Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-343-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-343-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management
Tom Birien
CORRESPONDING AUTHOR
Centre d'étude nordiques (CEN), Laboratoire de
géomorphologie et de gestion des risques en montagne (LGGRM),
Université du Québec à Rimouski (UQAR), Rimouski, Canada
Francis Gauthier
Centre d'étude nordiques (CEN), Laboratoire de
géomorphologie et de gestion des risques en montagne (LGGRM),
Université du Québec à Rimouski (UQAR), Rimouski, Canada
Related authors
No articles found.
Francis Gauthier, Jacob Laliberté, and Francis Meloche
EGUsphere, https://doi.org/10.5194/egusphere-2025-1572, https://doi.org/10.5194/egusphere-2025-1572, 2025
Short summary
Short summary
This study uses 4 different machine learning (ML) methods to forecast snow avalanches in northern Gaspésie using MTMQ avalanche records, and meteorological data. Comparing unsupervised and expert-driven models, results show similar prediction accuracy. Logistic Regression and Random Forest models perform well in real-time forecasting over 24–48 h. Findings suggest ML can enhance avalanche hazard anticipation and support operational decision-making.
Francis Meloche, Francis Gauthier, and Alexandre Langlois
The Cryosphere, 18, 1359–1380, https://doi.org/10.5194/tc-18-1359-2024, https://doi.org/10.5194/tc-18-1359-2024, 2024
Short summary
Short summary
Snow avalanches are a dangerous natural hazard. Backcountry recreationists and avalanche practitioners try to predict avalanche hazard based on the stability of snow cover. However, snow cover is variable in space, and snow stability observations can vary within several meters. We measure the snow stability several times on a small slope to create high-resolution maps of snow cover stability. These results help us to understand the snow variation for scientists and practitioners.
Cited articles
Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., and Lato, M. J.: Terrestrial laser scanning of rock slope instabilities, Earth Surf. Proc. Land., 39, 80–97, https://doi.org/10.1002/esp.3493, 2014.
André, M. F.: Holocene rockwall retreat in Svalbard: a triple-rate
evolution, Earth Surf. Proc. Land., 22, 423–440,
https://doi.org/10.1002/(SICI)1096-9837(199705)22:5<423::AID-ESP706>3.0.CO;2-6, 1997.
Badger, T. C. and Lowell, S. M.: Rockfall Control in Washington State,
rockfall prediction and control and landslide case histories, Transp. Res.
Rec., 1343, 14–19, 1992.
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016.
Ballantyne, C. K. and Kirkbride, M. P.: Rockfall activity in upland Britain
during the Loch Lomond Stadial, Geogr. J., 153, 86–92,
https://doi.org/10.2307/634474, 1987.
Barlow, J., Lim, M., Rosser, N., Petley, D., Brain, M., Norman, E., and Geer,
M.: Modeling cliff erosion using negative power law scaling of rockfalls,
Geomorphology, 139–140, 416–424, https://doi.org/10.1016/j.geomorph.2011.11.006, 2012.
Barsch, D.: Eine Abschätzung von Schuttproduktion und Schutttransport im
Bereich aktiver Blockgletscher in den Sch weitzer Alpen, Z. Geomorphol., Neue Folge, Supplement, 28, 148–160, https://doi.org/10.1007/978-3-642-80093-1_13, 1977.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F.: Present and future köppen-geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.214,
2018.
Beylich, A. A.: Geomorphology, Sediment Budget, and Relief Development in
Austdalur, Austfirðir, East Iceland, Arctic, Antarct. Alp. Res., 32,
466–477, https://doi.org/10.1080/15230430.2000.12003391, 2000.
Birien, T. and Gauthier, F.: Influence of climate-dependent variables on
deformation and differential erosion of stratified sedimentary rocks,
Geomorphology, 421, 108518, https://doi.org/10.2139/ssrn.4046480, 2022.
Budetta, P.: Assessment of rockfall risk along roads, Nat. Hazards Earth Syst. Sci., 4, 71–81, https://doi.org/10.5194/nhess-4-71-2004, 2004.
