Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-205-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-205-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)
Raphael Knevels
CORRESPONDING AUTHOR
Department of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany
Helene Petschko
Department of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany
Herwig Proske
Remote Sensing and Geoinformation Department, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, 8010, Austria
Philip Leopold
Center for Low-Emission Transport, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
Aditya N. Mishra
Wegener Center for Climate and Global Change, Karl-Franzens-Universität Graz, Graz, 8010, Austria
Douglas Maraun
Wegener Center for Climate and Global Change, Karl-Franzens-Universität Graz, Graz, 8010, Austria
Alexander Brenning
Department of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany
Related authors
No articles found.
Armin Schaffer, Tobias Lichtenegger, Albert Ossó, and Douglas Maraun
EGUsphere, https://doi.org/10.5194/egusphere-2025-4235, https://doi.org/10.5194/egusphere-2025-4235, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme rainfall in Europe is often linked to weather fronts. To understand how these events may change in the future, we first need to evaluate how well climate models represent them. We found that all models show substantial biases, particularly for cold fronts, while higher-resolution models improve their simulation. Warm fronts also show biases, though they are generally better represented than cold fronts. This highlights the importance of high-resolution models for reliable projections.
Daniel Viviroli, Martin Jury, Maria Staudinger, Martina Kauzlaric, Heimo Truhez, and Douglas Maraun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1920, https://doi.org/10.5194/egusphere-2025-1920, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Estimating the frequency and magnitude of floods is challenging due to the limited length of streamflow records. Here, we explore whether an extensive archive of meteorological forecasts run over past dates can assist in this context. After processing and concatenating these data for use as input to a hydrological model, we derive flood statistics from simulated streamflow. Results are promising for the larger catchments studied, providing a valuable complementary perspective on rare floods.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Yi Yang, Douglas Maraun, Albert Ossó, and Jianping Tang
Nat. Hazards Earth Syst. Sci., 23, 693–709, https://doi.org/10.5194/nhess-23-693-2023, https://doi.org/10.5194/nhess-23-693-2023, 2023
Short summary
Short summary
This study quantifies the spatiotemporal variation and characteristics of compound long-duration dry and hot events in China over the 1961–2014 period. The results show that over the past few decades, there has been a substantial increase in the frequency of these compound events across most parts of China, which is dominated by rising temperatures. We detect a strong increase in the spatially contiguous areas experiencing concurrent dry and hot conditions.
Zhihao Wang, Jason Goetz, and Alexander Brenning
Geosci. Model Dev., 15, 8765–8784, https://doi.org/10.5194/gmd-15-8765-2022, https://doi.org/10.5194/gmd-15-8765-2022, 2022
Short summary
Short summary
A lack of inventory data can be a limiting factor in developing landslide predictive models, which are crucial for supporting hazard policy and decision-making. We show how case-based reasoning and domain adaptation (transfer-learning techniques) can effectively retrieve similar landslide modeling situations for prediction in new data-scarce areas. Using cases in Italy, Austria, and Ecuador, our findings support the application of transfer learning for areas that require rapid model development.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Marco Hofmann, Claudia Volosciuk, Martin Dubrovský, Douglas Maraun, and Hans R. Schultz
Earth Syst. Dynam., 13, 911–934, https://doi.org/10.5194/esd-13-911-2022, https://doi.org/10.5194/esd-13-911-2022, 2022
Short summary
Short summary
We modelled water budget developments of viticultural growing regions on the spatial scale of individual vineyard plots with respect to landscape features like the available water capacity of the soils, slope, and aspect of the sites. We used an ensemble of climate simulations and focused on the occurrence of drought stress. The results show a high bandwidth of projected changes where the risk of potential drought stress becomes more apparent in steep-slope regions.
