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Abstract. The assessment of uncertainties in landslide sus-
ceptibility modelling in a changing environment is an impor-
tant, yet often neglected, task. In an Austrian case study, we
investigated the uncertainty cascade in storylines of landslide
susceptibility emerging from climate change and parametric
landslide model uncertainty. In June 2009, extreme events
of heavy thunderstorms occurred in the Styrian Basin, trig-
gering thousands of landslides. Using a storyline approach,
we discovered a generally lower landslide susceptibility for
the pre-industrial climate, while for the future climate (2071-
2100) a potential increase of 35 % in highly susceptible areas
(storyline of much heavier rain) may be compensated for by
much drier soils (—45 % areas highly susceptible to lands-
liding). However, the estimated uncertainties in predictions
were generally high. While uncertainties related to within-
event internal climate model variability were substantially
lower than parametric uncertainties in the landslide suscepti-
bility model (ratio of around 0.25), parametric uncertainties
were of the same order as the climate scenario uncertainty for
the higher warming levels (43 and +4 K). We suggest that
in future uncertainty assessments, an improved availability
of event-based landslide inventories and high-resolution soil
and precipitation data will help to reduce parametric uncer-
tainties in landslide susceptibility models used to assess the
impacts of climate change on landslide hazard and risk.

1 Introduction

Climate and land use/land cover (LULC) are changing
worldwide, altering the risk of landslide occurrences. During
the period from 1998 to 2017, landslides affected 4.8 mil-
lion people, causing more than 55997 deaths and over
USD 5.28 billion total damage (Froude and Petley, 2018;
Wallemacq et al.,, 2018). In the future, these landslide-
associated casualties are likely to increase globally (Haque
et al., 2019; Gariano and Guzzetti, 2022), and such an in-
crease can already be observed in some regions (Schlogel
et al., 2020). Across the Austrian Alps and their forelands, a
generally high proneness to landslides is observed, which are
among the main natural hazards frequently causing damage
to houses and infrastructure as well as casualties (Jaedicke et
al., 2014; Lima et al., 2021). Here they are conditioned by
local geomorphology, geology, and LULC, with long-lasting
heavy rainfall and rapid snowmelt as the main natural trig-
gers (Schweigl and Hervds, 2009). In southeastern Austria
extreme precipitation is projected to increase by up to 14 %
for each kelvin of warming (% K~!) as a consequence of cli-
mate change, which was found to affect the risk of landslide
occurrences (Olefs et al., 2021; Maraun et al., 2022).

In June 2009 and September 2014, weather conditions de-
veloped through a cut-off low bringing heavy rainfall into the
Styrian Basin, Austria’s southeastern Alpine forelands (e.g.
over 100 mm in 24 h in 2009). In both events in total more
than 3000 landslides were triggered, causing significant dam-
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age to human infrastructure (e.g. about EUR 13.4 million in
2009; Hornich and Adelwdéhrer, 2010; ZAMG, 2014). The
combined effect of premoisturing over the preceding winter
and spring and the occurrence of the actual triggering rain-
fall made this landslide event a compound event (Zscheis-
chler et al., 2020; Maraun et al., 2022). In addition to the
high amount of rain, local experts identified human activ-
ities as a conditioning factor (steep or unsecured embank-
ments, artificial slope surcharge, impervious paved surfaces;
Hornich and Adelwdhrer, 2010). Statistical investigations of
these landslide events confirmed the important role of mete-
orological (rainfall intensity and 5 d rainfall) and LULC (for-
est types) predictors (Knevels et al., 2020). Focusing on the
rainfall event in 2009, Maraun et al. (2022) analysed the ef-
fect of the projected future climate (2070-2100) and LULC
change (LULCC) on landslide occurrences for the most af-
fected Feldbach region. In Maraun et al. (2022) the concept
of storylines — simulations of physically self-consistent, plau-
sible pathways of a specific event (Shepherd et al., 2018)
— was first applied in a landslide context, thus asking “how
would this event occur in a warmer/colder climate, and what
would be the associated landslide susceptibility?” While cut-
off lows are expected to become slightly less frequent, the
area threatened by landslides, given such an event, would in-
crease by 45 % in a 4 K global warming scenario (Maraun et
al., 2022). However, a comprehensive assessment of uncer-
tainties inherent in the projected landslide susceptibility has
yet to be conducted, which is the objective of our study.
Uncertainty assessments are essential for the development
of business strategies and policy interventions; they increase
transparency of and confidence in scientific analyses, and
they are considered a “good modelling practice” (Kirchner
et al., 2021, and references therein). Generally, depending
on the scientific community, different definitions of uncer-
tainties exist (Walker et al., 2003; Kirchner et al., 2021). In
risk assessment, uncertainty is commonly categorised into
aleatory and epistemic uncertainty (Roy and Oberkampf,
2011; Rougier et al., 2013). Aleatory uncertainty refers to
the natural variation or randomness inherent in the natu-
ral hazard process and is thus irreducible and unavoidable
(Roy and Oberkampf, 2011; Rougier, 2013). Epistemic un-
certainty arises from missing knowledge and is reducible by
enhancing knowledge on the subject (Roy and Oberkampf,
2011; Rougier and Beven, 2013). Additionally, three sources
of epistemic uncertainty can be distinguished (Rougier and
Beven, 2013): input uncertainty (e.g. initial or boundary con-
dition uncertainty in climate modelling), parametric uncer-
tainty (e.g. uncertainty in model parameter settings), and
structural uncertainty (e.g. uncertainty in the model form
to represent the system). However, according to Roy and
Oberkampf (2011) the boundary between aleatory and epis-
temic uncertainty is fluid and depends on the question. Fur-
thermore, when different sources of uncertainties propagate
through a sequence of calculations, the full range of uncer-

Nat. Hazards Earth Syst. Sci., 23, 205-229, 2023

tainties is referred to as the uncertainty cascade (Refsgaard
et al., 2016).

In landslide risk management, many authors have empha-
sised the importance of the quantification of uncertainties,
especially considering environmental change (Reichenbach
et al., 2018; Gariano and Guzzetti, 2022). However, only
a tiny fraction of around 3 % of recent statistical landslide
susceptibility analyses actually address this issue (Reichen-
bach et al., 2018, based on 565 articles published between
1983 and 2016). Focusing on statistical landslide suscepti-
bility analysis, input and parameter uncertainties have pre-
viously been investigated with a focus on landslide inven-
tory biases or incompleteness (e.g. Steger et al., 2016, 2017);
the quality, resolution, and spatial scale of input data (e.g.
Guzzetti et al., 2006; Brock et al., 2020; Torizin et al., 2021);
and the size and strategy effects of landslide sampling (e.g.
Petschko et al., 2014; Ozturk et al., 2021). For the assess-
ment of structural uncertainty, model validation procedures
such as (spatial) cross-validation are well-established assess-
ment techniques (e.g. Petschko et al., 2014; Torizin et al.,
2021). However, only a few studies account explicitly for of-
ten invisible effects of spatial (and temporal) autocorrelation
in landslide model fitting and prediction (Reichenbach et al.,
2018; Lombardo et al., 2020). Spatially varying uncertainties
in landslide susceptibility predictions, emerging from para-
metric uncertainty (or sampling variability) and model error,
have been assessed in terms of the standard error (or confi-
dence interval) of the predicted probabilities (Guzzetti et al.,
2006; Petschko et al., 2014) or by model ensembles (Kim et
al., 2018; Felsberg et al., 2022). Regarding climate change,
landslide studies often suffer from common modelling lim-
itations: namely, the presence of large-scale circulation er-
rors in global climate models (GCMs), using GCMs without
downscaling and subsequent bias adjustment (Roberts et al.,
2019), not resolving convection in standard regional climate
models (RCMs), and ignoring factors that might be poten-
tially relevant in a changing climate such as soil moisture
(Maraun et al., 2017, 2022).

