Articles | Volume 24, issue 4
https://doi.org/10.5194/nhess-24-1249-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-1249-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
Alfio Viganò
Servizio Geologico, Provincia autonoma di Trento, Via Zambra 42, 38121 Trento, Italy
Jacopo Boaga
Dipartimento di Geoscienze, University of Padua, Via Gradenigo 6, 35131 Padua, Italy
Valeria Cascone
Dipartimento di Geoscienze, University of Padua, Via Gradenigo 6, 35131 Padua, Italy
Simone Barani
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
Daniele Spallarossa
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
Gabriele Ferretti
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
Mauro Carli
AD.EL s.r.l., via Sandro Pertini 5, 30030 Martellago (VE), Italy
Giancarlo De Marchi
AD.EL s.r.l., via Sandro Pertini 5, 30030 Martellago (VE), Italy
Related authors
Leonardo Colavitti, Dino Bindi, Gabriele Tarchini, Davide Scafidi, Matteo Picozzi, and Daniele Spallarossa
Earth Syst. Sci. Data, 17, 3089–3108, https://doi.org/10.5194/essd-17-3089-2025, https://doi.org/10.5194/essd-17-3089-2025, 2025
Short summary
Short summary
This work describes a dataset of 5 years of earthquakes with magnitude range of 2.0–5.5 from January 2019 along the East Anatolian Fault, Türkiye. All events were located using the non-linear location algorithm, providing reliable horizontal locations and depths. The distributed product includes Fourier amplitude spectra, peak ground acceleration and peak ground velocity; we strongly believe that the creation of high-quality open-source datasets is crucial for any seismological investigation.
Marco Massa, Andrea Luca Rizzo, Davide Scafidi, Elisa Ferrari, Sara Lovati, Lucia Luzi, and MUDA working group
Earth Syst. Sci. Data, 16, 4843–4867, https://doi.org/10.5194/essd-16-4843-2024, https://doi.org/10.5194/essd-16-4843-2024, 2024
Short summary
Short summary
MUDA (geophysical and geochemical MUltiparametric DAtabase) is a new infrastructure of the National Institute of Geophysics and Volcanology serving geophysical and geochemical multiparametric data. MUDA collects information from different sensors, such as seismometers, accelerometers, hydrogeochemical sensors, meteorological stations and sensors for the flux of carbon dioxide and radon gas, with the aim of making correlations between seismic phenomena and variations in environmental parameters.
Simone Barani, Gabriele Ferretti, and Davide Scafidi
Nat. Hazards Earth Syst. Sci., 23, 1685–1698, https://doi.org/10.5194/nhess-23-1685-2023, https://doi.org/10.5194/nhess-23-1685-2023, 2023
Short summary
Short summary
In the present study, we analyze ground-motion hazard maps and hazard disaggregation in order to define areas in Italy where liquefaction triggering due to seismic activity can not be excluded. The final result is a screening map for all of Italy that classifies sites in terms of liquefaction triggering potential according to their seismic hazard level. The map and the associated data are freely accessible at the following web address: www.distav.unige.it/rsni/milq.php.
Leonardo Colavitti, Dino Bindi, Gabriele Tarchini, Davide Scafidi, Matteo Picozzi, and Daniele Spallarossa
Earth Syst. Sci. Data, 17, 3089–3108, https://doi.org/10.5194/essd-17-3089-2025, https://doi.org/10.5194/essd-17-3089-2025, 2025
Short summary
Short summary
This work describes a dataset of 5 years of earthquakes with magnitude range of 2.0–5.5 from January 2019 along the East Anatolian Fault, Türkiye. All events were located using the non-linear location algorithm, providing reliable horizontal locations and depths. The distributed product includes Fourier amplitude spectra, peak ground acceleration and peak ground velocity; we strongly believe that the creation of high-quality open-source datasets is crucial for any seismological investigation.
Ilaria Barone, Alexander Bast, Mirko Pavoni, Steven Javier Gaona Torres, and Jacopo Boaga
EGUsphere, https://doi.org/10.5194/egusphere-2025-962, https://doi.org/10.5194/egusphere-2025-962, 2025
Short summary
Short summary
Different geophysical methods such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW) were jointly used to characterize the internal structure of the Flüela rock glacier, Switzerland. We show that the MASW method can efficiently resolve an ice-rich layer even in presence of a supra-permafrost water flow, a situation when SRT may fail. Our results are corroborated by seismic synthetic modelling.
