Articles | Volume 24, issue 9
https://doi.org/10.5194/nhess-24-3075-2024
https://doi.org/10.5194/nhess-24-3075-2024
Research article
 | 
13 Sep 2024
Research article |  | 13 Sep 2024

AscDAMs: advanced SLAM-based channel detection and mapping system

Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Shoreline and land use–land cover changes along the 2004-tsunami-affected South Andaman coast: understanding changing hazard susceptibility
Vikas Ghadamode, Aruna Kumari Kondarathi, Anand K. Pandey, and Kirti Srivastava
Nat. Hazards Earth Syst. Sci., 24, 3013–3033, https://doi.org/10.5194/nhess-24-3013-2024,https://doi.org/10.5194/nhess-24-3013-2024, 2024
Short summary
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024,https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149,https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024,https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024,https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary

Cited articles

Bailey, T. and Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): Part II, IEEE Robot. Autom. Mag., 13, 108–117, https://doi.org/10.1109/Mra.2006.1678144, 2006. 
Barros, A. M., Michel, M., Moline, Y., Corre, G., and Carrel, F.: A Comprehensive Survey of Visual SLAM Algorithms, Robotics, 11, 11010024, https://doi.org/10.3390/robotics11010024, 2022. 
Berger, C., McArdell, B. W., and Schlunegger, F.: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland, J. Geophys. Res.-Earth, 116, W0502, https://doi.org/10.1029/2010jf001722, 2011a. 
Berger, C., McArdell, B. W., and Schlunegger, F.: Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities, Geomorphology, 125, 421–432, https://doi.org/10.1016/j.geomorph.2010.10.019, 2011b. 
Berti, M., Genevois, R., Simoni, A., and Tecca, P. R.: Field observations of a debris flow event in the Dolomites, Geomorphology, 29, 265–274, https://doi.org/10.1016/S0169-555x(99)00018-5, 1999.  
Download
Short summary
Harsh environments limit the use of drone, satellite, and simultaneous localization and mapping technology to obtain precise channel morphology data. We propose AscDAMs, which includes a deviation correction algorithm to reduce errors, a point cloud smoothing algorithm to diminish noise, and a cross-section extraction algorithm to quantitatively assess the morphology data. AscDAMs solves the problems and provides researchers with more reliable channel morphology data for further analysis.
Altmetrics
Final-revised paper
Preprint