Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-91-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-91-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the calculation of smoothing kernels for seismic parameter spatial mapping: methodology and examples
Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Crta. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Sergio Molina
Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Crta. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Department of Applied Physics, University of Alicante, Crta. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Juan José Galiana-Merino
University Institute of Physics Applied to Sciences and Technologies, University of Alicante, Crta. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Crta. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Igor Gómez
Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Crta. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Department of Applied Physics, University of Alicante, Crta. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Related authors
David Montiel-López, Antonella Peresan, Elisa Varini, and Sergio Molina
Nat. Hazards Earth Syst. Sci., 25, 3853–3878, https://doi.org/10.5194/nhess-25-3853-2025, https://doi.org/10.5194/nhess-25-3853-2025, 2025
Short summary
Short summary
South and south-eastern Spain has the highest seismicity in the country, but inconsistent fault data limit its use in seismic hazard assessment. This study applies the nearest-neighbour (NN) algorithm and graph theory to analyse clustering patterns. Two regions (western and eastern) with higher and lower (respectively) clustering complexities are identified. The results suggest alternative seismic zonation models, which could improve seismic hazard assessment.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, Igor Gómez, Alireza Kharazian, Juan Luis Soler-Llorens, José Antonio Huesca-Tortosa, Arianna Guardiola-Villora, and Gonzalo Ortuño-Sáez
Nat. Hazards Earth Syst. Sci., 25, 515–539, https://doi.org/10.5194/nhess-25-515-2025, https://doi.org/10.5194/nhess-25-515-2025, 2025
Short summary
Short summary
We presents a comparison between different methods of computing the seismic activity rate in the time-dependent annual probability of exceedance (TD-APE) for a given earthquake in two areas: Italy (high seismicity) and Spain (moderate seismicity). Important changes in the TD-APE are seen in Italy before the L'Aquila earthquake, which can be related to foreshocks. In the case of Spain subtle changes are seen before some earthquakes. This approach could enable operational earthquake forecasting.
David Montiel-López, Antonella Peresan, Elisa Varini, and Sergio Molina
Nat. Hazards Earth Syst. Sci., 25, 3853–3878, https://doi.org/10.5194/nhess-25-3853-2025, https://doi.org/10.5194/nhess-25-3853-2025, 2025
Short summary
Short summary
South and south-eastern Spain has the highest seismicity in the country, but inconsistent fault data limit its use in seismic hazard assessment. This study applies the nearest-neighbour (NN) algorithm and graph theory to analyse clustering patterns. Two regions (western and eastern) with higher and lower (respectively) clustering complexities are identified. The results suggest alternative seismic zonation models, which could improve seismic hazard assessment.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, Igor Gómez, Alireza Kharazian, Juan Luis Soler-Llorens, José Antonio Huesca-Tortosa, Arianna Guardiola-Villora, and Gonzalo Ortuño-Sáez
Nat. Hazards Earth Syst. Sci., 25, 515–539, https://doi.org/10.5194/nhess-25-515-2025, https://doi.org/10.5194/nhess-25-515-2025, 2025
Short summary
Short summary
We presents a comparison between different methods of computing the seismic activity rate in the time-dependent annual probability of exceedance (TD-APE) for a given earthquake in two areas: Italy (high seismicity) and Spain (moderate seismicity). Important changes in the TD-APE are seen in Italy before the L'Aquila earthquake, which can be related to foreshocks. In the case of Spain subtle changes are seen before some earthquakes. This approach could enable operational earthquake forecasting.
