 -0.15 -0.30 0.09 -0.39
Antecedent soil moisture
Watershed average --0.27 0.00 0.06 0.15 0.05 -0.02 -0.44 -0.05 0.07 -0.13 -0.29 0.12 [-0.47
Rain
Watershed maximum - 0.27 0.07 0.00 -0.10 -0.00 0.08 0.31 -0.04 -0.02 0.20 0.17 -0.23 O.SOE
Watershed average -0.24 0.07 -0.08 -0.11 -0.03 0.02 0.28 -0.03 -0.10 0.18 0.21 -0.22 | 0.50
Wind speed
Watershed maximum - 0.02 -0.04 0.07 M-0.0S 0.04 0.28 -0.06 0.09 -0.05 -0.22 0.45 0.21 -0.50 —0.54‘0.50 0.46
Wind speed
Watershed average " 0.02 -0.07 -0.21 efEH -0.05 -0.19 0.22 -0.01 -0.19 -0.02 -0.14 0.48 0.24 -0.51 -0.51 0.46 | 0.45
Wind speed
Point-based --0.02 0.00 -0.23@-0.05 -0.20 0.17 0.03 -0.22 -0.07 -0.11 ' 0.46 0.23 -0.53 0.54‘0.49 0.50 M
Rain
Point-based -0.26 0.07 -0.11 -0.07 -0.03 0.01 0.27 -0.05 -0.13 0.20 0.28 -0.22 0.53 0.41 0.43 0.47
Storm surge
Watershed average --0.12/0.32 0.12 E 0.02 0.24 -0.28 -0.08 0.09 -0.00 -0.03 -0.52 -0.18 0.36 0.31 -0.13 -0.13 ﬂﬁ -0.13
Storm surge --0.10 0.33 -o.ogﬁ 0.11 0.04 -0.31 -0.01 -0.12 0.04 0.06 -0,12 0.30 0.24 -0.05 -0.04 ﬂ -0.05
Distance to river
Watershed average " 0.12 0.23 -0.44 0.27 0.02 -0.24 0.04 -0.02 -0.46 0.11 0.39 -0.40 0.36 -0.37 -0.47 ﬁ -0.05 0.08 0.16 0.36 ‘0.50
Initial water depth - -0.00 -0.00 0.38 -0.07 -0.09 0.25 0.04 -0.10 0.40 -0.02 -0.10 0.02 -0.07 0.03 0.06 -0.06 -0.09 0.07 -0.03 0.00 -0.08 -0.05 -0.12 -0.23
Slope invariability --0.17 0.02 -0.02 -0.29 -0.05 0.05 -0.10 0.03 -0.02 -0.18 -0.25 0.17 -0.01 -0.05 0.04 0.07 0.05 0.23 0.25 0.24 0.06 -0.15 -0.18 -0.02 -0.01
Maximum water depth --0.17 0.12 ' 0.47 -0.11 -0.13 0.38 -0.11 -0.12 | 0.47 -0.14 -0.32 0.05 -0.27 0.20 0.17 -0.14 -0.17 -0.01 -0.16 -0.12 -0.17 0.16 0.04 -O.ZBM 0.02
l ! i ] ' l ! ! 0 ! | ' 0 ! ! ! ! ! ' l l ! ' ] [ .
& & 5 2 3 3 L el B S5 L 3L L E & E L3F T OL LT .%o P o%
© S B = ] ] o 5u =4 Fe =] © © 2 2o 3 I 2 s 0o by & S50 ¢ o = o
8§ ¢ £ % 85 s5 ,9 85 5 8 £ osg = B EF L g of 3o 55 £8 pe 3£ 25 8§ 3
@8 _s g g wg Fg 38 22  gs & 285 E B3 € 8 o $5 Y& Ty €2 S5 EL 28 3 05 B
2o - 3 5 5 ®o 35 <& 2Z2v ¥ 2Tt S ZH Z> c£€ Fuv 2& ag £3 s Yo o3 - B > 2
o9 Ew o £ L g e O = <o 99 % BTwo T T 2o © o =8 g g0 25 Yo ¢ =5 [
nhe T 9 5 £ & g2 "& s T2 8c 38 8o 83 2 $Z Tec == & E2 Ho g2 3 = z
[ [ = 39 a [ €9 E L Lo 2 o c@ £ sy 89 3 L £
§ § 2 ¢ 2 & =2 g 55 55 ¢ 3 sb 33 hg g £ 8 3
] g 2 Q © ] ] b g ] 9] ] ] as < »
g 2 = g 2 2 2 3 %= 32 5 2 § 2 2 g = 7 %
ki S 9 3= = = )
a 2 £ E =
8 < <

