Articles | Volume 24, issue 9
https://doi.org/10.5194/nhess-24-3115-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-3115-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Small-scale geohazards cause significant and highly variable impacts on emotions
Evgenia Ilyinskaya
CORRESPONDING AUTHOR
School of Earth and Environment, University of Leeds, Leeds, UK
Vésteinn Snæbjarnarson
Miðeind ehf, Reykjavik, Iceland
Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
Hanne Krage Carlsen
Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
Björn Oddsson
Department of Civil Protection and Emergency Management, National Commissioner of the Icelandic Police, Reykjavik, Iceland
Related authors
Rachel C. W. Whitty, Evgenia Ilyinskaya, Melissa A. Pfeffer, Ragnar H. Thrastarson, Þorsteinn Johannsson, Sara Barsotti, Tjarda J. Roberts, Guðni M. Gilbert, Tryggvi Hjörvar, Anja Schmidt, Daniela Fecht, and Grétar G. Sæmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-937, https://doi.org/10.5194/egusphere-2025-937, 2025
Short summary
Short summary
Our work focuses on volcanic emissions, a poorly understood air pollution hazard in populated areas. We present a large dataset of reference-grade measurements of sulfur dioxide gas and aerosol particulate matter (PM1, PM2.5 and PM10) collected during a recent episode of eruptions in Iceland, which is still ongoing at the time of writing. We identified fine-scale fluctuations in ground-level concentrations of these pollutants and we discuss the implications of these for population exposures.
Rachel C. W. Whitty, Evgenia Ilyinskaya, Melissa A. Pfeffer, Ragnar H. Thrastarson, Þorsteinn Johannsson, Sara Barsotti, Tjarda J. Roberts, Guðni M. Gilbert, Tryggvi Hjörvar, Anja Schmidt, Daniela Fecht, and Grétar G. Sæmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-937, https://doi.org/10.5194/egusphere-2025-937, 2025
Short summary
Short summary
Our work focuses on volcanic emissions, a poorly understood air pollution hazard in populated areas. We present a large dataset of reference-grade measurements of sulfur dioxide gas and aerosol particulate matter (PM1, PM2.5 and PM10) collected during a recent episode of eruptions in Iceland, which is still ongoing at the time of writing. We identified fine-scale fluctuations in ground-level concentrations of these pollutants and we discuss the implications of these for population exposures.
Cited articles
Árnason, A. and Hafsteinsson, S. B.: Technology and Presence in a Museum of Trauma: Therapeutic Effects of Making Danger Real, in: Museums and Technologies of Presence, Routledge, ISBN 9781003334316, 2023.
Becker, J. S., Potter, S. H., McBride, S. K., Wein, A., Doyle, E. E. H., and Paton, D.: When the earth doesn’t stop shaking: How experiences over time influenced information needs, communication, and interpretation of aftershock information during the Canterbury Earthquake Sequence, New Zealand, Int. J. Disaster Risk Reduct., 34, 397–411, https://doi.org/10.1016/j.ijdrr.2018.12.009, 2019.
Benediktsson, K., Lund, K. A., and Huijbens, E.: Inspired by Eruptions? Eyjafjallajökull and Icelandic Tourism, Mobilities, 6, 77–84, https://doi.org/10.1080/17450101.2011.532654, 2011.
Bryan-Smith, L., Godsall, J., George, F., Egode, K., Dethlefs, N., and Parsons, D.: Real-time social media sentiment analysis for rapid impact assessment of floods, Comput. Geosci., 178, 105405, https://doi.org/10.1016/j.cageo.2023.105405, 2023.
Cha, J., Kim, S., and Park, E.: A lexicon-based approach to examine depression detection in social media: the case of Twitter and university community, Humanit. Soc. Sci. Commun., 9, 1–10, https://doi.org/10.1057/s41599-022-01313-2, 2022.
Chatfield, A. and Brajawidagda, U.: Twitter tsunami early warning network: a social network analysis of Twitter information flows, Faculty of Engineering and Information Sciences – Papers: Part A, https://ro.uow.edu.au/eispapers/136/ (last access: 5 September 2024), 2012.
Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., and Stoyanov, V.: Unsupervised Cross-lingual Representation Learning at Scale, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 8440–8451, https://doi.org/10.18653/v1/2020.acl-main.747, 2020.