Cited articles
Alarcón, E. and Benito, B.: Foreword special issue Lorca's earthquake, B. Earthq. Eng., 12, 1827–1829, https://doi.org/10.1007/s10518-014-9602-4, 2014. a
Batte, A. G. and Rümpker, G.: Spatial mapping of b-value heterogeneity beneath the Rwenzori region, Albertine rift: Evidence of magmatic intrusions, J. Volcanol. Geoth. Res., 381, 238–245, https://doi.org/10.1016/j.jvolgeores.2019.05.015, 2019. a
Brunsdon, C., Fotheringham, A., and Charlton, M.: Geographically Weighted Summary Statistics—A Framework for Localised Exploratory Data Analysis, Comput. Environ. Urban, 26, 501–524, https://doi.org/10.1016/S0198-9715(01)00009-6, 2002. a
Carreño-Herrero, E. and Valero-Zornoza, J. F.: The Iberian Peninsula seismicity for the instrumental period: 1985–2011, Enseñ. Cienc. Tierra, 19, 289–295, 2011. a
Chiba, K.: Heterogeneous b-value Distributions Measured Over an Extensive Region from the Northern Okinawa Trough to Southern Kyushu Island, Japan, Pure Appl. Geophys., 179, 899–913, https://doi.org/10.1007/s00024-022-02958-5, 2022. a
Cicerone, R., Ebel, J., and Britton, J.: A systematic compilation of earthquake precursors, Tectonophysics, 476, 371–396, https://doi.org/10.1016/j.tecto.2009.06.008, 2009. a
DeSalvio, N. D. and Rudolph, M. L.: A Retrospective Analysis of b‐Value Changes Preceding Strong Earthquakes, Seismol. Res. Lett., 93, 364–375, https://doi.org/10.1785/0220210149, 2021. a
De Santis, A., Abbattista, C., Alfonsi, L., Amoruso, L., Campuzano, S. A., Carbone, M., Cesaroni, C., Cianchini, G., De Franceschi, G., De Santis, A., Di Giovambattista, R., Marchetti, D., Martino, L., Perrone, L., Piscini, A., Rainone, M. L., Soldani, M., Spogli, L., and Santoro, F.: Geosystemics View of Earthquakes, Entropy, 21, 412, https://doi.org/10.3390/e21040412, 2019. a
Dorfman, R.: A note on the δ-method for finding variance formulae,
Biometrics Bull., 1, 129–137, 1938. a
Frontera, T., Concha, A., Blanco, P., Echeverria, A., Goula, X., Arbiol, R., Khazaradze, G., Pérez, F., and Suriñach, E.: DInSAR Coseismic Deformation of the May 2011 Mw 5.1 Lorca Earthquake (southeastern Spain), Solid Earth, 3, 111–119, https://doi.org/10.5194/se-3-111-2012, 2012. a
Galiana-Merino, J. J., Molina, S., Kharazian, A., Toader, V.-E., Moldovan, I.-A., and Gómez, I.: Analysis of Radon Measurements in Relation to Daily Seismic Activity Rates in the Vrancea Region, Romania, Sensors, 22, 4160, https://doi.org/10.3390/s22114160, 2022. a
García-Mayordomo, J., Insua-Arévalo, J., Martinez-Diaz, J., Jiménez-Díaz, A., Martín Banda, R., Alfageme, M., Álvarez Gómez, J., Rodríguez-Peces, M., Perez-Lopez, R., Rodriguez-Pascua, M., Masana, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E., Cabral, J., Sanz de Galdeano, C., Peláez, J., Tortosa, G., and Linares, R.: The Quaternary Active Faults Database of Iberia (QAFI v.2.0), J. Iber. Geol., 38, 285–302, 2012. a, b, c
García‐Hernández, R., D'Auria, L., Barrancos, J., Padilla, G. D., and Pérez, N. M.: Multiscale Temporal and Spatial Estimation of the b‐Value, Seismol. Res. Lett., 92, 3712–3724, https://doi.org/10.1785/0220200388, 2021. a
González, A.: The Spanish National Earthquake Catalogue: Evolution, precision and completeness, J. Seismol., 21, 435–471, https://doi.org/10.1007/s10950-016-9610-8, 2017. a
González, P., Tiampo, K., Palano, M., Cannavò, F., and Fernandez, J.: The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading, Nat. Geosci., 5, 821–825, https://doi.org/10.1038/ngeo1610, 2012. a