Bunce, C. M., Cruden, D. M., and Morgenstern, N. R.: Assessment of the hazard
from rock fall on a highway, Can. Geotech. J., 34, 344–356,
https://doi.org/10.1139/cgj-34-3-344, 1997.
Burnett, B. N., Meyer, G. A., and McFadden, L. D.: Aspect-related
microclimatic influences on slope forms and processes northeastern Arizona,
J. Geophys. Res.-Earth, 113, 1–18, https://doi.org/10.1029/2007JF000789, 2008.
Chau, K. T., Wong, R. H. C., Liu, J., and Lee, C. F.: Rockfall Hazard
Analysis for Hong Kong Based on Rockfall Inventory, Rock Mech. Rock Eng.,
36, 383–408, https://doi.org/10.1007/s00603-002-0035-z, 2003.
Cloutier, C., Locat, J., Charbonneau, F., and Couture, R.: Understanding the
kinematic behavior of the active Gascons rockslide from in-situ and
satellite monitoring data, Eng. Geol., 195, 1–15,
https://doi.org/10.1016/j.enggeo.2015.05.017, 2015.
Collins, B. D. and Stock, G. M.: Rockfall triggering by cyclic thermal
stressing of exfoliation fractures, Nat. Geosci., 9, 395–400,
https://doi.org/10.1038/ngeo2686, 2016.
Coutard, J. P. and Francou, B.: Rock temperature measurements in two alpine
environments: implications for frost shattering, Arct. Alp. Res., 21,
399–416, https://doi.org/10.2307/1551649, 1989.
Crosta, G. B., di Prisco, C., Frattini, P., Frigerio, G., Castellanza, R., and Agliardi, F.: Chasing a complete understanding of the triggering
mechanisms of a large rapidly evolving rockslide, Landslides, 11,
747–764, https://doi.org/10.1007/s10346-013-0433-1, 2013.
Curry, A. M. and Morris, C. J.: Lateglacial and Holocene talus slope
development and rockwall retreat on Mynydd Du, UK, Geomorphology, 58,
85–106, https://doi.org/10.1016/S0169-555X(03)00226-5, 2004.
D'Amato, J., Hantz, D., Guerin, A., Jaboyedoff, M., Baillet, L., and Mariscal, A.: Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff, Nat. Hazards Earth Syst. Sci., 16, 719–735, https://doi.org/10.5194/nhess-16-719-2016, 2016.
Delonca, A., Gunzburger, Y., and Verdel, T.: Statistical correlation between meteorological and rockfall databases, Nat. Hazards Earth Syst. Sci., 14, 1953–1964, https://doi.org/10.5194/nhess-14-1953-2014, 2014.
Dorren, L. K. A.: A review of rockfall mechanics and modelling approaches,
Prog. Phys. Geogr., 27, 69–87, https://doi.org/10.1191/0309133303pp359ra, 2003.
Draebing, D. and Krautblatter, M.: The Efficacy of Frost Weathering
Processes in Alpine Rockwalls, Geophys. Res. Lett., 46, 6516–6524,
https://doi.org/10.1029/2019GL081981, 2019.
Dramis, F., Govi, M., Guglielmin, M., and Mortara, G.: Mountain permafrost
and slope instability in the Italian Alps: The Val Pola Landslide, Permafr.
Periglac. Process., 6, 73–81, https://doi.org/10.1002/ppp.3430060108, 1995.
Drejza, S., Bernatchez, P., Marie, G. and Friesinger, S.: Quantifying road vulnerability to coastal hazards: Development of a synthetic index, Ocean Coast. Manage., 181, 104894, https://doi.org/10.1016/j.ocecoaman.2019.104894, 2019.
Duszyński, F., Migon, P., and Strzelecki, M. C.: Escarpment retreat in
sedimentary tablelands and cuesta landscapes – Landforms, mechanisms and
patterns, Earth-Sci. Rev., 196, 102890, https://doi.org/10.1016/j.earscirev.2019.102890,
2019.
Environnement Canada: Compilation des données historiques à la
station météorologique de Cap-Madeleine, https://climat.meteo.gc.ca/historical_data/search_historic_data_f.html, last access: 22 November 2021.