Our objective was the assessment of uncertainties in land-
slide susceptibility predictions considering both parametric
landslide model uncertainty and climate change uncertainty
(within-event internal model variability and scenario uncer-
tainty) while accounting for different storylines of LULC
and climate change in the Styrian Basin, Austria. The fo-
cus was not on creating landslide susceptibility maps but on
the quantification of uncertainties. Such a joint consideration
of uncertainties in integrated modelling (or interdisciplinary
systems of linked models) is still an important research gap
(Kirchner et al., 2021), and existing studies mostly come
from a non-landslide context (e.g. hydrological or crop mod-
elling; Bastola et al., 2011; Holzkdmper et al., 2015; Ref-
sgaard et al., 2016). In our analysis, we built upon an ex-
isting landslide susceptibility model (Maraun et al., 2022)
that linked different predisposing and triggering factors to the
2009 and 2014 landslide occurrences. Our workflow com-
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bines within-event internal climate model variability with
probabilistic simulations of parametric uncertainties in the
landslide model into an uncertainty cascade in order to ob-
tain a storyline uncertainty assessment. With this approach,
we differentiate the uncertainty components in the analysed
landslide susceptibility predictions.

2 Study area and data
2.1 Study area and rainfall events

Landslides in the Styrian Basin, Austria, have received much
attention, especially recently after the 2009 and 2014 com-
pound events (Hornich and Adelwohrer, 2010; Knevels et
al., 2020; Maraun et al., 2022). Our study area (3831 kmz)
is characterised by flat lowlands in the east and a hilly to-
pography in the west, ranging from 196 to 1167 m above the
Adriatic Sea (m AA) with a relative relief of 3-550 m km™2.
The Styrian Prealps border the study area from the south-
west (Possruck Mountains, Koralpe) to northwest (Stubalpe
Mountains, Graz Mountains). According to Gasser et al.
(2009) and Hornich and Adelwohrer (2010), the Styrian
Basin has a high predisposition to landslides due to the un-
derlying geology of Neogene sediments (thick Miocene and
minor Pliocene sediments) mainly consisting of a heteroge-
neous mixture and interbedded strata of sands, silts, clays,
marl, and gravels (more geological details are given in Gasser
et al., 2009).

In June 2009 and September 2014, heavy-rainfall events
occurred in southeastern Styria. From 22 to 25 June 2009, a
series of heavy thunder- and rainstorms brought over 100 mm
of precipitation within 24h in some places, which corre-
sponds to a 50-year return period (Fig. 1c left; meteorologi-
cal details in Haiden, 2009; Hornich and Adelwdhrer, 2010).
In the region, around 1700 landslide-related private dam-
age claims were submitted to the state government, surpass-
ing EUR 13.4 million in cost for reconstruction and emer-
gency response (Hornich and Adelwohrer, 2010). The north-
ern part of the district of South East Styria was particularly
severely affected (Fig. 1b), so for several municipalities a
state of emergency had to be declared (Hornich and Adel-
wohrer, 2010). The rainfall event in 2014 was similar, al-
though less severe. In September 2014, several heavy thun-
derstorms occurred within a 3-week period (ZAMG, 2014).
From 12 to 15 September, between 30 and 100 mm of rain
(Fig. 1c right) was brought to the region by an upper-level
low (Landeswarnzentrale Steiermark, 2014). Again, land-
slides occurred across the entire Styrian Basin but were clus-
tered with more than 500 landslides south of Leibnitz and
north of Gleisdorf (Fig. 1b).

2.2 Data

The database of the analysis is consistent with the data de-
scribed in Knevels et al. (2020) and Maraun et al. (2022).
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While detailed information on the landslide inventory, the
sampling design, and the landslide susceptibility model can
be found in Knevels et al. (2020), model extensions and ap-
plications that account for soil moisture and environmen-
tal changes, respectively, were presented in Maraun et al.
(2022). Similarly to the above-mentioned studies, we used
a target resolution of 10m x 10 m for our analysis. Here we
will present the database, only briefly giving the details rel-
evant for our model construction, and we refer the reader to
the cited publications for further detail.

2.2.1 Base data

For the analysis, different climate, land surface, and land-
slide data were provided by various sources. As climate
data, precipitation and soil moisture data were used. INCA
(Integrated Nowecasting through Comprehensive Analysis,
1km x 1km) precipitation was provided by the Austrian
Central Institute for Meteorology and Geodynamics. Further-
more, precipitation was aggregated to obtain accumulated
5d rainfall (in mm) and maximum 3 h rainfall intensity (in
mmh~!) on the landslide failure day (for a justification of
the precipitation aggregation scheme, please refer to Knevels
et al., 2020). The soil moisture data were derived using HRL-
DAS v4.1 (High-Resolution Land Data Assimilation System;
Chen et al., 2007) with a 1 km x 1 km spatial and an hourly
temporal resolution for the 2004—2014 period and were pro-
vided by Maraun et al. (2022) (technical details in Schaf-
fer, 2021). As land surface data, an airborne lidar-derived
high-resolution digital terrain model (HRDTM, 1 m x 1 m),
a geological basemap, and LULC data (distinguishing for-
est types: no, broadleaf, mixed, and conifer forest) were pro-
vided by the GIS department of Styria and JOANNEUM RE-
SEARCH, respectively. Based on the HRDTM, suitable land
surface variables were derived (Sect. 3.1).

As landslide data, we used landslides that occurred during
the heavy-rainfall events, which were initially mapped by the
Institute of Military Geoinformation and the Geological Sur-
vey of Austria in 2009 and in 2014 by the Department of
Hydrology, Resources and Sustainability of the Styrian Gov-
ernment. Knevels et al. (2020) analysed and filtered these
datasets and compiled a quality-controlled landslide inven-
tory comprising 626 landslides (487 for 2009 and 139 for
2014) in total, which we classified as earth and debris slides
with possible transitions to complex slide flows after Cruden
and Varnes (1996) (refer to Table A2 in Knevels et al., 2020,
for more information).

2.2.2 Environmental change simulations

In order to project landslide susceptibility patterns based on
past and future environmental conditions, we obtained event
storylines in pre-industrial and future climates (Maraun et al.,
2022) as well as a future LULC scenario compiled from var-
ious sources. In an event storyline approach, the emphasis
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Figure 1. Overview of the study area. (a) Location in Austria (upper part) and federal state of Syria (lower part). (b) Landslide distribution
for both rainfall events. (¢) Accumulated rainfall (mm) of the event in 2009 (left) and 2014 (right). Adopted from Knevels et al. (2020).

is placed on a qualitative understanding and plausibility of
driving factors involved in an event, and thus the physically
self-consistent unfolding of past or plausible future events or
pathways is examined (Shepherd et al., 2018). This implies
that we are not investigating all future expected extreme rain-
fall events but rather a similar event manifesting itself dif-
ferently in varied climate scenarios. Recently, the Intergov-
ernmental Panel On Climate Change (IPCC) emphasised the
utility of the storyline approach for constructing and commu-
nicating regional climate information (Doblas-Reyes et al.,
2021).

