Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2289-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2289-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing long-term tephra fallout hazard in southern Italy from Neapolitan volcanoes
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, Bari, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Manuel Stocchi
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, Bari, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Beatriz Martínez Montesinos
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Laura Sandri
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Jacopo Selva
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli, Federico II, Naples, Italy
Roberto Sulpizio
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, Bari, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche, Rome, Italy
Biagio Giaccio
Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche, Rome, Italy
Massimiliano Moscatelli
Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche, Rome, Italy
Edoardo Peronace
Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche, Rome, Italy
Marco Nocentini
Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche, Rome, Italy
Dipartimento per il Servizio Geologico d'Italia, Istituto Superiore per la Protezione e la Ricerca Ambientale, Rome, Italy
Roberto Isaia
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
Manuel Titos Luzón
Signal Processing and Machine Learning, University of Granada, Granada, Spain
Pierfrancesco Dellino
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, Bari, Italy
Giuseppe Naso
Dipartimento di Protezione Civile, Rome, Italy
Antonio Costa
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Related authors
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Pierfrancesco Dellino, Fabio Dioguardi, Roberto Sulpizio, and Daniela Mele
Nat. Hazards Earth Syst. Sci., 25, 2823–2844, https://doi.org/10.5194/nhess-25-2823-2025, https://doi.org/10.5194/nhess-25-2823-2025, 2025
Short summary
Short summary
Pyroclastic deposits are the only records left by pyroclastic flows at Vesuvius, and deposits from past eruptions are the only way to get information about the expected range of impact parameters. It is necessary to investigate the deposits first and then define a general model of the current that links deposit characteristics to flow dynamics, finally reconstructing the impact parameters that better represent flow intensity in terms of damaging potential. This is the way the paper is organized.
Jacopo Selva and Nello Mangone
EGUsphere, https://doi.org/10.5194/egusphere-2025-3615, https://doi.org/10.5194/egusphere-2025-3615, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Forecasting the potential position of future eruptions is fundamental for managing volcanic hazards. Here, we develop a new approach to identify the most likely positions for future eruptions based on the propagation of the magma that fed past eruptions. Its application to Campi Flegrei shows probability peaks at 2 and 4 km from the caldera center and in the direction of the topographic peaks within 6 km, with peaks that correlate well with recent seismicity and deformation patterns.
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 25, 1943–1962, https://doi.org/10.5194/nhess-25-1943-2025, https://doi.org/10.5194/nhess-25-1943-2025, 2025
Short summary
Short summary
By considering the quantification of tephra mass deposited on roads following an eruption (or a series of explosive volcanic eruptions), in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Mt Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis that could be reused, converting in this way a potential problem into an opportunity.
Anita Grezio, Damiano Delrosso, Marco Anzidei, Marco Bianucci, Giovanni Chiodini, Antonio Costa, Antonio Guarnieri, Marina Locritani, Silvia Merlino, Filippo Muccini, Marco Paterni, Dmitri Rouwet, Giancarlo Tamburello, and Georg Umgiesser
EGUsphere, https://doi.org/10.5194/egusphere-2025-286, https://doi.org/10.5194/egusphere-2025-286, 2025
Short summary
Short summary
Volcanic lakes have been recognized as a rare but devastating source of disasters after the limnic eruption of Lake Nyos in 1986. The potential risk of Lake Albano (20 km southeast of the centre of Rome, Italy) is due to exposed elements (people presence, economic and touristic activities). The 3D modelling of the lake dynamics is crucial to investigate the lake stratification and degassing and the current and future behavior and stability of Lake Albano.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
Biagio Giaccio, Bernd Wagner, Giovanni Zanchetta, Adele Bertini, Gian Paolo Cavinato, Roberto de Franco, Fabio Florindo, David A. Hodell, Thomas A. Neubauer, Sebastien Nomade, Alison Pereira, Laura Sadori, Sara Satolli, Polychronis C. Tzedakis, Paul Albert, Paolo Boncio, Cindy De Jonge, Alexander Francke, Christine Heim, Alessia Masi, Marta Marchegiano, Helen M. Roberts, Anders Noren, and the MEME team
Sci. Dril., 33, 249–266, https://doi.org/10.5194/sd-33-249-2024, https://doi.org/10.5194/sd-33-249-2024, 2024
Short summary
Short summary
A total of 42 Earth scientists from 14 countries met in Gioia dei Marsi, central Italy, on 23 to 27 October 2023 to explore the potential for deep drilling of the thick lake sediment sequence of the Fucino Basin. The aim was to reconstruct the history of climate, ecosystem, and biodiversity changes and of the explosive volcanism and tectonics in central Italy over the last 3.5 million years, constrained by a detailed radiometric chronology.