Eppes, M. C., Magi, B., Hallet, B., Delmelle, E., Mackenzie-Helnwein, P.,
Warren, K., and Swami, S.: Deciphering the role of solar-induced thermal
stresses in rock weathering, Bull. Geol. Soc. Am., 128, 1315–1338,
https://doi.org/10.1130/B31422.1, 2016.
Erismann, T. and Abele, G.: Dynamics of rockslides and rockfalls, edited
by Springer, Heidelberg New York, Berlin, ISBN 3-540-67198-6, 2001
Fiorio, B., Meyssonnier, J., and Boulon, M.: Experimental study of the
friction of ice over concrete under simplified ice-structure interaction
conditions, Can. J. Civ. Eng., 29, 347–359, https://doi.org/10.1139/l02-012, 2002.
Fortin, G., Hétu, B., and Germain, D.: Climat hivernal et régimes
avalancheux dans les corridors routiers de La Gaspésie septentrionale
(Québec, Canada), Climatologie, 8, 9–25, https://doi.org/10.4267/climatologie.202,
2011.
Fortin, G., Hétu, B., Gauthier, F., and Germain, D.: Extrêmes
météorologiques et leurs impacts géomorphologiques: le cas de
la Gaspésie, in: XXVIIIe Colloque de l'Association Internationale de
Climatologie, Liège, Belgium, 469–474, 2015.
Gauthier, F., Hétu, B., and Allard, M.: Forecasting method of ice blocks
fall using logistic model and melting degree–days calculation: a case study
in northern Gaspésie, Québec, Canada, Nat. Hazards, 79, 855–880,
https://doi.org/10.1007/s11069-015-1880-x, 2015.
Gauthier, F., Germain, D., and Hétu, B.: Logistic models as a forecasting
tool for snow avalanches in a cold maritime climate: northern Gaspésie,
Québec, Canada, Nat. Hazards, 89, 201–232,
https://doi.org/10.1007/s11069-017-2959-3, 2017.
Guerin, A., Hantz, D., Rossetti, J.-P., and Jaboyedoff, M.: Brief communication”Estimating rockfall frequency in a mountain limestone cliff using terrestrial laser scanner”, Nat. Hazards Earth Syst. Sci. Discuss., 2, 123–135, https://doi.org/10.5194/nhessd-2-123-2014, 2014.
Guerin, A., Stock, G. M., Radue, M. J., Jaboyedoff, M., Collins, B. D.,
Matasci, B., Avdievitch, N., and Derron, M. H.: Quantifying 40 years of
rockfall activity in Yosemite Valley with historical Structure-from-Motion
photogrammetry and terrestrial laser scanning, Geomorphology, 356, 107069,
https://doi.org/10.1016/j.geomorph.2020.107069, 2020.
Gunzburger, Y., Merrien-Soukatchoff, V., and Guglielmi, Y.: Influence of
daily surface temperature fluctuations on rock slope stability: Case study
of the Rochers de Valabres slope (France), Int. J. Rock Mech. Min. Sci.,
42, 331–349, https://doi.org/10.1016/j.ijrmms.2004.11.003, 2005.
Hasler, A., Gruber, S., Font, M., and Dubois, A.: Advective heat transport in
frozen rock clefts: Conceptual model, laboratory experiments and numerical
simulation, Permafr. Periglac. Process., 22, 378–389,
https://doi.org/10.1002/ppp.737, 2011.
Hétu, B.: Analysis of the weather conditions leading to avalanche
activity along transportation roads in Northern Gaspésie, Canada,
Géographie Phys. Quat., 61, 2–3, 165–180, https://doi.org/10.7202/038990ar, 2007.
Hétu, B. and Gray, J. T.: Effects of environmental change on scree slope
development throughout the postglacial period in the Chic Choc Mountains in
northern Gaspé Peninsula, Québec, Geomorphology, 32, 3–4, 335–355,
https://doi.org/10.1016/S0169-555X(99)00103-8, 2000.
Higgins, C. G. and Coates, D. R.: Groundwater geomorphology: The role of
subsurface water in Earth-surface processes and landforms, edited by:
Geological Society of America, Special Paper 252, Boulder, Colorado, https://doi.org/10.1130/SPE252 1990.