Jason Goetz, Robin Kohrs, Eric Parra Hormazábal, Manuel Bustos Morales, María Belén Araneda Riquelme, Cristián Henríquez, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 21, 2543–2562, https://doi.org/10.5194/nhess-21-2543-2021, https://doi.org/10.5194/nhess-21-2543-2021, 2021
Short summary
Short summary
Debris flows are fast-moving landslides that can cause incredible destruction to lives and property. Using the Andes of Santiago as an example, we developed tools to finetune and validate models predicting likely runout paths over large regions. We anticipate that our automated approach that links the open-source R software with SAGA-GIS will make debris-flow runout simulation more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
Cited articles
Amt der Steiermärkischen Landesregierung: Regionale Bevölkerungsprognose, Steiermark – Bundesland, Bezirke und Gemeindegruppen, Steirische Statistiken, Heft 3, Abteilung 17 Landes- und Regionalentwicklung, Referat Statistik und Geoinformation, Graz, Austria,
https://www.landesentwicklung.steiermark.at/cms/dokumente/12658765_141979497/b6924e0e/Heft%203-2020%20Bev%C3%B6lkerungsprognose%20aktuell.pdf,
(last access: 20 May 2022), 2020. a
Bastola, S., Murphy, C., and Sweeney, J.: The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments, Adv. Water Resour., 34, 562–576, https://doi.org/10.1016/j.advwatres.2011.01.008, 2011. a, b
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. Roy. Meteorol. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008 (data available at: https://www.ecmwf.int/en/forecasts/datasets, last access: 20 May 2022). a, b
BFW: Interim evaluation of the Austrian Forest Inventory 2016/18 – Styria [Zwischenauswertung der ÖWI 2016/18 – Steiermark], Tech. rep., Austrian Reseach Centre for Forests, Vienna, Austria, https://www.bfw.gv.at/wp-content/uploads/Steiermark_OEWI_16_18.pdf (last access: 20 May 2022), 2019. a
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018. a
Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province, Nat. Hazards Earth Syst. Sci., 15, 45–57, https://doi.org/10.5194/nhess-15-45-2015, 2015. a
Brock, J., Schratz, P., Petschko, H., Muenchow, J., Micu, M., and Brenning, A.: The Performance of Landslide Susceptibility Models Critically Depends on the Quality of Digital Elevations Models, Geomat. Nat. Haz. Risk, 11, 1075–1092, https://doi.org/10.1080/19475705.2020.1776403, 2020. a
Chen, D., Rojas, M., Samset, B. H., Cobb, K., Diongue-Niang, A., Edwards, P., Emori, S., Faria, S. H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S. K., Plattner, G.-K., and Tréguier, A. M.: Framing, context, and methods, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge University Press, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter01.pdf (last access: 20 May 2022), 2021. a
Chen, F., Manning, K. W., LeMone, M. A., Trier, S. B., Alfieri, J. G., Roberts, R., Tewari, M., Niyogi, D., Horst, T. W., Oncley, S. P., Basara, J. B., and Blanken, P. D.: Description and Evaluation of the Characteristics of the NCAR High-Resolution Land Data Assimilation System, J. Appl. Meteorol. Clim., 46, 694–713, https://doi.org/10.1175/JAM2463.1, 2007. a
Crozier, M. J.: Deciphering the effect of climate change on landslide activity: A review, Geomorphology, 124, 260–267, https://doi.org/10.1016/j.geomorph.2010.04.009, 2010. a
Cruden, D. M. and Varnes, D. J.: Landslide Types and Processes, in: Landslides investigation and mitigation, edited by: Turner, A. and Schuster, R., Transportation research board, Special Report 247, 36–75, 1996. a