Laura Sandri, Alexander Garcia, Cristina Proietti, Stefano Branca, Gaetana Ganci, and Annalisa Cappello
Nat. Hazards Earth Syst. Sci., 24, 4431–4455, https://doi.org/10.5194/nhess-24-4431-2024, https://doi.org/10.5194/nhess-24-4431-2024, 2024
Short summary
Short summary
In this paper we propose a probability map that shows where most likely future flank eruptions will occur at Etna volcano (in Sicily, Italy). The map updates previous studies since it is based on a much longer record of past flank eruption fissures that opened in the last 4000 years on Etna. We also propose sensitivity tests to evaluate how much the assumptions made change the final probability evaluation.
Federico Mori, Giuseppe Naso, Amerigo Mendicelli, Giancarlo Ciotoli, Chiara Varone, and Massimiliano Moscatelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-104, https://doi.org/10.5194/essd-2024-104, 2024
Preprint withdrawn
Short summary
Short summary
Our research introduces an unmatched dataset of 15,000 shear wave velocity (Vs) profiles from the Italian Seismic Microzonation Database, aimed at dissecting uncertainties to refine seismic hazard analyses. By scrutinizing Vs variations within diverse seismic microzones, we seek to elevate the precision of seismic risk assessments. The study underscores the critical importance of understanding Vs and its uncertainties, showcasing our commitment to advancing seismic hazard comprehension.
Manuel Titos, Carmen Benítez, Milad Kowsari, and Jesús M. Ibáñez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-102, https://doi.org/10.5194/nhess-2024-102, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Developing seismo-volcanic monitoring tools is crucial for Volcanic Observatories. Our study reviews current methods using Transfer Learning techniques and finds that while these systems identify nearly 90 % of seismic events, they miss other important volcanic data due to the catalogue-learning bias. We propose a weakly supervised technique to reduce bias and uncover new volcanic information. This method can improve existing databases and create new ones efficiently using machine learning.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Federico Mori, Amerigo Mendicelli, Gaetano Falcone, Gianluca Acunzo, Rose Line Spacagna, Giuseppe Naso, and Massimiliano Moscatelli
Nat. Hazards Earth Syst. Sci., 22, 947–966, https://doi.org/10.5194/nhess-22-947-2022, https://doi.org/10.5194/nhess-22-947-2022, 2022
Short summary
Short summary
This work addresses the problem of the ground motion estimation over large areas as an important tool for seismic-risk reduction policies. In detail, the near-real-time estimation of ground motion is a key issue for emergency system management. Starting from this consideration, the present work proposes the application of a machine learning approach to produce ground motion maps, using nine input proxies. Such proxies consider seismological, geophysical, and morphological parameters.
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Warner Marzocchi, Jacopo Selva, and Thomas H. Jordan
Nat. Hazards Earth Syst. Sci., 21, 3509–3517, https://doi.org/10.5194/nhess-21-3509-2021, https://doi.org/10.5194/nhess-21-3509-2021, 2021
Short summary
Short summary
Eruption forecasting and volcanic hazard analysis are pervaded by uncertainty of different kinds, such as the natural randomness, our lack of knowledge, and the so-called unknown unknowns. After discussing the limits of how classical probabilistic frameworks handle these uncertainties, we put forward a unified probabilistic framework which unambiguously defines uncertainty of different kinds, and it allows scientific validation of the hazard model against independent observations.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Cited articles
Albert, P. G., Giaccio, B., Isaia, R., Costa, A., Niespolo, E., Nomade, S.,
Pereira, A., Renne, P. R., Hinchliffe, A., Mark, D. F., Brown, R. J., and
Smith, V. C.: Evidence for a large-magnitude eruption from Campi Flegrei
caldera (Italy) at 29 ka, Geology, 47, 595–599, https://doi.org/10.1130/G45805.1,
2019. a
Alderton, D. and Elias, S. A.: Encyclopedia of Geology (Second edition),
Academic Press, Elsevier, ISBN 978-0-323-85447-4, 2020. a
Andronico, D. and Cioni, R.: Contrasting styles of Mount Vesuvius activity in
the period between the Avellino and Pompeii Plinian eruptions, and some
implications for assessment of future hazards, B. Volcanol., 64,
372–391, https://doi.org/doi.org/10.1007/s00445-002-0215-4, 2002. a
Arrighi, S., Principe, C., and Rosi, M.: Violent strombolian and subplinian
eruptions at Vesuvius during post-1631 activity, B. Volcanol., 63,