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009.
Hinchliffe, S. and Ballantyne, C. K.: Talus accumulation and Rockwall
retreat, Trotternish, isle of Skye, Scotland Talus Accumulation and
Rockwall Retreat, Scot. Geogr. J., 115, 53–70,
https://doi.org/10.1080/00369229918737057, 1999.
Höllerman, P.: Blockgletscher als Mesoformen der Periglazialstufe,
Bonner Geogr. Abhandlungen, 67, in: Bonner Geographische Abhandlungen, ISBN: 3-427-76171-1, 1983.
Humlum, O.: The geomorphic significance of rock glaciers: Estimates of rock
glacier debris volumes and headwall recession rates in West Greenland,
Geomorphology, 35, 41–67, https://doi.org/10.1016/S0169-555X(00)00022-2, 2000.
Hungr, O., Evans, S. G., and Hazzard, J.: Magnitude and frequency of rock
falls and rock slides along the main transportation corridors of
southwestern British Columbia, Can. Geotech. J., 36, 224–238,
https://doi.org/10.1139/t98-106, 1999.
Korup, O. and Clague, J. J.: Natural hazards, extreme events, and mountain
topography, Quat. Sci. Rev., 28, 977–990, https://doi.org/10.1016/j.quascirev.2009.02.021, 2009.
Krautblatter, M. and Dikau, R.: Towards a uniform concept for the comparison
and extrapolation of rockwall retreat and rockfall supply, Geogr. Ann. Ser.
A Phys. Geogr., 89, 21–40, https://doi.org/10.1111/j.1468-0459.2007.00305.x, 2007.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks
become unstable: A rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Kromer, R. A., Rowe, E., Hutchinson, J., Lato, M., and Abellán, A.:
Rockfall risk management using a pre-failure deformation database,
Landslides, 15, 847–858, https://doi.org/10.1007/s10346-017-0921-9, 2018.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (N-Z), ISPRS J. Photogramm. Remote Sens., 82, 10–26,
https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Laliberté, J., Gauthier, F., and Birien, T.: Dynamique des parois de flysch (partie 3): prévision des chutes de pierres, edited by: Cloutier, C., Turmel, D., Maghoul, P., and Locat, A.: Proceedings of the 8th Canadian Conference on Geotechnique and Natural Hazards: Innovative geoscience for tomorrow, Quebec City, 12–15 June 2022, 395–402, ISBN 978-2-9821051-0-2, 2022.
Macciotta, R., Martin, C. D., Edwards, T., Cruden, D. M., and Keegan, T.:
Quantifying weather conditions for rock fall hazard management, Georisk,
9, 171–186, https://doi.org/10.1080/17499518.2015.1061673, 2015.
Macciotta, R., Hendry, M., Cruden, D. M., Blais-Stevens, A., and Edwards, T.:
Quantifying rock fall probabilities and their temporal distribution
associated with weather seasonality, Landslides, 14, 2025–2039,
https://doi.org/10.1007/s10346-017-0834-7, 2017.
Magnin, F., Josnin, J., Legay, A., Ravanel, L., Deline, P., and Duvillard, P.
A.: Recent advances in Rock wall Permafrost Modelling to Understand Bedrock
Failures Periglacial rock slope failures are increasing and impact Alpine
and Arctic communities, International Association of Geomorphologists
Webminar, March, https://hal.science/hal-03260747 (last access: 15 October 2022), 2021.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslides, earthquakes, and erosion, Earth Planet. Sci. Lett., 229,
45–59, https://doi.org/10.1016/j.epsl.2004.10.018, 2004.
Matsuoka, N.: Frost weathering and rockwall erosion in the southeastern
Swiss Alps: Long-term (1994–2006) observations, Geomorphology, 99,
353–368, https://doi.org/10.1016/j.geomorph.2007.11.013, 2008.
Matsuoka, N.: A multi-method monitoring of timing, magnitude and origin of
rockfall activity in the Japanese Alps, Geomorphology, 336, 65–76,
https://doi.org/10.1016/j.geomorph.2019.03.023, 2019.