Mirko Pavoni, Luca Peruzzo, Jacopo Boaga, Alberto Carrera, Ilaria Barone, and Alexander Bast
EGUsphere, https://doi.org/10.5194/egusphere-2025-405, https://doi.org/10.5194/egusphere-2025-405, 2025
Short summary
Short summary
We propose an alternative electrode to perform Electrical Resistivity Tomography measurements in coarse blocky environments, such as rock glaciers. Compared to the traditional steel spike electrodes, which need to be hammered between the blocks, the proposed steel-net electrodes can be easily pushed between the builders by hand and then removed. Furthermore, the steel-net electrode weighs one-sixth of the steel spike, and is, therefore, easier to carry in challenging mountain environments.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Marco Massa, Andrea Luca Rizzo, Davide Scafidi, Elisa Ferrari, Sara Lovati, Lucia Luzi, and MUDA working group
Earth Syst. Sci. Data, 16, 4843–4867, https://doi.org/10.5194/essd-16-4843-2024, https://doi.org/10.5194/essd-16-4843-2024, 2024
Short summary
Short summary
MUDA (geophysical and geochemical MUltiparametric DAtabase) is a new infrastructure of the National Institute of Geophysics and Volcanology serving geophysical and geochemical multiparametric data. MUDA collects information from different sensors, such as seismometers, accelerometers, hydrogeochemical sensors, meteorological stations and sensors for the flux of carbon dioxide and radon gas, with the aim of making correlations between seismic phenomena and variations in environmental parameters.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Simone Barani, Gabriele Ferretti, and Davide Scafidi
Nat. Hazards Earth Syst. Sci., 23, 1685–1698, https://doi.org/10.5194/nhess-23-1685-2023, https://doi.org/10.5194/nhess-23-1685-2023, 2023
Short summary
Short summary
In the present study, we analyze ground-motion hazard maps and hazard disaggregation in order to define areas in Italy where liquefaction triggering due to seismic activity can not be excluded. The final result is a screening map for all of Italy that classifies sites in terms of liquefaction triggering potential according to their seismic hazard level. The map and the associated data are freely accessible at the following web address: www.distav.unige.it/rsni/milq.php.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190, https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted
Short summary
Short summary
The Ice Memory project aims to extract, analyze, and store ice cores from worldwide retreating glaciers. One of the selected sites is the last remaining ice body in the Apennines, the Calderone Glacier. To assess the most suitable drilling position, geophysical surveys were performed. Reliable ground penetrating radar measurements have been positively combined with a geophysical technique rarely applied in glacier environments, the Frequency Domain Electro-Magnetic prospection.
Cited articles
Akaike, H.: Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average process, Ann. I. Stat. Math., 26, 363–387, 1974.
Boaga, J., Casarin, F., De Marchi, G., Valluzzi, M. R., and Cassiani, G.: 2016 Central Italy earthquakes recorded by low-cost MEMS-distributed arrays, Seismol. Res. Lett., 90, 672–682, https://doi.org/10.1785/0220180198, 2018.
Cascone, V., Boaga, J., and Cassiani, G.: Small locale earthquake detection using low-cost MEMS accelerometers: examples in Northern and Central Italy, The Seismic Record, 1, 20–26, 2021.
Cochran, E. S.: To catch a quake, Nat. Commun., 9, 2508, https://doi.org/10.1038/s41467-018-04790-9, 2018.
Cochran, E. S., Lawrence, J. F., Christensen, C., and Jakka, R. S.: The quake-catcher network: citizen science expanding seismic horizons, Seismol. Res. Lett., 80, 26–30, https://doi.org/10.1785/gssrl.80.1.26, 2009.
D'Alessandro, A., Scudero, S., and Vitale, G.: A review of the capacitive MEMS for seismology, Sensors, 19, 3093, https://doi.org/10.3390/s19143093, 2019.
Faenza, L. and Michelini, A.: Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap, Geophys. J. Int., 180, 1138–1152, https://doi.org/10.1111/j.1365-246X.2009.04467.x, 2010.
Geological Survey–Provincia Autonoma di Trento: Trentino Seismic Network, International Federation of Digital Seismograph Networks, Dataset/Seismic Network, https://doi.org/10.7914/SN/ST, 1981.
ISTAT: 15° censimento della popolazione e delle abitazioni 2011, GU serie generale, 209, 18 12 2012, Suppl. ordinario, 294, https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/popolazione-e-abitazioni/popolazione-2011 (last access: 28 March 2024), 2012.
Ivy-Ochs, S., Martin, S., Campedel, P., Hippe, K., Alfimov, V., Vockenhuber, C., Andreotti, E., Carugati, G., Pasqual, D., Rigo, M., and Viganò, A.: Geomorphology and age of the Marocche di Dro rock avalanches (Trentino, Italy), Quaternary Sci. Rev., 169, 188–205, https://doi.org/10.1016/j.quascirev.2017.05.014, 2017.
Lomax, A., Virieux, J., Volant, P., and Thierry-Berge, C.: Probabilistic earthquake location in 3D and layered models, in: Advances in Seismic Event Location, edited by: Thurber, C. H. and Rabinowitz, N., Kluwer Academic Publishers, Dordrecht, the Netherlands/Boston, Massachusetts/London, United Kingdom, 101–134, https://doi.org/10.1007/978-94-015-9536-0_5, 2000.
Lunitek: CASP, https://lunitek.it/seismic/seismic-software/casp/, last access: 28 March 2024.
Michelini, A., Faenza, L., Lauciani, V., and Malagnini, L.: ShakeMap implementation in Italy, Seismol. Res. Lett., 79, 688–697, 2008.