For climate change, the focus was on simulations of the
2009 rainfall event in the present climate, as well as of its
characteristics in pre-industrial and future climates. The pre-
industrial (“past”) climate is understood here as a counter-
factual (present) climate, i.e. without climate change (from
here on referred to as NO-CC for “climate with no climate
change”). The simulations were based on the regional cli-
mate model (RCM) Consortium for Small-scale Modeling
(Rockel et al., 2008) with a spatial resolution of 3km x 3km
and covered the eastern Alpine region (Fig. S1 in Supple-
ment). The RCM boundary conditions were obtained from
the integrated forecast system of the European Centre for
Medium-Range Weather Forecasts (Bechtold et al., 2008).
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A spin-up was run (1 October 2008 to 20 June 2009) to
ensure a balanced soil moisture field. Based on the spin-
up, a 10-member ensemble simulation of the actual event
ending on 28 June at 00:00 UTC was computed (“present
day”). Storylines for NO-CC and future conditions were sim-
ulated based on boundary conditions modified by changes
from four GCMs of the Coupled Model Intercomparison
Project (Taylor et al., 2009) accounting for the representa-
tive concentration pathways (RCPs) with a radiative forc-
ing of 8.5 W m—2 (RCP8.5, i.e. high-emission scenarios;
with 10 ensemble members each): IPSL-CM5A-MR (IPSL),
HadGEM2-CC (HadGEM), GFDL-ESM2M (GFDL), and
MIROC-ESM (MIROC). For the future simulations, the
RCM boundaries were modified by imposing changes de-
rived from GCMs, representing the difference between typi-
cal conditions during weather events comparable to the 2009
event in warmer future climates and the present climate. The
changes were derived from events occurring in the periods
2071-2100 and 1975-2004 under the RCP8.5 scenario and
rescaled to selected global warming levels (Maraun et al.,
2022). Specifically, we considered 0.5 K (Paris agreement;
PARIS), 3K (business as usual), and 4 K warming (worst
case). For the NO-CC simulations, boundary conditions were
obtained by scaling the future climate change signal down to
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—1 K cooling. Please refer to Maraun et al. (2022) for more
details on the climate simulations.

Since all conducted simulations showed a positional bias,
a delta change approach was applied for each hydrometeoro-
logical variable (i.e. precipitation and soil moisture). Follow-
ing Maraun et al. (2022) the delta change factors were esti-
mated for the simulated hydrometeorological values as ratios
of differences in areal averages within domains where the
climate change signal was assumed to be constant (NO-CC
to present, present to future, 10 x 10 ensemble-members, i.e.
100 pairs per storyline). In contrast to Maraun et al. (2022),
in this study, for soil moisture, the region was expanded to fit
the actual target domain (i.e. southeastern Styria vs. Feldbach
region, Fig. S1).

A LULC scenario for the future was developed jointly with
the Forestry Directorate and District Forestry Authority as
regional and local stakeholders. The present-day Syrian for-
est has a characteristic structure of small-scale changes in
different forest types but with a high percentage of spruce
(around 58 %; BFW, 2019). Rising temperatures and summer
dryness may lead to a higher vulnerability to disturbances
such as pathogens and forest pests, including bark beetles
(Kolstrom et al., 2011; Jandl, 2020). Adopting active forest
management in the developed future LULC scenario, conif-
erous forest was replaced by climate-resilient mixed forest.
Additionally, present-day agricultural land in unfavourable
topography (e.g. slopes steeper than 20°) was simulated as
being transformed to mixed forest in the future. The idealised
LULC scenarios developed by Maraun et al. (2022) were not
in the scope of this analysis (i.e. extreme de- and afforesta-
tion). For NO-CC, the present-day LULC was used as we
were only interested in the climate signal.

2.2.3 Data for landslide susceptibility predictions

For the spatial prediction of landslide susceptibility, the cre-
ation of a prediction dataset with one layer for each variable
(i.e. stack of raster layers) was required. Since precipitation
and soil moisture varied during the landslide-triggering pe-
riod (22-25 June 2009) and landslide failure dates for the
simulated NO-CC and future are unknown, we extracted
process-related aggregated features for the considered pe-
riod. Specifically, for each grid cell we determined the max-
imum 3 h rainfall intensity, and we took the maximum 5d
rainfall. For soil moisture, we used the maximum value on
the day prior to the beginning of the corresponding 5 d rain-
fall aggregation. We downscaled the climate data to our tar-
get resolution using the inverse distance weighting method
(power = 3; maximum number of neighbours = 16).

3 Methods

The proposed approach to assessing landslide susceptibil-
ity uncertainty addresses model fitting accounting for spa-
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tial dependency (Sect. 3.1), predictions considering environ-
mental change (Sect. 3.2), and their amount of uncertainty
(Sect. 3.3). Please refer to Fig. Al in the Appendix A for an
overview.

3.1 Landslide susceptibility model

Our analysis built on the landslide susceptibility model of
Maraun et al. (2022), which was a generalised additive
model (GAM). A GAM is a semi-parametric extension of
a generalised linear model (GLM), since it has the abil-
ity to model non-linear relationships by automatically fit-
ting transformations, or so-called component smooth func-
tions (Wood, 2017). The additive structure of a GAM al-
lows common model diagnostics (e.g. predictor-response re-
lationship, variable importance, odds ratios), and thus GAMs
have become popular in landslide susceptibility studies in re-
cent years (Petschko et al., 2014; Knevels et al., 2020).

For the landslide susceptibility analysis, we linked predis-
posing and time-varying preparatory and triggering factors to
landslide occurrences by following recent recommendations
for non-stationary landslide susceptibility models (Gariano
and Guzzetti, 2016; Reichenbach et al., 2018; Jones et al.,
2021; Ozturk et al., 2021). Therefore, we are analysing con-
ditional landslide susceptibility in the sense of a suscepti-
bility that applies under given (time-varying) environmental
conditions. Predictor variables were land surface variables
(convergence index of 100 and 500 m, plan and profile cur-
vature, logarithmic D-Infinity flow accumulation, normalised
height, slope angle, slope angle of catchment area, north and
west exposedness, topographic position index (TPI), and to-
pographic wetness index (SWI)), hydrometeorological vari-
ables (soil moisture, 5d rainfall, and maximum 3 h rainfall
intensity), geology, and forest type (representing LULC). For
more information on the delineation of the predictor vari-
ables and their maps, refer to Knevels et al. (2020) and
Fig. S6, respectively.