Matsuoka, N. and Murton, J.: Frost Weathering: Recent Advances and Future
Directions, Permafr. Periglac. Process., 19, 195–210,
https://doi.org/10.1002/ppp.620, 2008.
Matsuoka, N. and Sakai, H.: Rockfall activity from an alpine cliff during
thawing periods, Geomorphology, 28, 309–328,
https://doi.org/10.1016/S0169-555X(98)00116-0, 1999.
Michoud, C., Derron, M.-H., Horton, P., Jaboyedoff, M., Baillifard, F.-J., Loye, A., Nicolet, P., Pedrazzini, A., and Queyrel, A.: Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps, Nat. Hazards Earth Syst. Sci., 12, 615–629, https://doi.org/10.5194/nhess-12-615-2012, 2012.
Ministère des Transports du Québec: Base de données
événementielle des chutes de pierres entre 1987 et 2021, 2021.
Olyphant, G. A.: Analysis of the factors controlling cliff burial by talus
within Blanca Massif, southern Colorado, USA., Arct. Alp. Res., 15,
65–75, https://doi.org/10.2307/1550982, 1983.
Oppikofer, T., Jaboyedoff, M., and Keusen, H. R.: Collapse at the eastern
Eiger flank in the Swiss Alps, Nat. Geosci., 1, 531–535,
https://doi.org/10.1038/ngeo258, 2008.
Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M., and Metzger, R.:
Lebensphasenspezifische Gesundheit von Kindern und Jugendlichen in
Deutschland. Ergebnisse des Nationalen Kinder- und
Jugendgesundheitssurveys, Bundesgesundheitsblatt. Gesundheitsforschung.
Gesundheitsschutz, 52, 238, https://doi.org/10.1007/s00103-009-0785-9, 2009.
Piteau, D. R. and Peckover, F. L.: Engineering of Rock Slopes, in
Landslides, Analysis and Control, Transportation Research Board, in: Special
Report 176, edited by: Schuster, R. L. and Krizek, R. J., Washington, DC, National Academy of Sciences, Washington DC., 192–228, ISBN: 0-309-02804-3, 1978.
Porter, S. C. and Orombelli, G.: Catastrophic rockfall of September 12, 1717
on the Italian flank of the Mont Blanc massif, Z.
Geomorphol., 24, 200–218, https://doi.org/10.1127/zfg/24/1984/200, 1980.
Pratt, C., Macciotta, R., and Hendry, M.: Quantitative relationship between
weather seasonality and rock fall occurrences north of Hope, BC, Canada,
Bull. Eng. Geol. Environ., 78, 3239–3251, https://doi.org/10.1007/s10064-018-1358-7,
2019.
Rapp, A.: Recent Development of Mountain Slopes in Kärkevagge and
Surroundings, Northern Scandinavia, Geogr. Ann., 42, 65–200,
https://doi.org/10.1080/20014422.1960.11880942, 1960.
Ravanel, L. and Deline, P.: Climate influence on rockfalls in high-alpine
steep rockwalls: The north side of the aiguilles de chamonix (mont blanc
massif) since the end of the “Little Ice Age”, Holocene, 21, 357–365,
https://doi.org/10.1177/0959683610374887, 2011.
Rosser, N. J., Petley, D. N., Lim, M., Dunning, S. A., and Allison, R. J.:
Terrestrial laser scanning for monitoring the process of hard rock coastal
cliff erosion, Q. J. Eng. Geol. Hydrogeol., 38, 363–375,
https://doi.org/10.1144/1470-9236/05-008, 2005.
Royán, M. J., Abellán, A., Jaboyedoff, M., Vilaplana, J. M., and
Calvet, J.: Spatio-temporal analysis of rockfall pre-failure deformation
using Terrestrial LiDAR, Landslides, 11, 697–709,
https://doi.org/10.1007/s10346-013-0442-0, 2014.
Santana, D., Corominas, J., Mavrouli, O., and Garcia-Sellés, D.:
Magnitude-frequency relation for rockfall scars using a Terrestrial Laser
Scanner, Eng. Geol., 144–145, 50–64, https://doi.org/10.1016/j.enggeo.2012.07.001,
2012.