Debele, S. E., Kumar, P., Sahani, J., Marti-Cardona, B., Mickovski, S. B., Leo, L. S., Porcù, F., Bertini, F., Montesi, D., Vojinovic, Z., and Di Sabatino, S.: Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases, Environ. Res., 179,
108799, https://doi.org/10.1016/j.envres.2019.108799, 2019. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim Reanalysis: Configuration and Performance of the Data
Assimilation System, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Doblas-Reyes, F. J., Sörensson, A. A., Almazroui, M., Dosio, A., Gutowski, W. J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W.-T., Lamptey, B. L., Maraun, D., Stephenson, T. S., Takayabu, I., Terray, L., Turner, A., and Zuo,
Z.: Linking global to regional climate change, in: Climate Change 2021:
The Physical Science Basis. Contribution of Working Group I
to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L.,
Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B.,
Cambridge University Press, 2021. a, b
EPA, U.: Guidelines for Human Exposure Assessment, EPA/100/B-19/001, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, DC, USA,
https://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=429103 (last access: 20 May 2022), 2019. a
Fahrmeir, L., Kneib, T., Lang, S., and Marx, B.: Regression: Models, Methods and Applications, Springer-Verlag, Berlin Heidelberg, https://doi.org/10.1007/978-3-642-34333-9, 2013. a
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W. Z.: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning, Eng. Geol., 102, 85–98, https://doi.org/10.1016/j.enggeo.2008.03.022, 2008. a
Felsberg, A., Poesen, J., Bechtold, M., Vanmaercke, M., and De Lannoy, G. J. M.: Estimating global landslide susceptibility and its uncertainty through ensemble modeling, Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022, 2022. a
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018. a
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016. a, b
Gariano, S. L. and Guzzetti, F.: 5.32 – Mass-Movements and Climate Change, in: Treatise on Geomorphology, 2nd edn., edited by: Shroder, J. F., Academic Press, Oxford, 546–558, https://doi.org/10.1016/B978-0-12-818234-5.00043-2, 2022. a, b
Gariano, S. L., Rianna, G., Petrucci, O., and Guzzetti, F.: Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale, Sci. Total Environ., 596–597, 417–426, https://doi.org/10.1016/j.scitotenv.2017.03.103, 2017. a, b, c
Gariano, S. L., Petrucci, O., Rianna, G., Santini, M., and Guzzetti, F.: Impacts of past and future land changes on landslides in southern Italy, Reg. Environ. Change, 18, 437–449, https://doi.org/10.1007/s10113-017-1210-9, 2018. a
Haiden, T.: Meteorologische Analyse des Niederschlags von 22.-25. Juni 2009 [Meteorological analysis of the precipitation from 22 to 25 June 2009], Tech. rep., ZAMG, Vienna, Austria,
http://www.zamg.ac.at/docs/aktuell/2009-06-30_Meteorologische%20Analyse%20HOWA2009.pdf (last access: 20 May 2022), 2009. a
Haiden, T., Kann, A., Wittmann, C., Pistotnik, G., Bica, B., and Gruber, C.:
The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation over the Eastern Alpine Region, Weather Forecast., 26, 166–183, https://doi.org/10.1175/2010WAF2222451.1, 2010 (data available at: https://data.hub.zamg.ac.at, last access: 20 May 2022). a
Haque, U., da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu, J.-H., and Glass, G. E.: The human cost of global warming: Deadly landslides and their triggers (1995–2014), Sci. Total Environ., 682, 673–684, https://doi.org/10.1016/j.scitotenv.2019.03.415, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020 (data available at: https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets, last access: 20 May 2022). a