126–150, https://doi.org/10.1007/s004450100130, 2001. a, b
Aspinall, W., Auker, M., Hincks, T., Mahony, S., Pooley, J., Nadim, F., Syre,
E., Sparks, R., and Bank, T.: Volcano hazard and exposure in Track II
countries and risk mitigation measures – GFDRR volcano Risk Study, 309, The
world bank, NGI Report 20100806, 309 pp., 2011. a
Auker, M. R., Sparks, S., Jenkins, S., Aspinall, W., Brown, S. K., Deligne,
N. I., Jolly, G., Loughlin, S., Marzocchi, W., Newhall, C., and Palma, J. L.:
Global volcanic hazard and risk, chap. Development of a new global Volcanic
Hazard Index (VHI), Cambridge University Press, https://doi.org/10.1017/CBO9781316273, 349–357, 2015. a
Barberi, F., Innocenti, F., Lirer, L., Munno, R., Pescatore, T., and
Santacroce, R.: The campanian ignimbrite: a major prehistoric eruption in the
Neapolitan area, B. Volcanol., 10–31, https://doi.org/10.1007/BF02597680, 1978. a
Barberi, F., Coltelli, M., Frullani, A., Rosi, M., and Almeida, E.: Chronology
ad dispersal characteristics of recently (last 5000 years) erupted tephra of
Cotopaxi (Ecuador): implications for long-term eruptive forecasting, J. Volcanol. Geoth. Res., 69, 217–239,
https://doi.org/10.1016/0377-0273(95)00017-8, 1995. a
Bazzurro, P. and Cornell, C. A.: Disaggregation of seismic hazard, B. Seismol. Soc. Am., 89, 501–520,
https://doi.org/10.1785/BSSA0890020501, 1999. a, b, c
Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J. M., and Galindo, I.: Long-term volcanic hazard assessment on El Hierro (Canary Islands), Nat. Hazards Earth Syst. Sci., 14, 1853–1870, https://doi.org/10.5194/nhess-14-1853-2014, 2014. a
Bevilacqua, A., Flandoli, F., Neri, A., Isaia, R., and Vitale, S.: Temporal
models for the episodic volcanism of Campi Flegrei caldera (Italy) with
uncertainty quantification, J. Geophys. Res.-Solid Earth,
121, 7821–7845, https://doi.org/10.1002/2016JB013171, 2016. a
Biass, S., Scaini, C., Bonadonna, C., Folch, A., Smith, K., and Höskuldsson, A.: A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes – Part 1: Hazard assessment, Nat. Hazards Earth Syst. Sci., 14, 2265–2287, https://doi.org/10.5194/nhess-14-2265-2014, 2014. a
Blong, R.: Volcanic Hazards: A Sourcebok on the effects of eruptions, Elsevier, 76,
113–115, https://doi.org/10.2307/214795, 1984. a, b
Bonadonna, C., Biass, S., Menoni, S., and Gregg, C.: Assessment of risk
associated with tephra-related hazards, Elsevier (Hazards and Disasters), https://doi.org/10.1016/B978-0-12-818082-2.00008-1, 329–378,
2021. a
Casadevall, T. J.: The 1989-1990 eruption of Redoubt Volcano, Alaska: impacts
on aircrafts operations, J. Volcanol. Geoth. Res., 62,
301–316, https://doi.org/10.1016/0377-0273(94)90038-8, 1994. a
Cioni, R., Santacroce, R., and Sbrana, A.: Pyroclastic deposit as a guide for
reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera,
B. Volcanol., 61, 207–222, https://doi.org/10.1007/s004450050272, 1999. a
Cioni, R., Longo, A., Macedonio, G., Santacroce, R., Sbrana, A., Sulpizio, R.,
and Andronico, D.: Assessing pyroclastic fall hazard through field data and
numerical simulations: Example from Vesuvius,
Chem. Phys. Miner. Rock/Volcanol., 108, 108.B2, https://doi.org/10.1029/2001JB000642, 2003. a, b
Cioni, R., Bertagnini, A., Santacroce, R., and Andronico, D.: Explosive
activity and eruption scenarios a Somma-Vesuvius (Italy): Towards a new
classification scheme, J. Volcanol. Geoth. Res., 178,
33–346, https://doi.org/10.1016/j.jvolgeores.2008.04.024, 2008. a
Civetta, L., Gallo, G., and Orsi, G.: Sr- and Nd-isotope and
trace-element constraints on the chemical evolution of the magmatic system of
Ischia (Italy) in the last 55 ka, J. Volcanol. Geoth.
Res., 46, 213–230, https://doi.org/10.1016/0377-0273(91)90084-D, 1991. a
Cole, P. D. and Scarpati, P.: The 1944 eruption of Vesuvius, Italy: combining
contemporary accounts and field studies for a new volcanological
reconstruction, Geol. Mag., 147, 391–415,
https://doi.org/10.1017/S0016756809990495, 2010. a, b
Constantinescu, R., Robertson, R., Lindsay, J. M., Tonini, R., Sandri, L.,
Rouwet, D., Smith, P., and Stewart, R.: Application of the probabilistic
model BET_UNREST during a volcanic unrest simulation exercise in Dominica,
Lesser Antilles, Geochem. Geophys. Geosyst., 17, 4438–4456,
2016. a
Cornell, C. A.: Engineering seismic risk analysis, B.
Seismol. Soc. Am., 58, 1583–1606, 1968. a
Cornell, W., Carey, S., and Sigurdsson, H.: Computer simulation of transport
and deposition of the campanian Y-5 ash, J. Volcanol.
Geoth. Res., 17, 89–109, https://doi.org/10.1016/0377-0273(83)90063-X, 1983. a
Costa, A., Pioli, L., and Bonadonna, C.: Assessing tephra total grain-size
distribution: Insights from field data analysis, Earth Planet. Sci.