Figure 5. Heatmap of Pearson correlation matrix for the initial model features.

4.2 Machine learning (ML) model development

Bayesian search with a
parameter optimization.

cross-validation strategy for hyper-
Details of the optimization can be

4.2.1 Model development and performance evaluation

In the development of our ANN-MLP model for hindcast-
ing maximum water depths during Hurricane Ida, we used
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found in the Supplement.

The model demonstrated an excellent performance on
the training dataset (R? =0.94, MAE = 0.64 m, MDAE =
0.44 m, and NRMSE = 24 %). On the test dataset, the model
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achieved an R? of 0.91, an MAE of 0.77 m, an MDAE of
0.42m, and an NRMSE of 28 %, further suggesting the sat-
isfactory performance by the model. The training history
plot showed that the model performance improved with each
epoch during training, indicating that the model was learn-
ing from the data. The model training process stopped at
epoch 87 due to early stopping.

4.2.2 Model explainability

Figure 6 shows the performance of the ML model in hind-
casting maximum water depths at stream gauges, comparing
estimated values against observed values for both training
and testing datasets. In the training phase (Fig. 6a), points
are clustered along the identity line but tend to underesti-
mate large water depths. This pattern suggests that the model
learned the training data well, especially for smaller water
depths, but did not fully capture the behavior that leads to the
larger water depths. The underestimation of high values is
expected due to the lower number of observations. The test
data (Fig. 6b) revealed a similar pattern of underestimation
for higher values; this could be because the number of ob-
served high water depths is small.

Figure 7 provides an overview of the influence of dis-
tinctive features on the model estimation on maximum wa-
ter depths. Features like the antecedent soil moisture and
maximum wind speed across the contributing watershed
were found to substantially influence the water depth esti-
mations. The inclusion of elevation as an important feature
in our study closely aligns with the findings of Hosseini et
al. (2020) and Chen et al. (2023) in their flash flood suscep-
tibility and hazard assessments on a small non-tidal and a
large coastal watershed. Elevation has been recognized as a
crucial factor influencing flood occurrences, as it directly af-
fects the water flow and drainage patterns within a watershed
(Rafiei-Sardooi et al., 2021).

On the other hand, features such as the interaction of ini-
tial water depth and rainfall and local rainfall were identi-
fied as the least key features in estimating maximum water
depths. In a coastal context, where the landscape reaction to
oceanic events often overshadows the rainfall effect, this out-
come is noticeable. The finding about the lower importance
of rainfall in flood estimation concurs with the results by Sal-
vati et al. (2023) when pinpointing vulnerable regions within
a non-coastal medium-sized watershed. The study suggested
that rainfall may have a lower impact on flood occurrences or
flood depth estimations compared to other influential factors.
The consideration of the interactions between rainfall and
other features may also obscure the direct influence of rain-
fall on the model’s predictions, especially in complex flood
modeling.

It is important to note that the least important features are
not necessarily uninformative; they simply contribute less to
the model’s output relative to the most important features.
This can be due to the nature of the data, the modeling
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Table 4. Model performance across historical flood events.
MAE: mean absolute error; MDAE: median absolute error;
RMSE: root mean square error; F 0: ratio of estimated to observed
maximum flood depth.