We developed landslide susceptibility models with differ-
ent model settings, some of which have been published be-
fore (Table Al in Appendix A). As a new model, we decided
to explicitly account for residual spatial autocorrelation using
a low-rank Gaussian process (GP) smoother (Wood, 2017) as
an additional predictor (GAM-Spatial). This feature is often
missing in landslide susceptibility modelling, which may re-
sult in residual patterns that are unaccounted for by the model
and may introduce errors into predictions (Reichenbach et
al., 2018). Furthermore, we kept the influence of the 5 d rain-
fall variable constant beyond 80 mm (“top-coded”) to coun-
teract a physically implausible predictor-response relation-
ship beyond this threshold (GAM-SM+TC in Maraun et al.,
2022). In other model settings, the 5 d rainfall variable was
not modified (i.e. GAM-SM; Maraun et al., 2022; cf. Fig. A2,
Appendix A), and soil moisture was not included as model
predictor (i.e. GAM-Co; Knevels et al., 2020).
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We used a GAM-Spatial implementation that incorpo-
rates residual spatial autocorrelation through the GP rep-
resentation (Fahrmeir et al., 2013; Wood, 2017). The hy-
perparameters necessary for the GP implementation are a
range (®) and correlation function and were estimated based
on the residuals of GAM-SM+TC. We followed Simpson
(2018) in iteratively searching for a suitable range (from
10 to 1000 m) and correlation function (spherical, exponen-
tial, Gaussian, and Matérn, the latter with x« values of 1.5,
2.5, and 3.5). The models’ restricted maximum likelihood
(REML) score was assessed to identify optimal hyperparam-
eters (i.e. lowest REML score), which were then applied to
fit the GAM-Spatial model with a GP smoother. Addition-
ally, the effective range, at which the residual autocorrela-
tion drops below 0.05, was calculated using StempCens in
R (EffectiveRange with cor =0.05; Valeriano et al.,
2020).

For model assessment, we used well-established diagnos-
tic tools. The model performance was assessed using a 5-
fold spatial cross-validation (SpCV) with five repetitions and
measured using the area under the receiver operating charac-
teristic curve (AUROC) (Knevels et al., 2020). We ensured
that the training and validation data were identical to those
in Knevels et al. (2020) to achieve a fair comparison of the
landslide susceptibility models. The AUROC values were
interpreted following the interpretation guide of Hosmer et
al. (2013). To assess variable importance, we calculated the
model’s mean decrease in deviance explained (mDD, %) af-
ter removing the respective variable from the model (Knevels
etal., 2020). Larger mDD values indicate greater explanatory
power. Predictor—response relationships were analysed visu-
ally using transformation functions and quantitatively using
odds ratios (ORs). An OR represents the chance that an out-
come happened given a specific exposure, compared to odds
of the outcome under a reference exposure (Szumilas, 2010).
An OR greater than 1 means an exposure with higher odds of
landslide occurrence, while an OR lower than 1 is associated
with lower odds of landslide occurrence while accounting for
the other variables in the model (OR = 1 means no associa-
tion with the exposure). In contrast to Knevels et al. (2020),
the variable importance and predictor-response relationships
were assessed based on GAMs using the complete dataset
(GAM-Spatial, GAM-SM+TC, GAM-SM), i.e. not on sub-
sets of the SpCV models (GAM-Co).

We focused on highly susceptible areas for analysing the
uncertainty cascade in storylines of the landslide suscepti-
bility. The area of high landslide susceptibility was defined
using the thresholding approach of Petschko et al. (2014),
according to which 70 % of the observed landslides fall into
that class; low and medium susceptibility account for 5 %
and 25 % of observed landslides.

We used the free and open-source computing environment
R (R version 4.1.0; R Core Team, 2021) with the GAM im-
plementation in the mgcv package (Wood, 2017).
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3.2 Modelling landslide susceptibility in a changing
environment

Landslide susceptibility is commonly considered stationary
(or invariant in time; Fell et al., 2008). However, this assump-
tion is often violated in space (e.g. anthropogenic land use
changes; Reichenbach et al., 2014) and time (e.g. “follow-
up” landslides; Samia et al., 2017). In this study, we assessed
NO-CC and future landslide susceptibility by considering the
LULC and hydrometeorological variables as time-varying
predictors, and therefore we modified their values according
to the storylines. While the hydrometeorological predictors
were multiplied with the corresponding delta change factor,
the LULC data were replaced with the developed scenario
only for the future. The other predictors (land surface vari-
ables and geology) were considered invariant in time.

To estimate changes in landslide susceptibility between a
storyline and the present day, we applied two approaches:
first, we calculated the relative change in the areal extent of a
susceptibility class (in % and percentage points, pp) to quan-
titatively derive the potential change in the area at risk. And
second, we expressed the effect size of change using the av-
erage change in the odds of landslide occurrence of a sus-
ceptibility class as OR (a5 for those locations which fall into
identical susceptibility classes in both predictions:

n
OR¢lass = €Xp (% Z (10gitstory(i) - IOgitref(i))) ) (1)
i=1

where logitory (i) and logiteer(i) denote the logits of land-
slide occurrence probabilities at a specific location i and sus-
ceptibility class (low, medium, or high) of the storyline and
reference scenario (present day), respectively, and # is all lo-
cations of the same landslide susceptibility class in both sce-
narios.

3.3 Uncertainty cascade in landslide predictions

In integrated modelling, there are various sources of uncer-
tainty affecting the predicted outcomes. We quantified the
uncertainty cascade in storylines of landslide susceptibility
by accounting for climate model uncertainty and landslide
model parametric uncertainty (or sampling variability).

For the climate model uncertainty we assessed within-
event internal model variability and scenario uncertainty for
each hydrometeorological variable. The applied single event
storyline approach includes a particular realisation of internal
climate variability; thus the established storylines are condi-
tioned on it (Doblas-Reyes et al., 2021). By using estimates
from a climate model ensemble with different realisations of
internal variability, the uncertainty related to conditional in-
ternal climate model variability can essentially be removed
(Maraun et al., 2022). In this study, we explicitly analyse
within-event internal climate model variability and therefore
address the question of how the event could locally unfold
in the present climate as well as cooler and warmer climates.
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Regarding the climate signal or forced change, the influence
of within-event internal climate model variability can be ac-
counted for by averaging across the ensemble members of a
climate models’ storyline (Maraun et al., 2022).

For the within-event internal climate model variability, we
estimated the 2.5th and 97.5th percentiles from the delta
change factor distribution (i.e. 100 pairs per storyline) de-
scribing the lower and upper bound of local climate model
variability; the mean delta change factor represents a models’
climate signal (or forced change). The estimated delta change
factors were subsequently offset against the corresponding
values of the hydrometeorological predictor. For the climate
scenario uncertainty, the width of the predicted outcomes us-
ing the climate signals of all climate models within a scenario
(NO-CC, PARIS, 3 and 4 K warming) was calculated.

The landslide models’ parametric uncertainty is associ-
ated with measurement errors, sampling errors and variabil-
ity, misclassification of data, and surrogate data weaknesses
(EPA, 2019) and, from a frequentist perspective, is com-
monly expressed using confidence intervals. A common ap-
proach to quantify parametric uncertainty is bootstrapping
(e.g. Brenning et al., 2015). However, in the framework of
the mgcv: : gam, this approach has limitations when penal-
ties are present and some observations are sampled twice.
This may cause undersmoothing and is therefore not recom-
mended (Wood, 2017). However, the manner in which the
mgcv GAM is implemented can be viewed as “empirical
Bayes” (Wood, 2017). This allows the calculation of point-
wise Bayesian credible intervals for the estimated model pa-
rameters using the standard error derived from the Bayesian
posterior covariance matrix (Wood, 2017; Simpson, 2018).
The pointwise Bayesian credible intervals have good fre-
quentist coverage probabilities when averaged across the
function domain but with over- and under-coverage in some
parts (Marra and Wood, 2012). In contrast, a simultaneous
Bayesian credible interval that contains the entire true func-
tion for a given credible level (1 —«) can be achieved by pos-
terior simulation from the posterior distribution of the model
coefficients (Simpson, 2018); this is the approach we adopt
in this study.