Lett., 443, 90–107, https://doi.org/10.1016/j.epsl.2016.02.040, 2016. a
Costa, A., Di Vito, M. A., Ricciardi, G. P., Smith, V. C., and Talamo, P.: The
long and interwined record of humans and the Campi Flegrei volcano (Italy),
B. Volcanol., 84, 1–27, 2022. a
de Vita, S., Orsi, G., Civetta, L., Caradente, A., D'Antonio, M., Deino, A. L.,
di Cesare, T., di Vito, M. A., Fisher, R. V., Isaia, R., Marotta, E., Necco,
A., Ort, M. H., Pappalardo, L., Piochi, M., and Southon, J. R.: The
Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei
caldera (Italy), J. Volcanol. Geoth. Res., 91,
269–301, https://doi.org/10.1016/S0377-0273(99)00039-6, 1999. a, b
de Vita, S., Sansiviero, F., Orsi, G., Marotta, E., and Piochi, M.:
Volcanological and structural evolution of the Ischia resurgent caldera
(Italy) over the past 10ky, Geol. Soc. Am., 464, 193–239, 2010. a
De Vivo, B., G., R., and Gans, P.: New constraints on the pyroclastic eruptive
history of the Campanian volcanic plain (Italy), Miner. Petrol.,
73, 47–65, 2001. a
Deino, A. L., Orsi, G., de Vita, S., and Piochi, M.: The age of Neapolitan
Yellow Tuff caldera-forming eruption (Campi Flegrei caldera – Italy) asessed
by 40Ar/39Ar dating method, J. Volcanol. Geoth.
Res., 133, 157–170, https://doi.org/10.1016/S0377-0273(03)00396-2, 2004. a
Di Vito, M. A., Isaia, R., Orsi, G., Southon, J. R., de Vita, S., D'Antonio,
M., Pappalardo, L., and Piochi, M.: Volcanism and deformation since 12,000
years at the Campi Flegrei caldera (Italy), J. Volcanol.
Geoth. Res., 91, 221–246, https://doi.org/10.1016/S0377-0273(99)00037-2, 1999. a
Di Vito, M. A., Arienzo, I., Braia, G., Civetta, L., D'Antonio, M., Di Renzo,
V., and Orsi, G.: The Averno 2 fissure eruption: a recent small-size
expolisve event at the Campi Flegrei Caldera (Italy), B.
Volcanol., 73, 295–320, 2011. a
Durant, A., Rose, W., Sarna-Wojcicki, A., Carey, S., and Volentik, A.:
Hydrometeor-enhanched tephra sedimentation: Constraints from the 18 May 1980
eruption of Mount St. Helens, J. Geophys. Res.-Solid Earth,
114, B3, https://doi.org/10.1029/2008JB005756, 2009. a
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, 2020. a, b
Freire, S., Florczyk, A. J., Pesaresi, M., and Sliuraz, R.: An improved global
analysis of population distribution in proximity to active volcanoes,
1975–2015, ISPRS Int. J. Geo-Info., 8, 1–35,
https://doi.org/10.3390/ijgi8080341, 2019. a
Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu,
L., Field, E., Fujiwara, H., Luco, N., Meletti, C., and Petersen, M.:
Probabilistic Seismic Hazard Analysis at Regional and National Scales: State
of the Art and Future Challenges, Rev. Geophys., 58, e2019RG000653,
https://doi.org/10.1029/2019RG000653, 2020. a, b, c
Giaccio, B., Hajdas, I., Isaia, R., Deino, A., and Nomade, S.: High-precision
14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5)
reconcilies the time scales of climatic-cultural processes at 40ka,
Sci. Rep., 7, 1–10, 2017. a
Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G.,
Geist, E. L., Glimsdal, S., Gonzales, F. I., Griffin, J., Harbitz, C. B.,
LeVeque, R. J., Lorito, S., Lohvolt, F., Omira, R., Mueller, C., Paris,
R., Parsons, T., Polet, J., Power, W., Selva, J., Sorensen, M. B., and
Thio, H. K.: Probabilistic tsunami hazard analysis: multiple sources and
global application, Rev. Geophys., 55, 1158–1198, 2017. a, b, c
Grunthal, G. and Wahlstrom, R.: New generation of probabilistic seismic hazard
assessment for the area Cologne/Aachen considering the uncertainties of the
input data, Nat. Hazards, 38, 159–176, 2006. a
Hersbach, H., Bell, B., Berrisford, B., Biavati, P., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,
D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.: ERA5 hourly data on
pressure levels from 1959 to present, 1999–2049, https://doi.org/10.24381/cds.bd0915c6, 2018. a
Jenkins, S. F., Biass, S., Williams, G. T., Hayes, J. L., Tennant, E., Yang, Q., Burgos, V., Meredith, E. S., Lerner, G. A., Syarifuddin, M., and Verolino, A.: Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards, Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, 2022. a
Lirer, L. and Munno, R.: Il tufo giallo napoletano (Campi Flegrei), Period
Mineral, 44, 103–118, 1975. a
Loughlin, S. C., Sparks, S., Brown, S. K., Jenkins, S. F., and Vye-Brown, C. (Eds.): Global volcanic hazard and risk, Cambridge University Press, 389 pp., https://doi.org/10.1017/CBO9781316276273, 2015. a
Macedonio, G., Costa, A., and Folch, A.: Ash fallout scenarios at Vesuvius:
Numerical simulations for hazard assessment, J. Volcanol.