Flood event R? MAE MDAE NRMSE Fo
(m) (m) (%) (%)

Original model

Hurricane Ida 094 0.64 0.45 24.1 138.1

Transferability

Hurricane Isaias  0.73 1.54 0.85 86.3 3256

Hurricane Sandy 0.70  1.71 1.78 109.2  370.2

Hurricane Irene 0.85 1.12 0.85 36.7 112.6

approach, or the specific context of the problem being ad-
dressed.

4.3 Examining the machine learning (ML) model
transferability across flood events

The transferability of the trained and tested model (against
Hurricane Ida) was examined by applying it to three other
events within the same watershed. Table 4 summarizes the
evaluation metrics for the three hurricanes.

These results demonstrated the model ability to be trans-
ferred across different hurricanes within the same watershed
(R? > 0.70). With an MAE of less than 1.71 m for all hur-
ricanes, our model performance is consistent with the CNN
model of Guo et al. (2021), demonstrating its capability for
making satisfactory flood depth estimates. However, when
compared to the original model performance on Hurricane
Ida, the R? values and other metrics show weaker model per-
formance for the transferability to other hurricanes, suggest-
ing reduced estimative accuracy but not to the extent that the
model performance becomes unsatisfactory.

Figure 8 shows the relationship between observed and esti-
mated maximum water depths for the four storm events. Most
observed water depths for the hurricanes were low. For all
four events, the data points suggested that the model tends
to underestimate the high water depths and overestimate the
low water depths (Fig. 8). The plots for hurricanes Sandy
and Irene show a more dispersed set of points, suggesting a
wider variance in the model estimates compared to the obser-
vations. This implied that the model is less accurate in cap-
turing the flood dynamics of these events or that these events
have unique characteristics that are not fully learned by the
ML model.

For Hurricane Ida, our original model, 32 % of the stream
gauges had an Fp between 90 % and 110 %, implying sat-
isfactory estimates at these gauges (Gallegos et al., 2012;
Schubert and Sanders, 2012). Hurricanes Irene, Sandy, and
Isaias had fewer gauges with moderate Fp values of 16 %,
14 %, and 3.5 % of all stream gauges, respectively, suggest-
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Figure 6. Scatterplots of estimated vs. observed maximum water depths for (a) train and (b) test data. The identity line represents a perfect

match between the estimated and observed values.
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Figure 7. Aggregated SHapley Additive exPlanations (SHAP) feature importance radar plot of the ML model for hindcasting maximum

water depths.

https://doi.org/10.5194/nhess-24-3537-2024

Nat. Hazards Earth Syst. Sci., 24, 3537-3559, 2024



3552

M. Pakdehi et al.: Transferability of machine-learning-based modeling frameworks across flood events

- ® Hurricane Ida //
£ 359 - Identity Line e
2 s
% 304 ,
o
k- ,/
= 25 4 /
£ s
H 4
£ 20 ,/
: .
% 15 ’
% v
£ 4
T 101 e
o
B $
E 5. ’
-
7]
w
0 <

.35 ® Hurricane Isaias ,/.
g == |dentity Line ,/
2 30 R4
2 4
b ’
) ’
T 254 7’
] ’
3 20 A //
£ ’
E] 4
E 15 e
% ’
v

£ ’
g 10 A .,/
- ‘ /7
] 4
E 5 i"
]
0
w

0 -

0 5 10 15 20 25 30 35
Observed maximum water depths (m)

0 5 10 15 20 25 30 35
Observed maximum water depths (m)

® Hurricane Sandy ’
== |dentity Line /

= N N w w
v o &) o o
L L L L L

N\
N
N
A Y
N
N\

Estimated maximum water depths (m)
=
L
Y
N

X

® Hurricane Irene ¢
354 == |dentity Line ’

30 1 ,
25 ’

20 A e

15 A ,

10 4

Estimated maximum water depths (m)

0 5 10 15 20 25 30 35
Observed maximum water depths (m)

0 5 10 15 20 25 30 35
Observed maximum water depths (m)

Figure 8. Scatterplots of estimated vs. observed flood depth for the four hurricanes.

ing that the model estimations were less satisfactory for these
events compared to Ida in terms of bias. However, the trans-
ferability was still more successful for Irene than the other
two hurricanes, which is similar to what we found based on
the other metrics (Table 4).