To simulate GAM coefficients, a Gaussian approximation
to the posterior for the coefficients is a computationally very
efficient approach but not recommended for spatial mod-
els with a logit link in the mgcv framework (Wood, 2015).
Therefore, we used a simple Metropolis—Hastings (MH)
sampler with random-walk proposals as implemented in the
mgcv: :gam.mh function, but we also calculated a Gaus-
sian approximation for comparison purposes (mgcv : : rmvn
function). The MH function reports two types of acceptance
rate: a fixed acceptance rate and a random-walk acceptance
rate (refer to Wood, 2015, for more details). The simulations
of the MH sampler are controlled by hyperparameters that
need to be tuned to achieve an optimal proposal distribution.
A proposal distribution is optimal for a random-walk accep-
tance rate of 23.4 %, while high values are to be achieved
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for the fixed acceptance rate (Roberts et al., 1997; Wood,
2015). Thus, the optimum of the hyperparameter tuning was
selected by minimising the sum of the absolute difference of
both acceptance rates to their optimal rates. For the tuning,
we set the initial burn-in period to 5000 simulations, the num-
ber of (actual) “simulated GAMs” to 10000, and optimised
rw.scale (random-walk scale factor for a posterior covari-
ance matrix) and t . df (degrees of freedom of the ¢ distribu-
tion) using a grid search. We defined a regular grid ranging
from 0.005 to 0.02 for rw. scale (step size of 0.0005, i.e.
31 total steps) and from 25 to 10 000 (step size of 25, i.e. 400
total steps) for t . df (in total 12 400 executions).

Furthermore, the simulation from the posterior distribution
allows us to derive the so-called critical value for each non-
parametric transformation function (Ruppert et al., 2003;
Simpson, 2018). The critical value is a factor which modifies
the pointwise Bayesian credible interval to achieve the simul-
taneous Bayesian credible interval for a given credible level.
A critical value greater than the coverage factor for a given
credible level means an underestimation of the true function
for the pointwise interval compared to the simultaneous in-
terval (e.g. critical value of 2.5 vs. coverage factor of 1.96 for
95 % credible level, 28 % underestimation; Simpson, 2018),
and large critical values may indicate particularly uncertain
predictors.

For the uncertainty cascade, landslide susceptibility pre-
diction uncertainty intervals were estimated as described in
the following. First, we classified the predictions of each
of the simulated GAM-Spatial models into (low, medium,
and) high landslide susceptibilities. And second, we derived
the 2.5th and 97.5th percentiles as lower and upper uncer-
tainty intervals of the corresponding storyline from the re-
sulting distribution of the high-landslide-susceptibility area
(i.e. 3 x 10000 values of high landslide susceptibility for
mean and percentiles of delta change factor distribution). Fi-
nally, to compare the different sources of uncertainty in the
uncertainty cascade, we calculated the following ratios:

R . width of Clyy 2
ViLsl = idth of Cly

R . width of Clcg 3)
CS:LsL = idth of Cly

where Ryv.1s and Rcs;1s denote the ratio of the uncer-
tainty width of within-event internal climate model variabil-
ity (CIyv) and scenario uncertainty (i.e. width of climate sig-
nals, Clcg), respectively, to the parametric uncertainty width
of the landslide model (CIyg)). The joint uncertainty distri-
bution of the landslide models’ parametric uncertainty and
within-event internal climate model variability is here re-
ferred to as the storyline uncertainty (Clstory).
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4 Results
4.1 Climate change uncertainty

We identified different patterns of delta change factor dis-
tributions depending on the considered hydrometeorological
variable and the storyline (Fig. 2).

The mean delta change factors (i.e. climate signals) for
5d rainfall and maximum 3 h rainfall intensity were gener-
ally lower in NO-CC and higher in the future relative to the
present-day climate (Table A3 in Appendix A). In the future
climate, with the exception of the GFDL model, the mean in-
crease ranged from 3 % (IPSL, PARIS) to 34 % (MIROC, 4 K
warming) for 5d rainfall and from 4 % (HadGEM, PARIS)
to 61 % (MIROC, 4K warming) for maximum 3h rain-
fall intensity. In NO-CC, with the exception of the GFDL
model, the changes were negative on average (i.e. factors
< 1). Specifically, mean decreases were between 3 % (IPSL)
and 6 % (HadGEM) for 5d rainfall and ranged from 10 %
(HadGEM) to 13 % (MIROC) for maximum 3 h rainfall in-
tensity. The averaged delta change factor of GFDL indicated
projected changes of 1 % in both meteorological variables
in NO-CC as well as future climates. For soil moisture, the
models projected on average drier soils in the future and wet-
ter soil in NO-CC relative to the present-day climate, with
the exception of HadGEM. IPSL in 3 K warming projected
the driest soils (—16 %, on average), and it also projected
the wettest soil conditions overall (42 %) in NO-CC, on av-
erage. Following Maraun et al. (2022), the hydrometeoro-
logical storylines for the future can thus be summarised as
(much) heavier rain (HadGEM, MIROC, IPSL) and (much)
drier soil (IPSL, GFDL, MIROC), although there were also
some neutral projections (rain: GFDL; soil: HadGEM; Ta-
ble A2 in Appendix A).

Regarding the 2.5th and 97.5th percentiles of the sto-
rylines’ delta change factor distributions (i.e. within-event
internal climate model variability), we discovered opposed
delta change factors in the GFDL storylines (Table A3 in Ap-
pendix A). Similarly, in the NO-CC and PARIS scenarios for
5d rainfall, all other climate models had contrasting delta
change factors, while for the maximum 3 h rainfall intensity
this was only the case for HadGEM and IPSL in PARIS. Re-
garding the percentiles of the soil moisture storylines, only
coherent delta change factors were found, yet some climate
signals were weak (e.g. nearly 1 for HadGEM).

4.2 Landslide susceptibility model

We established a spatial GAM using an optimised GP
smoother. The spatial structure of GAM-SM+TC residuals
was best described by a Gaussian correlation function with
an effective range of 524 m (® of 303 m). Nevertheless, the
other correlation models achieved nearly identical REML
scores with varying effective ranges (582 to 710 m, Table A4
in Appendix A and Fig. S2). The following subsections de-
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scribe the model assessment (Sect. 4.2.1) and the posterior
simulation of the coefficients (Sect. 4.2.2) for GAM-Spatial.
Detailed results for the other model settings (GAM-Co and
GAM-SM+TC) are included in the Supplement (Fig. S3).

4.2.1 Assessment of the landslide susceptibility model

GAM-Spatial achieved an outstanding discrimination capa-
bility with median AUROC (mAUROC) of 0.94 (Fig. 3a,
Table AS in Appendix A). The model’s five most important
variables in decreasing order were 5 d rainfall (10.8 % mDD),
forest type (8.8 % mDD), the spatial GP smoother (6 %
mDD, longitude and latitude), slope angle (5.5 % mDD), and
profile curvature (1.1 % mDD) (Fig. 3b). The hydromete-
orological variables maximum 3h rainfall intensity (0.9 %
mDD) and soil moisture ranked sixth and ninth (0.6 %
mDD), respectively (Table A6 in Appendix A).