Holzkämper, A., Klein, T., Seppelt, R., and Fuhrer, J.: Assessing the propagation of uncertainties in multi-objective optimization for agro-ecosystem adaptation to climate change, Environ. Modell. Softw., 66, 27–35, https://doi.org/10.1016/j.envsoft.2014.12.012, 2015. a
Hosmer, D. W., Lemeshow, S., and Sturdivant, R. X.: Applied Logistic Regression, Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, NJ, USA, https://doi.org/10.1002/9781118548387, 2013. a
Jaedicke, C., Solheim, A., Blikra, L. H., Stalsberg, K., Sorteberg, A., Aaheim, A., Kronholm, K., Vikhamar-Schuler, D., Isaksen, K., Sletten, K., Kristensen, K., Barstad, I., Melchiorre, C., Høydal, Ø. A., and Mestl, H.: Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme Project, Nat. Hazards Earth Syst. Sci., 8, 893–904, https://doi.org/10.5194/nhess-8-893-2008, 2008. a, b
Jaedicke, C., Van Den Eeckhaut, M., Nadim, F., Hervás, J., Kalsnes, B., Vangelsten, B. V., Smith, J. T., Tofani, V., Ciurean, R., Winter, M. G., Sverdrup-Thygeson, K., Syre, E., and Smebye, H.: Identification of Landslide Hazard and Risk 'Hotspots' in Europe, B. Eng. Geol. Environ., 73, 325–339, https://doi.org/10.1007/s10064-013-0541-0, 2014. a
Jandl, R.: Climate-induced challenges of Norway spruce in Northern Austria, Trees, Forests and People, 1, 100008, https://doi.org/10.1016/j.tfp.2020.100008, 2020. a
Jones, J. N., Boulton, S. J., Bennett, G. L., Stokes, M., and Whitworth, M. R. Z.: Temporal Variations in Landslide Distributions Following Extreme Events: Implications for Landslide Susceptibility Modeling, J. Geophys. Res.-Earth, 126, e2021JF006067, https://doi.org/10.1029/2021JF006067, 2021. a, b
Kim, H. G., Lee, D. K., Park, C., Ahn, Y., Kil, S.-H., Sung, S., and Biging, G. S.: Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods, Stoch. Env. Res. Risk A., 32, 2987–3019, https://doi.org/10.1007/s00477-018-1609-y, 2018. a
Kirchner, M., Mitter, H., Schneider, U. A., Sommer, M., Falkner, K., and Schmid, E.: Uncertainty concepts for integrated modeling – Review and application for identifying uncertainties and uncertainty propagation pathways, Environ. Modell. Softw., 135, 104905, https://doi.org/10.1016/j.envsoft.2020.104905, 2021. a, b, c, d, e
Knevels, R., Petschko, H., Proske, H., Leopold, P., Maraun, D., and Brenning, A.: Event-Based Landslide Modeling in the Styrian Basin, Austria: Accounting for Time-Varying Rainfall and Land Cover, Geosciences, 10, 217, https://doi.org/10.3390/geosciences10060217, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Knevels, R., Petschko, H., Proske, H., Leopold, P., Maraun, D., and Brenning, A.: Event-based landslide susceptibility models (Styrian Basin, Austria), Version 1.0.0, Zenodo [data set], https://doi.org/10.5281/zenodo.6365228, 2022. a
Kolström, M., Lindner, M., Vilén, T., Maroschek, M., Seidl, R., Lexer, M. J., Netherer, S., Kremer, A., Delzon, S., Barbati, A., Marchetti, M., and Corona,
P.: Reviewing the Science and Implementation of Climate Change Adaptation Measures in European Forestry , Forests, 2, 961–982, https://doi.org/10.3390/f2040961, 2011. a
Landeswarnzentrale Steiermark: Niederschlagswarnung für die Steiermark. Für den Zeitraum: Donnerstag, 11.09.2014 12:00 Uhr MESZ bis Sonntag, 14.09.2014 12:00 Uhr MESZ [Precipitation warning for Styria. For the period: Thursday, 11 September 2014 12:00 CEST to Sunday, 14 September 2014 12:00 CEST], Tech. rep., Fachabteilung Katastrophenschutz und Landesverteidigung, Referat Landeswarnzentrale und Kommunikationstechnik, Graz, Austria, http://www.katastrophenschutz.steiermark.at/cms/beitrag/12083692/5461/ (last access: 20 May 2022), 2014. a
Lee, C.-T.: Landslide trends under extreme climate events, Terr. Atmos. Ocean. Sci., 28, 33–42, https://doi.org/10.3319/TAO.2016.05.28.01(CCA), 2017. a, b, c