We attributed the model transferability performance to
four main factors: water depth, antecedent soil moisture,
storm track, and the primary driver of flooding. Based on
Table 2, hurricanes Ida and Irene exhibited significant sim-
ilarities in river water depths and antecedent soil moisture,
which influenced their respective river water depths. These
two hurricanes had similar antecedent soil moisture condi-
tions, while Hurricane Sandy had a higher antecedent soil
moisture percentage range of 17 % to 38 % compared to both
Ida and Isaias, indicating a potentially higher level of satura-
tion before the storm arrival. These results partly explain the
better model transferability for Hurricane Irene compared to
hurricanes Isaias and Sandy.

The original storm track of Hurricane Ida was located
to the southeast of the watershed, moving northeast, and
remained fully outside the watershed (Fig. 4). Hurricane
Irene’s path, which was somewhat similar to Ida’s, stretched
from the southeast to the northeast, resulting in the best

Nat. Hazards Earth Syst. Sci., 24, 3537-3559, 2024

model transferability. The key difference was that Irene’s
storm path lay inside the watershed along its eastern bor-
der. Consequently, the model, assuming a track similar to
Ida’s (the event that the model was trained for), underesti-
mated maximum water depths during Hurricane Irene. For
hurricanes Isaias and Sandy, for which the storm track was
farther from the watershed and dissimilar from Ida’s path,
the model overestimated the water depths. Isaias’ storm track
moved from the southwest to the northwest of the watershed,
while Sandy’s unique path propagated from the southeast to
the southwest, leading to the lowest satisfactory in terms of
the model transferability among the events.

The other reason why the model transferability was most
successful for Hurricane Irene was that the event mainly
driven by significant rainfall, similar to Hurricane Ida (the
event that the model was trained for). In contrast, the model
performed worse for hurricanes Sandy and Isaias because
these events were mainly driven by storm surges. The origi-
nal model, which assigned lower importance to storm surges,
was not effective in predicting the water depths in Sandy and
Isaias. In fact, here we see another significant advantage of
strategically using physically meaningful features rather than
the more commonly used black-box approach. By consider-
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ing the physical phenomena in our model development, we
can better understand the model’s strengths and weaknesses
and more effectively evaluate its performance.

Despite these distinct characteristics of the storm events,
the ML model demonstrated satisfactory performance when
applied to hurricanes Sandy and Isaias, suggesting some level
of transferability, mainly because we incorporated a wide ar-
ray of pertinent flood-influencing features and the spatial di-
mension (contributing watershed). While the model performs
well, the inconsistency of the success level of transferability
across flood events presents opportunities to incorporate ad-
ditional features or training approaches, enhancing the model
robustness to different storm tracks relative to the watershed
and weighing the model features based on the main flood
driver (e.g., rainfall or storm surges).

This study underscores the complexity of efficiently pre-
dicting water depths for major hurricanes and emphasizes
the necessity of refining models for better performance dur-
ing such extreme events. It has highlighted the importance of
deeper analyses of features causing prediction discrepancies
and has suggested that addressing different flood types (flu-
vial vs. storm surge) separately can enhance the model per-
formance. This approach, alongside adjustments for specific
flood characteristics like storm tracks and similar influential
factors that are distinct for each event, can improve the per-
formance of hindcast models, aiding in the development of
more transferable ML-based models.