Regarding the predictor—response relationships, for the
LULC variable, the chances (i.e. odds) of landslide occur-
rence were up to 0.04 times as low in forested areas as in non-
forest areas (Fig. 3c). For 5 d rainfall, the modelled chances
rise as rainfall increases up to 80 mm, where a plateau was
reached due to the top-coding of this variable. For maximum
3 h rainfall intensity and soil moisture, we identified a lin-
ear relationship with higher odds of landslide occurrence for
higher rainfall and soil moisture values, respectively, while
accounting for the other variables in the model (Fig. 3d).

Overall, the inclusion of the spatial GP smoother had lit-
tle impact on the model discrimination capability, relative
importance of variables, or the modelled relationships com-
pared to other model settings (Fig. S3).

4.2.2 Hyperparameter tuning for posterior simulation

The hyperparameter tuning for the posterior simulation al-
lowed us to identify an optimal region at rw.scale=
0.0095 and t . df between 6050 and 6100 (Fig. 4c). For the
random-walk acceptance rate, we discovered a non-linear re-
lationship of rw. scale to the random-walk acceptance rate
describing higher acceptance rates at lower rw.scale val-
ues, while changing t . df values had no effect (Figs. 4a, A3
in Appendix A). The fixed acceptance rate, in contrast, in-
creased with higher t . df values and reached a plateau at
t.df values around 2500 (Figs. 4b, A3 in Appendix A).
Considering the optimal rates, we identified three optima
with identical rw. scale values of 0.0095, a random-walk
acceptance rate of 23.24 %, and a fixed acceptance rate of
22.95 %, as well as nearly identical t .df values (6050,
6075, 6100; overall difference of 1.47 pp, Fig. 4c). There-
fore, we simulated coefficients based on the optimal hyperpa-
rameter values corresponding to the lowest t . df value (i.e.
6050).

The estimation of the critical values for the non-parametric
transformation functions according to Simpson (2018) re-
vealed a general agreement of the Gaussian approxima-
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tion (mgcv: :rmvn) and the simple Metropolis—Hastings
sampler (mgcv: : gam.mh) (Table A7). For GAM-Spatial’s
five most important variables, the critical values ranged be-
tween 3.7 (longitude, latitude) and 37.85 (5 d rainfall), which
corresponds to intervals that are approximately 88 % to
41831 % wider than the equivalent across-the-function in-
tervals for the 95 % credible level.

4.3 Uncertainty cascade in landslide predictions

The landslide susceptibility predictions of the simulated
GAM-Spatial models were classified into low, medium, and
high susceptibility (Petschko et al., 2014). The thresholds to
discriminate low from medium and medium from high land-
slide susceptibility were 0.16 and 0.57 on the probability
scale, respectively. In the following, we focus on the story-
lines of highly susceptible areas and their uncertainties (Fig.
5).

Regarding the present-day landslide susceptibility, around
4.9 % of the study area was highly susceptible to landslides
(Fig. 5a, Table A8 in Appendix A). In the NO-CC sce-
nario, high susceptibility was generally less common (4.4 %—
4.8 %), with the exception of GFDL, which showed a slightly
higher share (5.1 %).
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The projected future signal, in contrast, was less coherent.
In PARIS, the mean signal was similar to present-day sus-
ceptibility (—0.2 pp (percentage points difference in area) for
GFDL and +0.2 pp for HadGEM), while the mean changes
in 3 and 4 K warming were substantial. In 3 and 4 K warming,
GFDL and IPSL projected a decrease in the highly suscep-
tible area by up to —1.3 and —2.2pp (—27 % and —45 %),
respectively, while HadGEM and MIROC showed the oppo-
site signal with increases of up to +1.7 and +0.8 pp (435 %
and 416 %), respectively. The mean signals of climate mod-
els in a 3 K warmer world were lower than in 4 K. Addition-
ally, the considered LULC scenario resulted in a generally
smaller extent of highly susceptible areas (up to 0.5 pp).

Regarding the OR of the storylines relative to present-day
landslide susceptibility within the high-susceptibility class
(see Eq. 1), the pattern is similar to the change in susceptible
area but more coherent (Fig. 5b, Table A9 in Appendix A).
The chances of landslide occurrence in the NO-CC scenario
were 0.91 (HadGEM) to 0.98 times (IPSL) as high as in the
present-day settings (with the exception of GFDL with an
OR of 1.05), based on the modelled climate signals. For the
future, while in PARIS the ORs showed small effect sizes
(ORs between 0.97 for GFDL and 1.04 for HadGEM), in 3
and 4 K warming the effect sizes were medium to large. In

Nat. Hazards Earth Syst. Sci., 23, 205-229, 2023



214

R. Knevels et al.: Assessing uncertainties in landslide susceptibility predictions

(@) ] (b T
1.0 | °; 154
f i g
0.94 s
08 % 104 D land surface variable
o 7 ! e
8 : % |:| hydrometeorological variable
S 074 8
= 3
T 54 |:| land use/land cover
0.6 £
Q N
o Gaussian process
0.5 - e e o e
& 0
a
_' N B N
GAM-Spatial @K@ rb&\@ \\@6@ \\@@ ) \Q@
Models (folds-based) o2 ¢ & & &
R S 2 S &
& s «
00 \0(\
) ;
- 1
ifer - e
9 conifer :
S |
k] 1
c 1
& mixed forest{ e !
> |
[ 1
=] 1
'g |
K broadleaf{ re— !
1
0.00 0.25 0.50 0.75 1.00
odds ratio
@ 2] 2]
04
14
_5-
.~§,
— 1 0 <4
04
7
7
-154 ’
7/
7
// -1+
LA AN N {11111 000 oy
0 20 40 60 80 0 5 10 15 28 31 34 37

five-day rainfall (mm)

maximum three-hour rainfall intensity (mm h'1)

soil moisture (%)

Figure 3. Model diagnostics for GAM-Spatial. (a) Comparison of model performances (folds-based). (b) Top five most important variables
sorted by mean decrease in deviance explained (%). For an overview of all input variables, refer to Table A6. (¢) Comparison of predictor—
response relationships of LULC variables using odds ratios. (d) Comparison of predictor-response relationships of hydrometeorological
variables. Note that the y axes in panel (d) are plot-dependent. Estimates and predictor—response relationships for GAM-Co are based on
SpCV models in Knevels et al. (2020). In grey: 95 % pointwise Bayesian credible intervals.

the worst-case storyline, the chances of landslide occurrence
in highly susceptible areas was 1.37 times as high as in the
present day (i.e. for HadGEM in 4 K warming), while it was
0.60 times as high in the best-case storyline (i.e. for IPSL in
3 K warming).

Regarding the storyline uncertainty (Clstory, Fig. 5a, Ta-
ble A7 in Appendix A), for present-day landslide suscepti-
bility, the uncertainty width was from +1.4 pp (429 % area
change) to —1.1 pp (—22 %). While present-day predictions
were not affected by within-event internal climate model
variability and thus reflected only landslide model uncer-
tainty, the other storyline uncertainties accounted for both.
The largest uncertainty interval for NO-CC covered 3.0 pp
(GFDL). For the future, we identified larger uncertainty inter-
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vals with increased warming levels (largest intervals: PARIS,
3.2 pp for HadGEM; 3 K warming, 4.4 pp for MIROC; 4K
warming, 5.4 pp for MIROC).