Davis, S., A., A., Aoki, K., Cook, M., Duley, S., Huff, M., and Logan, C.: Managing risk and allure at volcanoes: In Hawaii: How close is too close?, Geoj. Tourism Geosite., 12, 85–93, 2013.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. N.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Languages Technologies, June 2–7 June 2019, Minneapolis, Minnesota, https://www.waqasrana.me/assets/papers/N19-1423.pdf (last access: 16 September 2024), 2019.
Donovan, A.: Sublime encounters: Commodifying the experience of the geos, Geo: Geogr. Environ., 5, e00067, https://doi.org/10.1002/geo2.67, 2018.
Earle, P.: Earthquake Twitter, Nat. Geosci., 3, 221–222, https://doi.org/10.1038/ngeo832, 2010.
Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preoţiuc-Pietro, D., Asch, D. A., and Schwartz, H. A.: Facebook language predicts depression in medical records, P. Natl. Acad. Sci. USA 115, 11203–11208, https://doi.org/10.1073/pnas.1802331115, 2018.
Freire, S., Florczyk, A. J., Pesaresi, M., and Sliuzas, R.: An Improved Global Analysis of Population Distribution in Proximity to Active Volcanoes, 1975–2015, ISPRS Int. J. Geo-Inform., 8, 341, https://doi.org/10.3390/ijgi8080341, 2019.
Gallup: Samfélagsmiðlamæling Gallup, Iceland, https://www.gallup.is/frettir/ny-samfelagsmidlamaeling-gallup/ (last access: 3 September 2024), 2021.
geduldig: geduldig/TwitterAPI, GitHub [code], https://github.com/geduldig/TwitterAPI (last access: 16 September 2024), 2024.
Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann, F. A.: Shortcut learning in deep neural networks, Nat. Mach. Intel., 2, 665–673, https://doi.org/10.1038/s42256-020-00257-z, 2020.
Gissurardóttir, Ó. S., Hlodversdóttir, H., Thordardóttir, E. B., Pétursdóttir, G., and Hauksdóttir, A.: Mental health effects following the eruption in Eyjafjallajökull volcano in Iceland: A population-based study, Scand. J. Public Health, 47, 251–259, https://doi.org/10.1177/1403494817751327, 2019.
Global Volcanism Program|Video Collections|VOLFilms Collection: VOLFilms, https://volcano.si.edu/gallery/VideoCollection.cfm?subject=VOLFilms&language=English (last access: 24 June 2024), 2024.
Guan, X. and Chen, C.: Using social media data to understand and assess disasters, Nat. Hazards, 74, 837–850, https://doi.org/10.1007/s11069-014-1217-1, 2014.
Halldórsson, S. A., Marshall, E. W., Caracciolo, A., Matthews, S., Bali, E., Rasmussen, M. B., Ranta, E., Robin, J. G., Guðfinnsson, G. H., Sigmarsson, O., Maclennan, J., Jackson, M. G., Whitehouse, M. J., Jeon, H., van der Meer, Q. H. A., Mibei, G. K., Kalliokoski, M. H., Repczynska, M. M., Rúnarsdóttir, R. H., Sigurðsson, G., Pfeffer, M. A., Scott, S. W., Kjartansdóttir, R., Kleine, B. I., Oppenheimer, C., Aiuppa, A., Ilyinskaya, E., Bitetto, M., Giudice, G., and Stefánsson, A.: Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland, Nature, 609, 529–534, https://doi.org/10.1038/s41586-022-04981-x, 2022.
He, P., Gao, J., and Chen, W.: DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing, The Eleventh International Conference on Learning Representations, Kigali Rwanda, 1–5 May 2023, https://arxiv.org/pdf/2111.09543 (last access: 16 September 2024), 2022.
Hicks, S. P.: Geoscience analysis on Twitter, Nat. Geosci., 12, 585–586, https://doi.org/10.1038/s41561-019-0425-4, 2019.
Hlodversdottir, H., Thorsteinsdottir, H., Thordardottir, E. B., Njardvik, U., Petursdottir, G., and Hauksdottir, A.: Long-term health of children following the Eyjafjallajökull volcanic eruption: a prospective cohort study, Eur. J. Psychotraumatology, 9, 1442601, https://doi.org/10.1080/20008198.2018.1442601, 2018.