4.4 Limitations and future research

While this study showed promising results about ML-based
flood modeling, it is important to acknowledge its limitations
to identify areas for future research. One limitation is the
presence of inherent uncertainties in the model that can im-
pact the accuracy of the estimations. These uncertainties can
stem from various sources, including the quality and accu-
racy of the observed data (Bales and Wagner, 2009; Gallegos
et al., 2012; Merwade et al., 2008; Teng et al., 2017) and in-
put data (features). For instance, relying solely on spatially
aggregated values of features (mean and maximum used in
this study) may not adequately capture the spatial hetero-
geneity of pertinent variables across the upper watershed. Fu-
ture research should prioritize addressing these uncertainties
by exploring alternative data sources and methodologies. The
ANN-MLP model was tuned using observed flood data, and
an optimal hyperparameter set was used based on the hy-
perparameter optimization methods. This deterministic ap-
proach does not incorporate the uncertainty from model pa-
rameterization. Probabilistic models are needed to address
this uncertainty. Parameterization uncertainty acknowledges
that the exact values of model parameters (e.g., weights in an
ANN-MLP) determined through training may not perfectly
capture the true underlying processes, leading to variability
in our predictions. Probabilistic models address this uncer-
tainty by incorporating it directly into the modeling process,

https://doi.org/10.5194/nhess-24-3537-2024

3553

offering a range of possible outcomes with associated proba-
bilities (posterior probability distributions) rather than a sin-
gle deterministic output. This is achieved through techniques
like Bayesian inference, where prior knowledge about pa-
rameters is updated with observed data to produce a posterior
distribution of parameters. This approach provides a more
nuanced understanding of uncertainty, allowing predictions
to reflect both the variability observed in the data and the
confidence in the model’s parameter estimates. To address
the limitations of deterministic models, like the ANN-MLP
used in this study, future research should explore integrating
probabilistic modeling techniques such as Bayesian infer-
ence. Exploring alternative data sources and methodologies,
such as incorporating spatially detailed features or dynamic
time series data, could also help in capturing the complexities
of watershed characteristics more accurately.

Furthermore, we did not have sub-daily data available for
all model features. Incorporating sub-daily data is highly
likely to improve the model accuracy in capturing intra-daily
variability and flood dynamics, but it was not explored due
to data constraints. Future research should incorporate sub-
daily data into flood depth hindcast models. A further limita-
tion of this study related to the time dimension is that wind
events, storm surges, rainfall, and overland flow processes
have different time signatures. Pluvial and storm surge flood-
ing can be closely coincident with the storm event, but river
flood waves may take much longer to arrive at a particular
location. The time lag between these processes was not con-
sidered in our ML model, which was not dynamic in time
and only hindcasted maximum river water depths. Incorpo-
rating time variability into the features can better represent
the time-varying nature of flood dynamics.

Another limitation of this study is the issue of bathymetry,
which is typically not represented well by DEMs like
USGS’s NED. Refining the DEMs with bathymetry data such
as NOAA'’s Continuously Updated DEM (CUDEM) dataset
and channel cross-sections is recommended to better repre-
sent the terrain of channels and floodplains in the model.

Additionally, we modeled maximum water depths across
a large watershed (HUC6), whereby many details may not
be important. For small watersheds and especially urbanized
ones, we emphasize the importance of considering local fac-
tors such as sewer and drainage systems in flood depth hind-
cast, where pluvial floods may be prevalent. However, ob-
taining data on sewer and drainage systems can be challeng-
ing due to availability, lack of quality, and confidentiality of
the data, particularly at the desired spatial and temporal res-
olutions. Future research should strive to improve the avail-
ability and accessibility of such data to enhance the accu-
racy of flood depth hindcasting, especially in urban areas. In
small urban watersheds, other details such as land manage-
ment practices and other local features can also be important
for flood depth hindcasting and should be incorporated in the
ML-based model.
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This study primarily focused on hindcasting maximum
water depths and did not consider other important flood
characteristics, such as duration, frequency, and extent, all
of which are important for loss estimates, decision-making,
and risk management (Ahmadisharaf and Kalyanapu, 2019;
Ebrahimian et al., 2015, 2016; Kreibich et al., 2009; Merz et
al., 2010; Qi and Altinakar, 2011a, b, 2012). To gain a fuller
picture of flood hazards, future research should aim to de-
velop ML models that can hindcast these additional flood
characteristics. We also focused on river maximum water
depths and did not hindcast inundation on floodplains (out-
of-channel). Developing ML-based models that can satisfac-
torily hindcast out-of-channel maximum water depths should
be a focus of future research; the transferability of ML-based
models for such estimations should also be evaluated. High
water marks (HWMSs) can be used to train the model for
such hindcasting. However, HWMs are subject to large un-
certainties (Schubert et al., 2022). Therefore, one challenge
in developing models that hindcast maximum water depths
over floodplains is the availability of reliable observations.
Satellite-based observations are also often limited to flood
status data; maximum water depths cannot be estimated us-
ing these types of datasets. Newly launched satellites, such as
the Surface Water and Ocean Topography (SWOT) mission,
can provide additional data for such estimations.