Michelini, A., Faenza, L., Lanzano, G., Lauciani, V., Jozinović, D., Puglia, R., and Luzi, L.: The new ShakeMap in Italy: progress and advances in the last 10 yr, Seismol. Res. Lett., 91, 317–333, 2020.
Ministero delle Infrastrutture e dei Trasporti: Norme Tecniche per le Costruzioni, Decreto del Ministero delle Infrastrutture, GU serie generale, 42, 20 02 2018, Suppl. ordinario, 8, Gazzetta ufficiale della Repubblica Italiana, https://www.gazzettaufficiale.it/eli/id/2023/03/22/23A01847/SG (last access: 28 March 2024), 2018.
Oliveti, I., Faenza, L., and Michelini, A.: New reversible relationships between ground motion parameters and macroseismic intensity for Italy and their application in ShakeMap, Geophys. J. Int., 231, 1117–1137, 2022.
Patanè, D., Tusa, G., Yang, W., Astuti, A., Colino, A., Costanza, A., D'Anna, G., Di Prima, S., Fertitta, G., Mangiagli, S., Martino, C., and Torrisi, O.: The urban seismic observatory of Catania (Italy): a real-time seismic monitoring at urban scale, Remote Sens.-Basel, 14, 2583, https://doi.org/10.3390/rs14112583, 2022.
Peterson, J.: Observations and modelling of seismic background noise, US Geol. Surv. Open-File Rept., 93–322, https://doi.org/10.3133/ofr93322, 1993.
Satriano, C., Wu, Y.-M., Zollo, A., and Kanamori, H.: Earthquake early warning: concepts, methods and physical grounds, Soil Dyn. Earthq. Eng., 31, 106–118, https://doi.org/10.1016/j.soildyn.2010.07.007, 2011.
Scafidi, D., Spallarossa, D., Turino, C., Ferretti, G., and Viganò, A.: Automatic P- and S-wave local earthquake tomography: testing performance of the automatic phase-picker engine “RSNI-Picker”, B. Seismol. Soc. Am., 106, 526–536, 2016.
Scafidi, D., Viganò, A., Ferretti, G., and Spallarossa, D.: Robust picking and accurate locations with RSNI-Picker2: real-time automatic monitoring of earthquakes and nontectonic events, Seismol. Res. Lett., 89, 1478–1487, 2018.
Scafidi, D., Spallarossa, D., Ferretti, G., Barani, S., Castello, B., and Margheriti, L.: A complete automatic procedure to compile reliable seismic catalogs and travel-time and strong-motion parameters datasets, Seismol. Res. Lett., 90, 1308–1317, 2019.
Spallarossa, D., Ferretti, G., Scafidi, D., Turino, C., and Pasta, M.: Performance of the RSNI-Picker, Seismol. Res. Lett., 85, 1243–1254, https://doi.org/10.1785/0220130136, 2014.
Spallarossa, D., Cattaneo, M., Scafidi, D., Michele, M., Chiaraluce, L., Segou, M., and Main, I. G.: An automatically generated high-resolution earthquake catalogue for the 2016–2017 Central Italy seismic sequence, including P and S phase arrival times, Geophys. J. Int., 225, 555–571, https://doi.org/10.1093/gji/ggaa604, 2021.
Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi G. M., and Boschi, E.: Seismic Hazard Assessment (2003–2009) for the Italian Building Code, B. Seismol. Soc. Am., 101, 1885–1911, https://doi.org/10.1785/0120100130, 2011.
Viganò, A., Scafidi, D., Ranalli, G., Martin, S., Della Vedova, B., and Spallarossa, D.: Earthquake relocations, crustal rheology, and active deformation in the central-eastern Alps (N Italy), Tectonophysics, 661, 81–98, https://doi.org/10.1016/j.tecto.2015.08.017, 2015.
Viganò, A., Scafidi, D., and Ferretti, G.: A new approach for a fully automated earthquake monitoring: the local seismic network of the Trentino region (NE Italy), J. Seismol., 25, 419–432, https://doi.org/10.1007/s10950-021-09993-0, 2021.
Vitale, G., D'Alessandro, A., Di Benedetto, A., Figlioli, A., Costanzo, A., Speciale, S., Piattoni, Q., and Cipriani, L.: Urban seismic network based on MEMS sensors: the experience of the seismic observatory in Camerino (Marche, Italy), Sensors, 22, 4335, https://doi.org/10.3390/s22124335, 2022.
WebGIS PAT: https://webgis.provincia.tn.it/wgt/?lang=it&topic=14&bgLayer=sfondo_urb&layers=ammcom,stazioni_sismiche,eventi_sismici&layers_visibility=false,true,true&layers_opacity=1,1,0.4&catalogNodes=53, last access: 28 March 2024.
Wessel, P., Smith, W. H. F. , Scharroo, R., Luis, J. , and Wobbe, F.: Generic Mapping Tools: Improved Version Released, Eos Trans. AGU, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated...
Altmetrics
Final-revised paper
Preprint