Gulia, L. and Wiemer, S.: The influence of tectonic regimes on the earthquake size distribution: A case study for Italy, Geophys. Res. Lett., 37, L10305, https://doi.org/10.1029/2010GL043066, 2010. a
Gulia, L. and Wiemer, S.: Real-time discrimination of earthquake foreshocks and aftershocks, Nature, 574, 193–199, https://doi.org/10.1038/s41586-019-1606-4, 2019. a, b
Gulia, L., Tormann, T., Wiemer, S., Herrmann, M., and Seif, S.: Short-term probabilistic earthquake risk assessment considering time-dependent b values, Geophys. Res. Lett., 43, 1100–1108, https://doi.org/10.1002/2015GL066686, 2016. a
Gulia, L., Gasperini, P., and Wiemer, S.: Comment on “High‐Definition Mapping of the Gutenberg–Richter b‐Value and Its Relevance: A Case Study in Italy” by M. Taroni, J. Zhuang, and W. Marzocchi, Seismol. Res. Lett., 93, 1089–1094, https://doi.org/10.1785/0220210159, 2022. a
Gutenberg, B. and Ritcher, C. F.: Magnitude and energy of earthquakes, Ann. Geophys., 9, 1–15, 1956. a
Lee, W. H. and Lahr, J. C.: HYPO71 (revised): a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, Open-File Report 75-311, U.S. Dept. of the Interior, Geological Survey, National Center for Earthquake Research, https://doi.org/10.3133/ofr75311, 1975. a
Martinelli, G.: Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids, Geosciences, 10, 189–209, https://doi.org/10.3390/geosciences10050189, 2020. a
Martinez-Diaz, J., Bejar, M., Álvarez Gómez, J., Mancilla, F. d. L., Stich, D., Herrera, G., and Morales, J.: Tectonic and seismic implications of an intersegment rupture: The damaging May 11th 2011 Mw 5.2 Lorca, Spain, earthquake, Tectonophysics, 546–547, 28–37, https://doi.org/10.1016/j.tecto.2012.04.010, 2012. a
Murru, M., Taroni, M., Akinci, A., and Falcone, G.: Amatrice earthquake on the seismic hazard assessment in central Italy?, Ann. Geophys., 59, 1–9, https://doi.org/10.4401/ag-7209, 2016. a
Omori, F.: On the aftershocks of earthquakes, Journal of the College of Science, 7, 111–200, 1984. a
Oncescu, M. C. and Marza, V. I., Rizescu, M., and Popa, M.: The Romanian Earthquake Catalogue Between 984 – 1997, Springer Netherlands, Dordrecht, 43–47, https://doi.org/10.1007/978-94-011-4748-4_4, 1999.
a
Oncescu, M. C., Rizescu, M., and Bonjer, K.-P.: SAPS—An automated and networked seismological acquisition and processing system, Comput. Geosci., 22, 89–97, https://doi.org/10.1016/0098-3004(95)00060-7, 1996. a
Papadakis, G., Vallianatos, F., and Sammonds, P.: A nonextensive statistical physics analysis of the 1995 Kobe, Japan earthquake, Pure Appl. Geophys, 172, 1923–1931, https://doi.org/10.1007/s00024-014-0876-x, 2015. a
Posadas, A., Morales, J., and Posadas-Garzon, A.: Earthquakes and entropy: Characterization of occurrence of earthquakes in southern Spain and Alboran Sea, Chaos, 31, 043124, https://doi.org/10.1063/5.0031844, 2021. a
Posadas, A., Morales, J., Ibañez, J., and Posadas-Garzon, A.: Shaking earth: Non-linear seismic processes and the second law of thermodynamics: A case study from Canterbury (New Zealand) earthquakes, Chaos Soliton. Fract., 151, 111243, https://doi.org/10.1016/j.chaos.2021.111243, 2022. a
Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine Learning, MIT Press, ISBN 0-262-18253-X, http://gaussianprocess.org/gpml/ (last access: 26 June 2022), 2006. a
Reasenberg, P. A. and Jones, L. M.: Earthquake Hazard After a Mainshock in California, Science, 243, 1173–1176, https://doi.org/10.1126/science.243.4895.1173, 1989. a, b