Geoth. Res., 178, 366–377, https://doi.org/10.1016/j.jvolgeores.2008.08.014,
2008. a, b, c, d
Martinéz Montesinos, B., Titos Luzón, M., Sandri, L., Oleksandr, R.,
Cheptov, A., Macedonio, G., Folch, A., Barsotti, S., Selva, J., and Costa,
A.: On the feasibility and usefulness of high-performance computing in
probabilistic volcanic hazard assessment: An application to tephra hazard
from Campi Flegrei, Frontiers in Earth Sciences, 1–26, https://doi.org/10.3389/feart.2022.941789, 2022. a, b, c, d, e, f, g, h, i, j
Marzocchi, W. and Bebbington, M. S.: Probabilistic eruption forecasting at
short and long time scales, B. Volcanol., 74, 1777–1805,
https://doi.org/10.1007/s00445-012-0633-x, 2012. a
Marzocchi, W., Sandri, L., Gasparini, P., Newhall, C., and Boschi, E.:
Quantifying probabilities of volcanic events: The example of volcanic hazard
at Mount Vesuvius, J. Geophys. Res.-Solid Earth, 109, B11,
https://doi.org/10.1029/2004JB003155, 2004. a, b
Marzocchi, W., Sandri, L., and Selva, J.: BET_EF: a probabilistic tool for
long- and short-term erution forecasting, B. Volcanol., 70,
623–632, https://doi.org/10.1007/s00445-007-0157-y, 2007. a, b
Marzocchi, W., Sandri, L., and Selva, J.: BET_VH: a probabilistic tool for
long-term volcanic hazard assessment, B. Volcanol., 72, 705–716,
https://doi.org/10.1007/s00445-010-0357-8, 2010. a, b, c
Marzocchi, W., Newhall, C., and Gordon, W.: The scientific management of
volcanic crises, J. Volcanol. Geoth. Res., 247,
181–189, https://doi.org/10.1016/j.jvolgeores.2012.08.016, 2012. a
Marzocchi, W., Selva, J., Costa, A., Sandrri, a., Tonini, R., and Macedonio,
G.: Global volcanic hazard and risk, chap. Tephra fall hazard for the
Neapolitan area, Cambridge University Press, 139–246, https://doi.org/10.1017/CBO9781316273, 2015. a
Marzocchi, W., Selva, J., and Jordan, T. H.: A unified probabilistic framework for volcanic hazard and eruption forecasting, Nat. Hazards Earth Syst. Sci., 21, 3509–3517, https://doi.org/10.5194/nhess-21-3509-2021, 2021. a, b, c
Massaro, S., Rossi, E., Sandri, L., Bondadonna, C., Selva, j., Moretti, R., and
Komorowski, J.-C.: Assessing hazard and potential impact associated with
volcanic ballistic projectiles: The example of la Soufriére de Guadeloupe
volcano (Lesser Antilles), J. Volcanol. Geoth. Res.,
423, 107453, https://doi.org/10.1016/j.jvolgeores.2021.107453, 2022. a
Mastin, L. G., Guffanti, M., Servranckx, R., Webley, P. W., Barsotti, S., Dean,
K. G., Durant, A. J., Ewert, J. W., Neri, A., Rose, W. I., Schneider, D. J.,
Siebert, Lee andStunder, B. J., Swanson, G. L., Tupper, A. C., Volentik, A.
C. M., and Waythomas, C. F.: A multidisciplinary effort to assign realistic
source parameters to models of volcanic ash-cloud transport and dispersion
during eruptions, J. Volcanol. Geoth. Res., 186,
10–21, https://doi.org/10.1016/j.jvolgeores.2009.01.008, 2009. a
Mele, D., Dellino, P., Sulpizio, R., and Braia, G.: A systematic investigation
on the aerodynamics of ash particles, J. Volcanol. Geoth.