Lima, P., Steger, S., and Glade, T.: Counteracting Flawed Landslide Data in Statistically Based Landslide Susceptibility Modelling for Very Large Areas: A National-Scale Assessment for Austria, Landslides, 18, 3531–3546, https://doi.org/10.1007/s10346-021-01693-7, 2021. a
Lombardo, L., Opitz, T., Ardizzone, F., Guzzetti, F., and Huser, R.: Space-time landslide predictive modelling, Earth-Sci. Rev., 209, 103318, https://doi.org/10.1016/j.earscirev.2020.103318, 2020. a
Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for Climate Research, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781107588783, 2018. a
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., and Mearns, L. O.: Towards process-informed bias correction of climate change simulations, Nat. Clim. Change, 7, 764–773, https://doi.org/10.1038/nclimate3418, 2017. a
Maraun, D., Knevels, R., Mishra, A. N., Truhetz, H., Bevacqua, E., Proske, H., Zappa, G., Brenning, A., Petschko, H., Schaffer, A., Leopold, P., and Puxley, B. L.: A severe landslide event in the Alpine foreland under possible future climate and land-use changes, Communications Earth & Environment, 3, 1–11, https://doi.org/10.1038/s43247-022-00408-7, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah, ai, aj
Marra, G. and Wood, S. N.: Coverage Properties of Confidence Intervals for Generalized Additive Model Components, Scand. J. Stat., 39, 53–74, https://doi.org/10.1111/j.1467-9469.2011.00760.x, 2012. a
Olefs, M., Formayer, H., Gobiet, A., Marke, T., Schöner, W., and Revesz, M.: Past and future changes of the Austrian climate – Importance for tourism, Journal of Outdoor Recreation and Tourism, 34, 100395, https://doi.org/10.1016/j.jort.2021.100395, 2021. a, b
Ozturk, U., Pittore, M., Behling, R., Roessner, S., Andreani, L., and Korup, O.: How Robust Are Landslide Susceptibility Estimates?, Landslides, 18, 681–695, https://doi.org/10.1007/s10346-020-01485-5, 2021. a, b, c
Picarelli, L., Comegna, L., Gariano, S. L., Guzzetti, F., Mercogliano, P., Rianna, G., Santini, M., and Tommasi, P.: Potential climate changes in Italy and consequences for land stability, in: Slope Safety Preparedness for Impact of Climate Change, CRC Press, 47 pp., https://doi.org/10.1201/9781315387789, 2017. a
Pisano, L., Zumpano, V., Malek, Ž., Rosskopf, C. M., and Parise, M.: Variations in the susceptibility to landslides, as a consequence of land cover changes: A look to the past, and another towards the future, Sci. Total Environ., 601–602, 1147–1159, https://doi.org/10.1016/j.scitotenv.2017.05.231, 2017. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 20 May 2022), 2021. a
Refsgaard, J., Sonnenborg, T., Butts, M., Christensen, J., Christensen, S., Drews, M., Jensen, K., Jørgensen, F., Jørgensen, L., Larsen, M., Rasmussen, S., Seaby, L., Seifert, D., and Vilhelmsen, T.: Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced?, Hydrolog. Sci. J., 61, 2312–2324, https://doi.org/10.1080/02626667.2015.1131899, 2016. a, b, c, d, e
Reichenbach, P., Busca, C., Mondini, A. C., and Rossi, M.: The Influence of Land Use Change on Landslide Susceptibility Zonation: The Briga Catchment Test Site (Messina, Italy), Environ. Manage., 54, 1372–1384, https://doi.org/10.1007/s00267-014-0357-0, 2014. a
Rianna, G., Comegna, L., Mercogliano, P., and Picarelli, L.: Potential effects of climate changes on soil–atmosphere interaction and landslide hazard, Nat. Hazards, 84, 1487–1499, https://doi.org/10.1007/s11069-016-2481-z, 2016. a