Ingólfsdóttir, S. L., Ragnarsson, P., Jónsson, H., Simonarson, H., Thorsteinsson, V., and Snæbjarnarson, V.: Byte-Level Grammatical Error Correction Using Synthetic and Curated Corpora, in: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, 7299–7316, https://doi.org/10.18653/v1/2023.acl-long.402, 2023.
Kam, J., Park, J., Shao, W., Song, J., Kim, J., Gizzi, F. T., Porrini, D., and Suh, Y.-J.: Data-driven modeling reveals the Western dominance of global public interest in earthquakes, Humanit. Soc. Sci. Commun., 8, 1–9, https://doi.org/10.1057/s41599-021-00914-7, 2021.
Kelley, S. W. and Gillan, C. M.: Using language in social media posts to study the network dynamics of depression longitudinally, Nat. Commun., 13, 870, https://doi.org/10.1038/s41467-022-28513-3, 2022.
Lacassin, R., Devès, M., Hicks, S. P., Ampuero, J.-P., Bossu, R., Bruhat, L., Daryono, Wibisono, D. F., Fallou, L., Fielding, E. J., Gabriel, A.-A., Gurney, J., Krippner, J., Lomax, A., Sudibyo, M. M., Pamumpuni, A., Patton, J. R., Robinson, H., Tingay, M., and Valkaniotis, S.: Rapid collaborative knowledge building via Twitter after significant geohazard events, Geosci. Commun., 3, 129–146, https://doi.org/10.5194/gc-3-129-2020, 2020.
Lan, X., Cheng, Y., Sheng, L., Gao, C., and Li, Y.: Depression Detection on Social Media with Large Language Models, arXiv [preprint] https://doi.org/10.48550/arXiv.2403.10750, 2024.
Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C.: Learning Word Vectors for Sentiment Analysis, ACL, https://aclanthology.org/P11-1015/ (last access: 5 September 2024), 2019.
Malko, A., Duenser, A., Kangas, M., Mollá-Aliod, D., and Paris, C.: Message similarity as a proxy to repetitive thinking: Associations with non-suicidal self-injury and suicidal ideation on social media, Comput. Hum. Behav. Rep., 11, 100320, https://doi.org/10.1016/j.chbr.2023.100320, 2023.
Moghadas, M., Fekete, A., Rajabifard, A., and Kötter, T.: The wisdom of crowds for improved disaster resilience: a near-real-time analysis of crowdsourced social media data on the 2021 flood in Germany, GeoJ., 88, 4215–4241, https://doi.org/10.1007/s10708-023-10858-x, 2023.
Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., and Cherry, C.: SemEval-2016 Task 6: Detecting Stance in Tweets, in: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), SemEval 2016, San Diego, California, 31–41, https://doi.org/10.18653/v1/S16-1003, 2016.
Nielsen, A. B., Landwehr, D., Nicolaï, J., Patil, T., and Raju, E.: Social media and crowdsourcing in disaster risk management: Trends, gaps, and insights from the current state of research, Risk Hazards Crisis Public Policy, 15, 104–127, https://doi.org/10.1002/rhc3.12297, 2024.
Oltmanns, J. R., Schwartz, H. A., Ruggero, C., Son, Y., Miao, J., Waszczuk, M., Clouston, S. A. P., Bromet, E. J., Luft, B. J., and Kotov, R.: Artificial intelligence language predictors of two-year trauma-related outcomes, J. Psych. Res., 143, 239–245, https://doi.org/10.1016/j.jpsychires.2021.09.015, 2021.
Olynk Widmar, N., Rash, K., Bir, C., Bir, B., and Jung, J.: The anatomy of natural disasters on online media: hurricanes and wildfires, Nat. Hazards, 110, 961–998, https://doi.org/10.1007/s11069-021-04975-4, 2022.
Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M.: fairseq: A Fast, Extensible Toolkit for Sequence Modeling, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), Minneapolis, Minnesota, 48–53, https://doi.org/10.18653/v1/N19-4009, 2019.
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., Ungar, L. H., and Seligman, M. E. P.: Automatic personality assessment through social media language, J. Personal. Social Psychol., 108, 934–952, https://doi.org/10.1037/pspp0000020, 2015.