Res., 203, 1–11, 2011. a
Mele, D., Costa, A., Dellino, P., Supizio, R., Dioguardi, F., Isaia, R., and
Macedonio, G.: Total grain size distribution of components of fallout
deposits and implications on magma fragmentation mechanisms: examples from
Campi Flegrei caldera (Italy), B. Volcanol., 82, 1–12,
https://doi.org/10.1007/s00445-020-1368-8, 2020. a, b, c, d, e, f, g
Menoni, S., Molinari, D., Parker, D., Ballio, F., and Tapsell, S.: Assessing
multifaceted vulnerability and resilience in order to design risk-mitigation,
Nat. Hazards, 64, 2057–2082, https://doi.org/10.1007/s11069-012-0134-4, 2012. a
Miller, T. P. and Casadevall, T. J.: Encyclopedia of Volcanoes, chap. Volcanic ash
hazards to aviation, Elsevier, ISBN 9780080547985, 2000. a
Mingari, L., Folch, A., Prata, A. T., Pardini, F., Macedonio, G., and Costa, A.: Data assimilation of volcanic aerosol observations using FALL3D+PDAF, Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, 2022. a
Newhall, C. and Hobblit, R.: Constructing event trees for volcanic crises,
B. Volcanol., 64, 3–20, https://doi.org/10.1007/s004450100173, 2002. a
OpenStreetMap contributors: Planet dump retrieved from
https://planet.osm.org (last access: 16 June 2023), https://www.openstreetmap.org (last access: 16 June 2023), 2022. a
Orsi, G., Gallo, G., and Zanchi, A.: Simple-shearing block resurgence in
caldera depressions. A model from Pantelleria and Ischia, J.
Volcanol. Geoth. Res., 47, 1–11,
https://doi.org/10.1016/0377-0273(91)90097-J, 1991. a
Orsi, G., D'Antonio, M., de Vita, S., and Gallo, G.: The Neapolitan Yellow
Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics,
magma withdrawal and caldera collapse, J. Volcanol. Geoth.
Res., 53, 275–287, https://doi.org/10.1016/0377-0273(92)90086-S, 1992. a
Orsi, G., De Vita, S., and Di Vito, M.: The restless, resurgent Campi Flegrei
nested caldera (Italy): constraints on its evolution and configuration,
J. Volcanol. Geoth. Res., 74, 179–214,
https://doi.org/10.1016/S0377-0273(96)00063-7, 1996. a, b, c, d
Orsi, G., Di Vito, M. A., and Isaia, R.: Volcanic hazard assessment at the
restless Campi Flegrei caldera, B. Volcanol., 66, 514–530,
https://doi.org/10.1007/s00445-003-0336-4, 2004. a, b, c
Orsi, G., Di Vito, M. A., Selva, J., and Marzocchi, W.: Long-term forecast of
eruption style and size at Campi Flegrei caldera (Italy), Earth Planet.
Sci. Lett., 287, 265–276, https://doi.org/10.1016/j.epsl.2009.08.013, 2009. a, b, c, d
Pareschi, M. T., Cavarra, L., Favalli, M., Giannini, F., and Meriggi, A.:
Natural Hazards, chap. GIS and Volcani Risk, Springer, 361–379, https://doi.org/10.1007/978-94-017-2386-2_16, 2000. a
Pfeiffer, T., Costa, A., and Macedonio, G.: A model for the numerical
simulation of tephra fall deposit, J. Volcanol. Geoth.
Res., 140, 273–294, https://doi.org/10.1016/j.jvolgeores.2004.09.001, 2005. a, b
Poret, M., Di Donato, M., Costa, A., Sulpizio, R., Mele, D., and Lucchi, F.:
Characterizing magma fragmentation and its relationship with eruptive tyles
of Somma-Vesuvius Volcano (Naples, Italy), J. Volcanol.
Geoth. Res., 393, 106683, https://doi.org/10.1016/j.jvolgeores.2019.106683, 2020. a
Primerano, P., Giordano, G., Costa, A., de Vita, S., and Di Vito, M. A.:
Reconstructing fallout features and dispersal of Cretaio Tephra (Ischia
Island, Italy) trough field data analysis and numerical modellinng:
Implications for hazard assessment, J. Volcanol. Geoth.
Res., 415, 107248, https://doi.org/10.1016/j.jvolgeores.2021.107248, 2021. a, b, c, d, e, f, g, h
Rampino, M. and Self, S.: Encyclopedia of Volcanoes, chap. Volcanism and biotic
extinctions, Elsevier, Hardback ISBN 9780123859389, eBook ISBN 9780123859396, 2000. a
Rosi, M., Principe, C., and Vecci, R.: The 1631 Vesuvius eruption. A
reconstruction based on historical and stratigraphical data, J.
Volcanol. Geoth. Res., 58, 151–182,
https://doi.org/10.1016/0377-0273(93)90106-2, 1993. a, b
Sandri, Laura ad Jolly, G., Lindsay, J., Howe, T., and Marzocchi, W.: Combining
long- and short-term probabilistic volcacnic hazard assessment with
cost-benefit analysis to sipport decision making in a volcanic crisis from
the Auckland Volcanic Field, New Zealand, B. Volcanol., 74,
7005–723, https://doi.org/10.1007/s00445-011-0556-y, 2012. a
Sandri, L., Tonini, R., Rouwet, D., Constantinescu, R., Mendoza-Rosas, A. T.,
Andrade, D., and Bernard, B.: Volanic Unrest, Chap. The need to quantify
hazard related to Non-magmatic unrest: from BET_EF to BET_UNREST, Volcanic Unrest, 63, https://doi.org/10.1007/978-3-319-58412-6, 2017. a
Sandri, L., Thouret, J.-C., Constantinescu, R., Biass, S., and Tonini, R.:
Long-term multi-hazard assessment for El Misti volcano (Perù), B.