Rianna, G., Comegna, L., Gariano, S. L., Guzzetti, F., Mercogliano, P., Picarelli, L., and Tommasi, P.: Potential Effects of Climate Changes on Landslide Activity in Different Geomorphological Contexts, in: Advancing Culture of Living with Landslides, edited by: Mikoš, M., Casagli, N., Yin, Y., and Sassa, K., Springer International Publishing, Cham, 243–249, https://doi.org/10.1007/978-3-319-53485-5_28, 2017. a, b, c
Roberts, D. R., Wood, W. H., and Marshall, S. J.: Assessments of Downscaled Climate Data with a High-Resolution Weather Station Network Reveal Consistent but Predictable Bias, Int. J. Climatol., 39, 3091–3103, https://doi.org/10.1002/joc.6005, 2019. a
Roberts, G. O., Gelman, A., and Gilks, W. R.: Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab., 7, 110–120, https://doi.org/10.1214/aoap/1034625254, 1997. a, b
Rockel, B., Will, A., and Hense, A.: The Regional Climate Model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008. a
Rougier, J.: Quantifying hazard losses, in: Risk and Uncertainty Assessment
for Natural Hazards, edited by: Rougier, J., Hill, L. J., and Sparks, S., Cambridge University Press, Cambridge, 19–39, https://doi.org/10.1017/CBO9781139047562.003, 2013. a
Rougier, J. and Beven, K.: Model and data limitations: the sources and implications of epistemic uncertainty, in: Risk and Uncertainty Assessment for Natural Hazards, edited by: Rougier, J., Hill, L. J., and Sparks, S., Cambridge University Press, Cambridge, 40–63, https://doi.org/10.1017/CBO9781139047562.004, 2013. a, b
Rougier, J., Sparks, S., and Hill, L. J. (Eds.): Risk and Uncertainty Assessment for Natural Hazards, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139047562, 2013. a
Roy, C. J. and Oberkampf, W. L.: A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing, Comput. Method. Appl. M., 200, 2131–2144, https://doi.org/10.1016/j.cma.2011.03.016, 2011. a, b, c, d
Ruppert, D., Wand, M. P., and Carroll, R. J.: Semiparametric Regression, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511755453, 2003. a
Samia, J., Temme, A., Bregt, A., Wallinga, J., Guzzetti, F., Ardizzone, F., and Rossi, M.: Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory, Landslides, 14, 547–558, https://doi.org/10.1007/s10346-016-0739-x, 2017. a
Schaffer, A.: Evaluation of the Soil Moisture-Precipitation Feedback in Austria [Beurteilung des Bodenfeuchte-Niederschlag-Feedbacks in Österreich], Master's thesis, Graz University of Technology, Graz, Austria, https://online.tugraz.at/tug_online/wbabs.showThesis?pThesisNr=73261&pOrgNr=37 (last access: 20 May 2022), 2021. a, b
Schlögel, R., Kofler, C., Gariano, S. L., Van Campenhout, J., and Plummer, S.: Changes in climate patterns and their association to natural hazard distribution in South Tyrol (Eastern Italian Alps), Scientific Reports, 10, 5022, https://doi.org/10.1038/s41598-020-61615-w, 2020. a, b
Schweigl, J. and Hervás, J.: Landslide mapping in Austria, JRC Scientific and Technical Reports EUR 23785 EN, European Commission, Joint Research Centre, Luxembourg, https://doi.org/10.2788/85150, 2009. a
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253, 2014. a
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an alternative approach to representing uncertainty in physical aspects of climate change, Clim. Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018. a, b
Stainforth, D., Allen, M., Tredger, E., and Smith, L.: Confidence, uncertainty and decision-support relevance in climate predictions, Philos. T. Roy. Soc. A, 365, 2145–2161, https://doi.org/10.1098/rsta.2007.2074, 2007. a
Steger, S., Brenning, A., Bell, R., and Glade, T.: The propagation of inventory-based positional errors into statistical landslide susceptibility models, Nat. Hazards Earth Syst. Sci., 16, 2729–2745, https://doi.org/10.5194/nhess-16-2729-2016, 2016. a