Sass, O.: Die Steuerung von Steinschlagmenge durch Mikroklima,
Gesteinsfeuchte und Gesteinseigenschaften im westlichen Karwendelgebirge,
Münchner Geogr. Abhandlungen R. B, 29, 347–359, 1998.
Sass, O.: Rock moisture measurements: Techniques, results, and implications
for weathering, Earth Surf. Proc. Land., 30, 359–374,
https://doi.org/10.1002/esp.1214, 2005.
Schovanec, H. E.: Development of semi-automated lidar processing algorithms
to correlate climate variables to rockfall patterns for a slope near
Glendwood Springs, Colorado, Colorado School of Mines: Golden, CO, USA, MSc Thesis, https://hdl.handle.net/11124/176292 (last access: 15 October 2022),
2020.
Selby, M.: Hillslope materials and processes, 2nd Edn., Oxford, ISBN 9780198741831, 480 pp., 1993.
Slivitzky, A., St-Julien, P., and Lachambre, G.: Synthèse géologique
du Cambro-Ordovicien du nord de la Gaspésie, Ministère de l’Énergie et Des Ressources du Québec, ET 88-14, 70 p., ISBN 2-551-12091-8, 1991.
Stoll, V., Scandroglio, R., and Krautblatter, M.: Modelling rock walls
destabilization caused by hydrostatic pressure in frozen/unfrozen bedrock
(Hochvogel & Zugspitze, Germany), Presented at the EGU General Assembly,
Vienna, Austria, 22nd EGU General Assembly, 4–8 May, 2020, id.14338, https://doi.org/10.5194/egusphere-egu2020-14338, 2020.
Štroner, M., Křemen, T., Braun, J., Urban, R., Blistan, P., and
Kovanič, L.: Comparison of 2.5d volume calculation methods and software
solutions using point clouds scanned before and after mining, Acta Montan.
Slovaca, 24, 296–306, 2019.
Turner, A. K. and Schustler, R. L.: Landslides: investigation and
mitigation, Special report/Transportation Research Board, National Research Council, 247, 1996 + 678 pp., ISBN 0-309-06151-2, ISBN 0-309-06208-X, 1996.
van Veen, M., Hutchinson, D. J., Kromer, R., Lato, M., and Edwards, T.:
Effects of sampling interval on the frequency – magnitude relationship of
rockfalls detected from terrestrial laser scanning using semi-automated
methods, Landslides, 14, 1579–1592, https://doi.org/10.1007/s10346-017-0801-3, 2017.
Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K. A., Gerber, W., and Jaboyedoff, M.: Rockfall characterisation and structural protection – a review, Nat. Hazards Earth Syst. Sci., 11, 2617–2651, https://doi.org/10.5194/nhess-11-2617-2011, 2011.
Weidner, L. and Walton, G.: Monitoring the effects of slope hazard
mitigation and weather on rockfall along a colorado highway using
terrestrial laser scanning, Remote Sens., 13, 25, https://doi.org/10.3390/rs13224584,
2021.
Wieczorek, G. F. and Jäger, S.: Triggering mechanisms and depositional
rates of postglacial slope-movement processes in the Yosemite Valley,
California, Geomorphology, 15, 17–31, https://doi.org/10.1016/0169-555X(95)00112-I,
1996.
Williams, J. G., Rosser, N. J., Hardy, R. J., Brain, M. J., and Afana, A. A.: Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency, Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-2018, 2018.
Wyllie, D. C. and Mah, C.: Rock Slope Engineering, 4th edn., CRC Press, Boca
Raton, FL, USA, ISBN-10: 0-415-28001-X, ISBN-13 978-0415280013, 456 pp., 2004.
Short summary
On highly fractured rockwalls such as those found in northern Gaspésie, most rockfalls are triggered by weather conditions. This study highlights that in winter, rockfall frequency is 12 times higher during a superficial thaw than during a cold period in which temperature remains below 0 °C. In summer, rockfall frequency is 22 times higher during a heavy rainfall event than during a mainly dry period. This knowledge could be used to implement a risk management strategy.
On highly fractured rockwalls such as those found in northern Gaspésie, most rockfalls are...
Altmetrics
Final-revised paper
Preprint