Pfeiffer, J., Vulić, I., Gurevych, I., and Ruder, S.: MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), EMNLP 2020, Online, 7654–7673, https://doi.org/10.18653/v1/2020.emnlp-main.617, 2020.
Pires, T., Schlinger, E., and Garrette, D.: How Multilingual is Multilingual BERT?, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 4996–5001, https://doi.org/10.18653/v1/P19-1493, 2019.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, J. Mach. Learn. Res., 21, 1−-67, 2020.
Recharla, N., Bolimera, P., Gupta, Y., and Madasamy, A. K.: Depression Severity Detection from Social Media Posts, in: Emergent Converging Technologies and Biomedical Systems, Singapore, Springer, 403–417, https://doi.org/10.1007/978-981-99-8646-0_32, 2024.
Riddell, H. and Fenner, C.: User-Generated Crisis Communication: Exploring Crisis Frames on Twitter during Hurricane Harvey, South. Commun. J., 86, 31–45, https://doi.org/10.1080/1041794X.2020.1853803, 2021.
Ruan, T., Kong, Q., McBride, S. K., Sethjiwala, A., and Lv, Q.: Cross-platform analysis of public responses to the 2019 Ridgecrest earthquake sequence on Twitter and Reddit, Sci. Rep., 12, 1634, https://doi.org/10.1038/s41598-022-05359-9, 2022.
Ruder, S., Peters, M. E., Swayamdipta, S., and Wolf, T.: Transfer Learning in Natural Language Processing, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials, Minneapolis, Minnesota, 15–18, https://doi.org/10.18653/v1/N19-5004, 2019.
RÚV Grindvíkingar geti sett sig í spor fólks með kæfisvefn: https://www.ruv.is/frett/2021/03/16/grindvikingar-geti-sett-sig-i-spor-folks-med-kaefisvefn (last access: 30 September 2021), 2021a.
RÚV Skjálftakvíði vegna aðstæðna sem maður ræður ekki við: https://www.ruv.is/frett/2021/03/01/skjalftakvidi-vegna-adstaedna-190 sem-madur-raedur-ekki-vid (last access: 30 September 2021), 2021b.
Rymer, H.: Part VII Volcanic Hazards, in: The Encyclopedia of Volcanoes, 2nd Edn., edited by: Sigurdsson, H., Academic Press, Amsterdam, 895–896, https://doi.org/10.1016/B978-0-12-385938-9.02009-5, 2015.
Saraò, A., Tamaro, A., Sandron, D., Slejko, D., and Rebez, A.: On the crowdsourcing of macroseismic data to characterize geological settings, Int. J. Disast. Risk Reduct., 96, 103934, https://doi.org/10.1016/j.ijdrr.2023.103934, 2023.
Siebert, L., Cottrell, E., Venzke, E., and Andrews, B.: Chapter 12 – Earth's Volcanoes and Their Eruptions: An Overview, in: The Encyclopedia of Volcanoes, 2nd Edn., edited by: Sigurdsson, H., Academic Press, Amsterdam, 239–255, https://doi.org/10.1016/B978-0-12-385938-9.00012-2, 2015.
Sigmundsson, F., Parks, M., Hooper, A., Geirsson, H., Vogfjörd, K. S., Drouin, V., Ófeigsson, B. G., Hreinsdóttir, S., Hjaltadóttir, S., Jónsdóttir, K., Einarsson, P., Barsotti, S., Horálek, J., and Ágústsdóttir, T.: Deformation and seismicity decline before the 2021 Fagradalsfjall eruption, Nature, 609, 523–528, https://doi.org/10.1038/s41586-022-05083-4, 2022.
Snæbjarnarson, V. and Einarsson, H.: Cross-Lingual QA as a Stepping Stone for Monolingual Open QA in Icelandic, arXiv [preprint], https://doi.org/10.48550/arXiv.2207.01918, 2022.
Snæbjarnarson, V., Simonsen, A., Glavaš, G., and Vulić, I.: Transfer to a Low-Resource Language via Close Relatives: The Case Study on Faroese, in: Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), NoDaLiDa 2023, 22–24 May 2023, Tórshavn, Faroe Islands, 728–737, https://doi.org/10.48550/arXiv.2304.08823, 2023.
Snæbjarnarson, V.: vesteinn/fagradalsfjall_eruption_sentiment: v1.0 (v1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.13733750, 2024.