Steger, S., Brenning, A., Bell, R., and Glade, T.: The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements, Landslides, 14, 1767–1781, https://doi.org/10.1007/s10346-017-0820-0, 2017. a
Szumilas, M.: Explaining Odds Ratios, Journal of the Canadian Academy of
Child and Adolescent Psychiatry, 19, 227–229,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938757/ (last access: 20 May 2022), 2010. a
Tang, A. M., Hughes, P. N., Dijkstra, T. A., Askarinejad, A., Brenčič, M., Cui, Y. J., Diez, J. J., Firgi, T., Gajewska, B., Gentile, F., Grossi, G., Jommi, C., Kehagia, F., Koda, E., ter Maat, H. W., Lenart, S., Lourenco, S., Oliveira, M., Osinski, P., Springman, S. M., Stirling, R., Toll, D. G., and
Van Beek, V.: Atmosphere–vegetation–soil interactions in a climate change context; impact of changing conditions on engineered transport infrastructure slopes in Europe, Q. J. Eng. Geol. Hydroge., 51, 156–168, https://doi.org/10.1144/qjegh2017-103, 2018. a
Torizin, J., Fuchs, M., Kuhn, D., Balzer, D., and Wang, L.: Practical Accounting for Uncertainties in Data-Driven Landslide Susceptibility Models. Examples from the Lanzhou Case Study, in: Understanding and Reducing Landslide Disaster Risk: Volume 2 From Mapping to Hazard and Risk Zonation, edited by: Guzzetti, F., Mihalić Arbanas, S., Reichenbach, P., Sassa, K., Bobrowsky, P. T., and Takara, K., ICL Contribution to Landslide Disaster Risk Reduction, Springer International Publishing, Cham, 249–255, https://doi.org/10.1007/978-3-030-60227-7_27, 2021. a, b
Valeriano, K. L., Lachos, V. H., and Matos, L. A.: StempCens: Spatio-temporal estimation and prediction for censored/missing responses, R Foundation for Statistical Computing, https://CRAN.R-project.org/package=StempCens (last access: 20 May 2022), 2020.
a
Walker, W., Harremoës, P., Rotmans, J., van der Sluijs, J., van Asselt, M., Janssen, P., and Krayer von Krauss, M.: Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support, Integrated Assessment, 4, 5–17, https://doi.org/10.1076/iaij.4.1.5.16466, 2003. a
Wallemacq, P., House, R., and McLean, D.: Economic Losses, Poverty & Disasters: 1998–2017, Tech. rep., Centre for Research on the Epidemiology of Disaster, UN Office for Disaster Risk Reductions, https://www.cred.be/sites/default/files/CRED_Economic_Losses_10oct.pdf (last access: 20 May 2022), 2018. a
Wood, S. N.: Core Statistics, Institute of Mathematical Statistics Textbooks, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781107741973, 2015. a, b, c, d
ZAMG: Meldungen zu Unwetter und Witterungsbedingten Schäden in der Wirtschaft / September 2014 [Reports on severe weather and weather-related losses in the economy / September 2014], ZAMG, Tech. rep., https://www.zamg.ac.at/zamgWeb/klima/klimarueckblick/archive/2014/09/unwetter09-14.pdf (last access: 20 May 2022), 2014. a, b
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nature Reviews Earth & Environment, 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020. a, b
Short summary
In summer 2009 and 2014, rainfall events occurred in the Styrian Basin (Austria), triggering thousands of landslides. Landslide storylines help to show potential future changes under changing environmental conditions. The often neglected uncertainty quantification was the aim of this study. We found uncertainty arising from the landslide model to be of the same order as climate scenario uncertainty. Understanding the dimensions of uncertainty is crucial for allowing informed decision-making.
In summer 2009 and 2014, rainfall events occurred in the Styrian Basin (Austria), triggering...
Altmetrics
Final-revised paper
Preprint