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: The Italian earthquake catalogue CPTI15, B. Earthq. Eng., 18, 2953–2984, https://doi.org/10.1007/s10518-020-00818-y, 2020. a
Smith, W. D.: The b-value as an earthquake precursor, Nature, 289, 136–139, 1981. a
Taroni, M. and Akinci, A.: A New Smoothed Seismicity Approach to Include Aftershocks and Foreshocks in Spatial Earthquake Forecasting: Application to the Global Mw≥5.5 Seismicity, Applied Sciences, 11, 10899–10910, https://doi.org/10.3390/app112210899, 2021. a, b
Taroni, M., Vocalelli, G., and Polis, A.: Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach, Forecasting, 3, 561–569, https://doi.org/10.3390/forecast3030035, 2021a. a
Utsu, T.: A statistical study on the occurrence of aftershocks, Geophysical Magazine, 30, 521–605, 1961. a
Utsu, T.: A method for determining the value of b in a formula log n=a-bM showing the magnitude frequency relation for earthquakes, Geophys. Bull. Hokkaido Univ., 13, 99–103, 1965. a
Utsu, T.: A Statistical Significance Test of the Difference in b-value between Two Earthquake Groups, J. Phys. Earth, 14, 37–40, 1966. a
Utsu, T.: Aftershocks and earthquake statistics (1): Some parameters which characterize an Aftershock sequence and their interrelation, Journal of the Faculty of Science, Hokkaido University, 3, 129–195, 1969. a
Uyeda, S. and Nagao, T.: International cooperation in pre-earthquake studies: History and new directions, in: Pre-earthquakes processes. A multidisciplinary approach to earthquake prediction studies, edited by: Ouzounov, D., Pulinets, S., Hattori, K., and Taylor, P., John Wiley & Sons Sons, 3–6, https://doi.org/10.1002/9781119156949.ch1, 2018. a
Vallianatos, F. and Michas, G.: Complexity of Fracturing in Terms of Non-Extensive Statistical Physics: From Earthquake Faults to Arctic Sea Ice Fracturing, Entropy, 22, 1194, https://doi.org/10.3390/e22111194, 2020. a
Vallianatos, F., Michas, G., and Papadakis, G.: 2 - Nonextensive Statistical Seismology: An Overview, in: Complexity of Seismic Time Series, edited by: Chelidze, T., Vallianatos, F., and Telesca, L., Elsevier, 25–59, https://doi.org/10.1016/B978-0-12-813138-1.00002-X, 2018.
a
Wiemer, S. and Schorlemmer, D.: ALM: An Asperity-based Likelihood Model for California, Seismol. Res. Lett., 78, 134–140, https://doi.org/10.1785/gssrl.78.1.134, 2007. a
Wiemer, S. and Wyss, M.: Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Adv. Geophys., 45, 259–302, https://doi.org/10.1016/S0065-2687(02)80007-3, 2002. a
Zaicenco, A., Craifaleanu, I.-G., and Paskaleva, I.: Harmonization of Seismic Hazard in Vrancea Zone, Springer Dordrecht, https://doi.org/10.1007/978-1-4020-9242-8, 2008. a
Zhou, Y., Zhou, S., and Zhuang, J.: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150–162, https://doi.org/10.26464/epp2018015, 2018. a
Short summary
One of the most effective ways to describe the seismicity of a region is to map the b-value parameter of the Gutenberg-Richter law. This research proposes the study of the spatial cell-event distance distribution to define the smoothing kernel that controls the influence of the data. The results of this methodology depict tectonic stress changes before and after intense earthquakes happen, so it could enable operational earthquake forecasting (OEF) and tectonic source profiling.
One of the most effective ways to describe the seismicity of a region is to map the b-value...
Altmetrics
Final-revised paper
Preprint