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Supplementary Material: Bayesian search for model optimization 1 

We defined a broad search space (pbounds) encompassing the number of layers, setting a range 2 

between 1 and 3 layers with the units varied from 10 to 90, regularization rates (0.01 to 0.2), 3 

optimizers (Stochastic Gradient Descent (SGD; Bottou 2012) and Adaptive Moment Estimation 4 

(Adam; Singarimbun, Nababan, and Sitompul 2019), and activation functions (Exponential Linear 5 

Unit (ELU; Trottier, Giguere, and Chaib-draa 2017), and Rectified Linear Unit (ReLU; Agarap 6 

2019) in hidden layers, facilitating a thorough exploration of model architectures. A linear 7 

activation function was used for the output layer. The batch size, determining the number of 8 

samples processed before the model updates its parameters, varied between 4 and 16, providing a 9 

balance between training speed and memory usage. Lastly, the number of epochs, which dictates 10 

the number of complete passes through the training dataset, was explored from 100 to 1000, to 11 

find the optimal duration for model training. The optimization process, implemented via the 12 

Bayesian search framework, systematically evaluated combinations of hyperparameters across the 13 

defined space. It began with two initial random evaluations (init_points=2) of hyperparameter sets, 14 

followed by three guided evaluations (n_iter=3). Thus, a total of five unique hyperparameter sets 15 

were assessed. 16 

Utilizing cross-validation, the dataset was divided into three subsets or 'folds. For each iteration 17 

of the optimization process, a different fold was held out as the validation set, while the remaining 18 

folds were used for training the model. For each set, we applied 5-fold cross-validation (cv=5), 19 

resulting in each set being evaluated five separate times, one for each fold. Consequently, there 20 

were 5×5=25 individual model trainings during the optimization process. This approach ensures 21 

that each data point contributes to both the training and validation phases, enhancing the reliability 22 

of the performance assessment. The Bayesian search process with a cross-validation strategy 23 



culminated in identifying an optimal set of hyperparameters that significantly enhanced the model 24 

predictive performance. The optimized configuration comprised a specific arrangement of number 25 

of layers, units, epochs, batch size, a precise regularization rate, and an optimal combination of 26 

optimizer and activation function, tailored to maximize the accuracy of estimations of maximum 27 

flood depth.  28 

The optimal hyperparameters identified through the Bayesian optimization method included 29 

one hidden layer with 47 units, 636 epochs, a batch size of 8, a regularization rate of approximately 30 

0.07, the SGD optimizer, and the ELU activation function. However, after manually adjusting the 31 

number of units to 50 and the regularization rate to 0.104, we achieved the best performance. 32 

Additionally, we implemented early stopping, a technique designed to halt the training process 33 

when model performance no longer improves on the training and test datasets, further enhancing 34 

our ANN-MLP model. 35 
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