Volcanol., 76, 1–26, https://doi.org/10.1007/s00445-013-0771-9, 2014. a
Sandri, L., Tierz, P., Costa, A., and Marzocchi, W.: Probabilistic hazard from
pyroclastic density currents in the Neapolitan area (Southern Italy), J. Geophys. Res.-Solid Earth, 123, 3474–3500, https://doi.org/10.1002/2017JB014890, 2018. a
Santacroce, R.: Somma-Vesuvius, Quaderni de la Ricerca Scientifica, 235 pp., ISSN 0556-9664, 1987. a
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, Roberto
ad Zanchetta, G., Donahue, D. J., and Joron, J. L.: Age and whole rock-glass
compositions of proximal pyroclastic from the major explosive eruptions of
Somma-Vesuvius: a review as a tool for distal tephrostratigraphy, J.
Volcanol. Geoth. Res., 177, 1–18,
https://doi.org/10.1016/j.jvolgeores.2008.06.009, 2008. a, b, c
Sbrana, A. and Toccaceli, R.: Carta Geologica della Regione Campania – Foglio
464 – Isola di Ischia, 216 pp. + 1 carta: 10.000, 2011. a
Sbrana, A., Marianelli, P., and Pasquini, G.: Volcanology of Ischia (Italy),
J. Maps, 14, 494–503, https://doi.org/10.1080/17445647.2018.1498811, 2018. a
Scandone, R., Bellucci, F., Lirer, L., and Rolandi, G.: The structure of the
Campanian Plain and the actiity of the Neapolitan volacanoes (Italy), J. Vocanol. Geoth. Res., 48, 1–31,
https://doi.org/10.1016/0377-0273(91)90030-4, 1991. a
Selva, J., Costa, A., Marzocchi, W., and Sandri, L.: BET_VH: exploring the
influence f natural uncertainties on long-term hazard from tephra fallout at
Campi Flegrei (Italy), B. Volcanol., 72, 717–733,
https://doi.org/10.1007/s00445-010-0358-7, 2010. a, b, c, d
Selva, J., Orsi, G., Di Vito, M. A., Marzocchi, W., and Sandri, L.: Probability
hazard map for future vent opening at the Campi Flegrei caldera, Italy,
B. Volcanol., 74, 497–510, https://doi.org/10.1007/s00445-011-0528-2, 2012. a, b, c, d
Selva, J., Costa, A., Sandri, Laura Macedonio, G., and Marzocchi, W.:
Probabilistic short-term volcaninc hazard in phases of unrest: A case study
for tephra fallout, J. Geophys. Res.-Solid Earth, 119,
8805–8826, https://doi.org/10.1002/2014JB011252, 2014. a, b, c
Selva, J., Tonini, R., Molinari, I., Tiberti, M. M., Romano, F., Grezio, A.,
Melini, D., Pianatesi, A., Basili, R., and Lorito, S.: Quantification of
source uncerainties in Seismic Probabilistc Tsunami Haard Analysis (SPTHA),
Geophys. J. Int., 205, 1780–1803, https://doi.org/10.1093/gji/ggw107,
2016. a
Selva, J., Acocella, V., Bisson, M., Caliro, S., Costa, A., Della Seta, M.,
De Martino, P., de Vita, S., Federico, C., Giordano, G., Martino, S., and
Cardaci, C.: ultiple natural hazards at volcanic islands: a review for the
Ischia volcano (Italy), J. Appl. Volcanol., 8, 1–43,
https://doi.org/10.1186/s13617-019-0086-4, 2019. a, b, c, d, e, f
Selva, J., Sandri, L., Taroni, M., Sulpizio, R., Tierz, P., and Costa, A.: A
simple two-state model interprets temporal modulations in eruptive activity
and enhances multivolcano hazard quantification, Sci. Adv., 8, 8.44, eabq4415,
https://doi.org/10.1126/sciadv.abq4415, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Sevink, J., van Bergen, M. J., vn der Plicht, J., Feiken, H., Anastasia, C.,
and Huizinga, A.: Robust date for the Bronza Age Avellino eruption
(Somma-Vesuvius): 3945 ± 10 calBP (1995 ± 10 calBC), Quaternary Sci.