Regarding the contributions of the uncertainty cascade in
the storylines, the uncertainty introduced by within-event in-
ternal climate model variability is around 0.13 (IPSL in 3K
warming) to 0.35 (HadGEM LULCC in 4 K warming) times
as large as parametric landslide model uncertainty (Ryv.Lg,
Fig. 5c, Table A10 in Appendix A; see Eq. 2). Instead, the
ratio of climate scenario uncertainty to parametric landslide
model uncertainty (Rcs;Lsl; see Eq. 3) showed a distinct pat-
tern depending on the scenario: for NO-CC and PARIS, the
uncertainty introduced by the climate models was lower rel-
ative to parametric landslide model uncertainties (ratios be-
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tween 0.28 and 0.34). Instead, for 3 K warming, the climate
scenario uncertainty was generally larger than the parametric
landslide model uncertainty with ratios between 1.05 (IPSL)
and 1.46 (GFDL LULCC) (excluding MIROC with a ratio
of 0.97). For 4K warming, while the climate scenario un-
certainty was larger than the landslide model uncertainties
for GFDL and GFDL LULCC (ratios of 1.23 and 1.38, re-
spectively), for the other models the ratios were equal to (i.e.
HadGEM LULCC) or lower than 1 (e.g. ratio of 0.77 for
MIROC).

5 Discussion
5.1 Landslide susceptibility in a changing environment

We identified different trends of projected landslide suscep-
tibility for future storylines relative to the present day, while
for the NO-CC storylines (i.e. pre-industrial, counterfactual
climate), landslide susceptibility was generally estimated to
be lower (exception: GFDL). For projected future changes
in hydrometeorological conditions (i.e. climate signals), the
storyline of much heavier rain showed the strongest increase
in affected highly susceptible area (4-35 %) with additionally
higher chances of landslide occurrence relative to present-
day susceptibility (OR of 1.37, HadGEM in 4 K). However,
the effect of much drier soil may compensate for heavier rain
and thus reduce the affected area (—45 %) and the chance
of landslide occurrence (OR of 0.6, IPSL in 3 K). The pro-
jected changes in highly susceptible areas and their magni-
tudes were in general agreement with the findings of Maraun
et al. (2022), who used a small part of our study area (Feld-
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bach region, 95th percentile for high-susceptibility thresh-
olding). For the worst- and best-case storylines, Maraun et al.
(2022) found changes of 445 % (4 K warming) and —37 %
(3K warming) in highly susceptible area and ORs of 1.66
(4K warming) and 0.8 (3 K warming) in landslide suscepti-
bility in those areas.

For other regions, some authors have projected an in-
creased landslide occurrence or affected area that is at-
tributable to climate change (Jaedicke et al., 2008; Lee,
2017), while other authors have found more complex patterns
that depend on the seasonal period and location under con-
sideration (Ciabatta et al., 2016; Gariano et al., 2017; Rianna
et al., 2017). Projected increases in slope failure probabil-
ity amounted to approximately 25 % for mountainous areas
in Norway (for 2050; Jaedicke et al., 2008) or 40 % for the
Umbria region in central Italy (for 1990-2013 to 2070-2099
under RCP8.5; Ciabatta et al., 2016), and an increase in sus-
ceptible area by around 32 % was projected for southwestern
Taiwan (for 2090; Lee, 2017). With a focus on seasonal dif-
ferences, Ciabatta et al. (2016) projected increases in land-
slide occurrence mainly in winter, while in the warm and wet
season, very low soil moisture (Ciabatta et al., 2016) and in-
creased evaporation (Rianna et al., 2017; for 2071-2100 un-
der RCP8.5) might even improve slope stability. Analysing
spatial patterns in Calabria, southern Italy, Gariano et al.
(2017) identified for around 27 % of the municipalities a
significant increase in rainfall-events with landslides (west-
ern part of the region and along the main mountain chains),
while for 38 % of the municipalities a reduction was esti-
mated (for 1981-2010 to 2036-2065 under RCP8.5). There-
fore, we agree with Schlogel et al. (2020) that projecting the
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Figure 5. Uncertainty assessment results for high landslide susceptibility. (a) Area of high landslide susceptibility with 95 % confidence
intervals (CIs) is based on within-event internal climate model variability (Clyy) and landslide model uncertainty (Clj q). (b) OR of land-
slide occurrence in highly susceptible areas relative to present-day landslide susceptibility. (c) Ratio of within-event internal climate model
variability (Rpy. g1, top; see Eq. 2) and climate scenario uncertainty (Rcs.[s], bottom; see Eq. 3) to landslide model uncertainty.

interplay between a natural hazard and climatic changes is ceptible areas). Such effects have also been reported by other
still a challenging task, especially if multiple triggers and lo- authors (Picarelli et al., 2017; Pisano et al., 2017; Gariano et
cally driven ground responses are present. al., 2018).

Regarding changes in LULC, our findings suggest that ac-
tive LULC management and afforestation may have a bene-
ficial effect on landslide occurrences (—0.5 pp in highly sus-
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5.2 Uncertainties of a changing environment

The analysis of uncertainties in landslide risk management
under environmental change is an important, yet often ne-
glected, task (Reichenbach et al., 2018). In particular, the
analysis of uncertainty cascades in integrated modelling is
still an open research gap with great potential to understand
and subsequently reduce uncertainty sources (Refsgaard et
al., 2016; Kirchner et al., 2021).

In our analysis, we could successfully quantify uncertainty
in landslide susceptibility predictions by accounting for para-
metric uncertainty in the landslide model and climate change
uncertainty (within-event internal model variability and sce-
nario uncertainty). However, we found the estimated uncer-
tainties in predictions to be generally high, which is not un-
usual for an uncertainty cascade (Refsgaard et al., 2016). Fur-
thermore, we discovered a tendency towards higher uncer-
tainty with increased warming level for both parametric un-
certainty and within-event internal climate model variability.
Uncertainty from within-event internal climate model vari-
ability was much lower than parametric uncertainty (Rry.Ls
of around 0.25). Additionally, parametric uncertainty even
exceeded scenario uncertainty for specific climate models
(e.g. Rcs:Ls1 of 0.77 for MIROC in 4K warming). Other
authors have reported similar uncertainty components in
the context of hydrological modelling under climate change
(Bastola et al., 2011; Refsgaard et al., 2016).

In the following subsection the uncertainties in climate
change modelling (Sect. 5.2.1) and landslide susceptibility
modelling (Sect. 5.2.2) are further discussed.

5.2.1 Climate change uncertainty

In climate change modelling, there were different sources of
uncertainty. We addressed uncertainties in climate sensitivity
or global climate response uncertainty by conditioning the
climate results on global warming levels, and thus we were
capable of approximately removing this uncertainty (Chen et
al., 2021; Maraun et al., 2022). Local climate response un-
certainties were represented by the simulation of storylines.
Furthermore, climate change projections are generally influ-
enced by scenario uncertainty and internal variability (Stain-
forth et al., 2007). Scenario uncertainty was accounted for
by considering landslide susceptibility conditional on dif-
ferent levels of global warming. Internal variability mainly
arises from large-scale circulation (Shepherd, 2014), which
was kept fixed and thus removed. Uncertainties related to the
influence of within-event internal variability on local changes
can effectively be removed (i.e. by averaging across the en-
semble members; Maraun et al., 2022) but were explicitly
addressed in this study by accounting for the delta change
factor distribution estimated for all possible pairs of a climate
model’s simulation.