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C.: Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, Seattle, Washington, USA, 18–21 October 2013, 1631–1642, https://aclanthology.org/D13-1170 (last access: 16 September 2024), 2013.
Steed, R. J., Fuenzalida, A., Bossu, R., Bondár, I., Heinloo, A., Dupont, A., Saul, J., and Strollo, A.: Crowdsourcing triggers rapid, reliable earthquake locations, Sci. Adv., 5, eaau9824, https://doi.org/10.1126/sciadv.aau9824, 2019.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.: Attention is All you Need, in: Advances in Neural Information Processing Systems, NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems Long Beach California USA, 4–9 December 2017, https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (last access: 5 September 2024), 2017.
Venkit, P., Srinath, M., Gautam, S., Venkatraman, S., Gupta, V., Passonneau, R., and Wilson, S.: The Sentiment Problem: A Critical Survey towards Deconstructing Sentiment Analysis, in: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, 13743–13763, https://doi.org/10.18653/v1/2023.emnlp-main.848, 2023.
Vo, B.-K. H. and Collier, N.: Twitter Emotion Analysis in Earthquake Situations, IJCLA, 4, 15, 2013.
Volcanic eruption in Geldingadalir: Icelandic Tourism Dashboard, https://www.maelabordferdathjonustunnar.is/en/volcanic-eruption-in-geldingadalir (last access: 30 September 2021), 2021
Wadsworth, F. B., Llewellin, E. W., Farquharson, J. I., Gillies, J. K., Loisel, A., Frey, L., Ilyinskaya, E., Thordarson, T., Tramontano, S., Lev, E., Pankhurst, M. J., Rull, A. G., Asensio-Ramos, M., Pérez, N. M., Hernández, P. A., Calvo, D., Solana, M. C., Kueppers, U., and Santabárbara, A. P.: Crowd-sourcing observations of volcanic eruptions during the 2021 Fagradalsfjall and Cumbre Vieja events, Nat. Commun., 13, 2611, https://doi.org/10.1038/s41467-022-30333-4, 2022.
Wang, C., Engler, D., Li, X., Hou, J., Wald, D. J., Jaiswal, K., and Xu, S.: Near-real-time Earthquake-induced Fatality Estimation using Crowdsourced Data and Large-Language Models, arXiv [preprint], https://doi.org/10.48550/arXiv.2312.03755, 2023.
Wang, Z. and Ye, X.: Social media analytics for natural disaster management, Int. J. Geogr. Inform. Sci., 32, 49–72, https://doi.org/10.1080/13658816.2017.1367003, 2018.
Watson, C. S., Elliott, J. R., Ebmeier, S. K., Biggs, J., Albino, F., Brown, S. K., Burns, H., Hooper, A., Lazecky, M., Maghsoudi, Y., Rigby, R., and Wright, T. J.: Strategies for improving the communication of satellite-derived InSAR data for geohazards through the analysis of Twitter and online data portals, Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, 2023.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A.: Transformers: State-of-the-Art Natural Language Processing, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 38–45, https://doi.org/10.18653/v1/2020.emnlp-demos.6, 2020.
Zimbra, D., Abbasi, A., Zeng, D., and Chen, H.: The State-of-the-Art in Twitter Sentiment Analysis: A Review and Benchmark Evaluation, ACM Trans. Manag. Inf. Syst., 9, 1–29, https://doi.org/10.1145/3185045, 2018.
Zou, L., Lam, N. S. N., Shams, S., Cai, H., Meyer, M. A., Yang, S., Lee, K., Park, S.-J., and Reams, M. A.: Social and geographical disparities in Twitter use during Hurricane Harvey, Int. J. Digit. Earth, 12, 1300–1318, https://doi.org/10.1080/17538947.2018.1545878, 2019.
Short summary
Natural hazards can have negative impacts on mental health. We used artificial intelligence to analyse sentiments expressed by people in Twitter (now X) posts during a period of heightened earthquake activity and during a small volcanic eruption in Iceland. We show that even small natural hazards which cause no material damage can still have a significant impact on people. Earthquakes had a predominantly negative impact, but, somewhat unexpectedly, the eruption seemed to have a positive impact.
Natural hazards can have negative impacts on mental health. We used artificial intelligence to...
Altmetrics
Final-revised paper
Preprint