As part of future work, it is also essential to consider the
sensitivity of stream gauges to changes in flow once water
exceeds bankfull levels. This is significant as water height
changes at a slower rate beyond bankfull levels due to the
compound channel shape. Wide floodplains can lead to sim-
ilar stage elevations for quite different flow conditions. This
sensitivity assessment can offer insights about whether wa-
ter depths can be estimated once flood conditions are estab-
lished, which has implications for the model transferability
across events.

We recommend that future work compares the perfor-
mance of our ML-based model to traditional physically based
and morphology-based models using the same datasets. By
evaluating the performance, generalizability, and computa-
tional efficiency of our ML-based model versus these tradi-
tional modeling approaches, we will be able to better validate
the strengths of our data-driven methodology. Detailed error
analyses between the approaches can also reveal insights into
where additional physics knowledge needs to be incorporated
into the ML-based model structure and training to improve
performance.

Thus, although we found ML-based models are transfer-
able across flood events when informed by relevant physical
features at meaningful locations, there are still several areas
that require further investigation. By addressing these limita-
tions, future research can corroborate our findings about the
performance and transferability of ML-based models in esti-
mating maximum water depths as computationally efficient
modeling frameworks.
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5 Summary and conclusions

This paper developed an ML-based model for hindcasting
maximum water depths to address two major limitations of
past research into applying ML models for flood estima-
tions: solely predicting the flood status (classification-based
models) and debate on the transferability of these models
across events. We used ANN-MLP to hindcast maximum
water depths for an event in a coastal watershed that is af-
fected by fluvial and tidal floods. The model was informed
by underlying physical flood processes and initial condi-
tions (in the watershed and rivers), represented through a set
of features (geographic location, topographic, climatic, land
surface, hydrologic, hydrodynamic, and soil). Unlike pre-
vious applications of ML algorithms, our model estimated
maximum water depths by accounting for the spatial dis-
tribution of the processes through considering both local
contributions (at a given location) and those from the up-
stream watersheds. We demonstrated the model on a HUC6
watershed, the Lower Hudson, in the northeastern United
States and evaluated its transferability across major flood
events — hurricanes Ida, Sandy, Irene, and Isaias. Feature
selection techniques were used to identify the most influ-
ential features for flood hindcasting. Hyperparameter opti-
mization was performed to fine-tune the ML model, and its
performance was evaluated using various metrics. The re-
sults showed that the model performed satisfactorily in esti-
mating maximum water depths for the original event, Hur-
ricane Ida (R2 =0.94, MAE =0.64m, MDAE =0.45m,
NRMSE = 24 %, and Fgp = 138 %). The model transferabil-
ity (i.e., applying the validated model as is without any addi-
tional parameter tuning) within the same watershed to three
other events showed that the developed model was promis-
ing in the estimations (R? > 0.7, MAE < 1.71 m, MDAE <
1.78 m, NRMSE < 109 %, and Fp < 370 %). This showed
the model ability to capture complex relationships between
the maximum flood depth and pertinent features beyond what
it was originally trained for. Future research is needed to fur-
ther evaluate the transferability of ML models across events
and watersheds with different drainage areas for flood depth
estimations.

Code availability. The ML codes are accessible via GitHub: https:
//github.com/mpakdehi/ANN_MLP-flood-depth-model (Pakdehi,
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