Rev., 30, 1035–1046, https://doi.org/10.1016/j.quascirev.2011.02.001, 2011. a
Sigurdsson, H. and Carey, S.: The Natural History of Pompeii, chap. The
Eruption of Vesuvius in A.D: 79, 332–387, Oxford University Press, 37-64. ISBN 0521800544, 9780521800549, 1985. a
Small, C. and Naumann, T.: The global distribution of human population and
recent volcanism, Global Environ. Change Part B,
3, 93–109, https://doi.org/10.3763/ehaz.2001.0309, 2001. a
Spence, R. J. S., Kelman, I., Baxter, P. J., Zuccaro, G., and Petrazzuoli, S.: Residential building and occupant vulnerability to tephra fall, Nat. Hazards Earth Syst. Sci., 5, 477–494, https://doi.org/10.5194/nhess-5-477-2005, 2005. a, b, c
Sulpizio, R., Mele, D., Dellino, P., and La Volpe, L.: A complex,
Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolithic
magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy, B.
Volcanol., 67, 743–767, https://doi.org/10.1007/s00445-005-0414-x, 2005. a, b
Sulpizio, R., Zanchetta, G., Demi, F., Di Vito, M. A., Pareschi, M. T., and
Santacroce, R.: Neogene-Quaternary continental marin volcanism: A perspective
from México, chap. The Holocene syneruptive volcaniclastic debris flows in
the Vesuvian area: Geological data as a guide for hazard assessment, The
Geol. Soc. Am.,
402, 203–221, https://doi.org/10.1130/2006.2402(10), 2006. a
Sulpizio, R., Bonasia, R., Dellino, P., Mele, D., Di Vito, M. A., and La Volpe,
L.: The Pomici di Avellino ruption of Somma-Vesuvius (3.9 ka BP). Part II:
sedimentology and physical volcanonology of pyroclastic density current
deposits, B. Volcanol., 72, 559–577,
https://doi.org/10.1007/s00445-009-0340-4, 2010. a, b, c
Sulpizio, R., Folch, A., Costa, A., Scaini, C., and Dellino, P.: Hazard
assessment of far-range volcanic ash dispersal from a violent Strombolian
eruption at Somma-Vesuvius volcano, Naples, Itay: implications on civil
aviation, B. Volcanol., 74, 2205–2218,
https://doi.org/10.1007/s00445-012-0656-3, 2012. a, b, c, d
Sulpizio, R., Zanchetta, G., Caron, B., Dellino, P., Mele, D., Giaccio, B.,
Insinga, D., Paterne, M., Siani, G., Costa, A., Macedonio, G., and
Santacroce, R.: Volcanic ash hazard in the Central Mediterranean assessed
from geological data, B. Volcanol., 76, 1–8,
https://doi.org/10.1007/s00445-014-0866-y, 2014.
a
Suzuki, T.: A theoretical model for dispersion of tephra, Arc Volcanism:
Physics and Tectonics, 113, 95–113, 1983. a
Swords-Daniels, V.: Living with Volcanic Risk: The consequences of, and
Response to, ongoing volcanic ashfall from a social infrastructures systems
perspective on Montserrat, New Zealand J. Psychol., 40, 131, 2011. a
Tesche, M., Glantz, P., Johansson, C., Norman, M., Hiebsch, A., Ansmann, A.,
Althausen, A., Engelmann, R., and Seifert, P.: Volcanic ash over Scandinavia
originating from the Grímsvo otn eruptions in May 2011, J.
Geophys. Res.-Atmos., 117, D9, https://doi.org/10.1029/2011JD017090, 2012. a
Thompson, M. A. and Lindsay, Jan M. an Gaillard, J.: The influence of
probabilistic volcanic hazard map properties on hazard communication, J. Appl. Volcanol., 4, 1–24, https://doi.org/10.1186/s13617-015-0023-0, 2015. a
Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G., and Costa, A.: Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic, Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, 2022. a
Tonini, R., Sandri, L., and Thompson, M. A.: PyBethVH: A Python tool for
probabilistic volcanic hazard assessment and for Generation of Bayesian
hazard curves and maps, Comput. Geosci., 79, 38–46,
https://doi.org/10.1016/j.cageo.2015.02.017, 2015. a, b
Vezzoli, L. and Barberi, F.: Progetto finalizzato geodinamica: monografie
finali. X: Island of Ischia, Quaderni de la RIcerca Scientifica,
114, 1–123, 1988. a
Wilson, G., Wilson, T. M., Deligne, N. I., and Cole, J. W.: Volcanic hazard
impacts to critical infrastructures: A review, J. Volcanol.
Geoth. Res., 286, 148–182, https://doi.org/10.1016/j.jvolgeores.2014.08.030,
2014. a
Wilson, T. M., Stewart, C., Sword-Daniels, V., Leonard, G. S., Johnston, D. M.,
Cole, J. W., Wardman, J., Wilson, G., and Bernard, S. T.: Volcanic ash
impacts on critical infrastructures, Phys. Chem. Earth,
Parts A/B/C, 45–46, 5–23, https://doi.org/10.1016/j.pce.2011.06.006, 2012. a, b, c
Zuccaro, G., Leone, M. F., Del Cogliano, D., and Sgroi, A.: Economic impact of
explosive volcanic eruptions: a simulation-based assessment model applied to
Campania region volcanoes, J. Volcanol. Geoth. Res.,
226, 1–15, 2013. a
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in...
Altmetrics
Final-revised paper
Preprint