We discovered that in our case study, the climate signal
of the hydrometeorological variables showed generally more
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and intensified precipitation and a drier soil in future story-
lines (in contrast to the NO-CC storylines), which was also
reported for extreme rainfall events in other regions (Ciabatta
et al., 2016; Rianna et al., 2017; Olefs et al., 2021). However,
regarding the within-event internal climate model variability,
contrasting delta change factors were identified mainly for
NO-CC and PARIS storylines and especially for the variable
5 d rainfall. While for NO-CC the contrasting delta change
factors showed that there is a low but non-zero probability
that a similar event without climate change could be locally
stronger than the actual event in the present climate, it means
for the targeted 0.5 K warming limitation (Paris Agreement)
that an event may unfold locally more weakly than under the
present climate. Furthermore, the contrasting delta change
factors of the GFDL climate model (in all storylines and
for both meteorological variables) clearly indicate the impor-
tance of a careful selection of multiple, reliable climate mod-
els. The availability of multiple storylines ultimately avoids
an under- or overestimation of the projected landslide activ-
ity (Gariano et al., 2017).

5.2.2 Landslide susceptibility model uncertainty

In a climate change context, uncertainties from a landslide
model arise from model structure and parametric uncertainty
under extrapolation (Maraun and Widmann, 2018). While
parametric uncertainty results from the finite sample and the
fact that the observed landslide distribution was a realisation
of a stochastic process, structural uncertainty comprises the
presence of physically plausible climatic predictor—response
relationships for environmental change conditions (Maraun
et al., 2022). Additionally, by calibrating the landslide model
on two rainfall events (2009 and 2014, with different hy-
drometeorological conditions), we adjusted the model as far
as possible for extrapolation purposes.

For the assessment of the parametric uncertainty, we sim-
ulated from the posterior distribution of coefficients us-
ing a Metropolis—Hastings sampler. For the most important
predictor—response relationships, we identified simultaneous
Bayesian credible intervals that were by far larger than the
corresponding pointwise intervals at a 95 % credible level
(£88 % to 1831 %), which explained the generally high
parametric uncertainty. Especially, the predictor-response re-
lationship of 5d rainfall appeared very uncertain (critical
value of 37.8, Table A7 in Appendix A), while the simul-
taneous Bayesian credible intervals of the other hydromete-
orological variables were only marginally wider than their
pointwise counterparts. Furthermore, the top-coding of the
variable at 80 mm additionally increased the parametric un-
certainty (cf. critical value of 22.7 for GAM-SM, i.e. no top-
coding of 5 d rainfall). Moreover, with the application of both
higher and lower delta change factors in the higher warm-
ing levels, predictor values shifted towards the bounds of the
training distribution, where data tend to be sparse and, there-
fore, uncertainty increases.
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For the reduction in structural uncertainty, we applied a
physically plausible statistical landslide model that allowed
us to assess the landslide response in a changing climate by
varying hydrometeorological predictors. Especially, the use
of moisture-related predisposing factors is an important yet
an often missed requirement in event-based landslide mod-
elling (Bogaard and Greco, 2018). For the variable 5 d rain-
fall, we top-coded the value range at 80 mm to remove im-
plausible fluctuations beyond that threshold (Maraun et al.,
2022). A similar relationship of unchanged slope conditions
with higher rainfall was also identified in Lee (2017) (de-
scribed as a Weibull cumulative distribution function). For
the soil moisture variable, we identified a linear predictor—
response relationship showing higher landslide occurrence
probability with higher soil moisture values. However, other
authors reported a more complex soil moisture relationship
due to the interplay with temperature (e.g. desiccation crack-
ing; Tang et al., 2018; Debele et al., 2019) or soil texture
(coarse-grained vs. fine-grained soil; Rianna et al., 2016),
which affects geomechanical characteristics and thus slope
stability. Besides, the soil moisture variable had only a mod-
erate explanatory power (0.6 % mDD), although antecedent
soil moisture conditions had likely contributed to the land-
slide event’s severity (Hornich and Adelwohrer, 2010). We
suggest that the thematic and spatial resolution of the soil
moisture estimated by HRLDAS (Schaffer, 2021; Maraun et
al., 2022) was too coarse to capture the “true” soil moisture
in the field and that additional, high-resolution soil physical
parameters may have the potential to improve the modelled
relationship (e.g, soil type, infiltration capacity, permeability,
hydraulic conductivity).

Another source of structural uncertainty is the simpli-
fied representation of LULC as only four forest types (no,
broadleaved, conifer, or mixed forest). According to Crozier
(2010), the impact of human activity on slope stability is
believed to be equal to or even higher than effects of cli-
mate change. Additionally, human disturbances did certainly
contribute to causing some of the observed landslides (Hor-
nich and Adelwohrer, 2010). The Styrian state government
projects an overall increase in the region’s population until
the year 2060 (by +2.5 %), while peripheral regions are ex-
pected to show a decrease (Amt der Steiermérkischen Lan-
desregierung, 2020). Demographic and economic changes
may alter the regional demand for land for urban develop-
ment, affecting the landscape composition. However, since
detailed information on landscape impacts due to human dis-
turbance and socio-economic pathways was not available, we
had to assume changes due to such anthropogenic factors to
be constant throughout our analysis.

5.3 Model assessment
In this study, we successfully modified a GAM for landslide

susceptibility analysis to explicitly account for spatial auto-
correlation effects using a GP component (GAM-Spatial) —
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an often missed feature in landslide susceptibility modelling
(Reichenbach et al., 2018). The spatial GP component ex-
plained a meaningful fraction of the deviance (6 % mDD),
indicating that a spatial pattern remained unaccounted for by
the other predictors in the model. Furthermore, the modified
GAM showed similar predictor-response relationships and
variable importance as well as an outstanding discrimination
skill (mAUROC of 0.94) comparable to GAMs used in previ-
ous studies (Knevels et al., 2020; Maraun et al., 2022), con-
firming the general reliability of the landslide susceptibility
model. Additionally, the time-varying modelling perspective
on (conditional) landslide susceptibility as recommended by
various authors (Gariano and Guzzetti, 2016; Reichenbach et
al., 2018; Jones et al., 2021; Ozturk et al., 2021) allowed us
to analyse the effects of LULC and climate change dynamics.

For the assessment of the uncertainties related to
GAM-Spatial, we identified and applied optimal hy-
perparameters for a simple Metropolis—Hastings sampler
(mgcv: :gam.mh function in R) to stochastically simulate
GAMs by approximating the posterior distribution of the co-
efficients, as this approach is recommended for logit link
functions (Wood, 2015). However, the identified very large
optimal hyperparameter value for t .df (i.e. 6050 degrees
of freedom of the ¢ distribution) indicated a nearly Gaussian
approximation for the posterior distribution. Furthermore, re-
garding the similarity in the critical values for simultane-
ous intervals between the Metropolis—Hastings sampler and
a simple Gaussian approximation (mgcv: : rmvn function
in R, Table A7 in Appendix A), the effort put into tuning and
applying the Metropolis—Hastings sampler is worth reconsid-
ering in future studies with similar settings.

5.4 Applicability

The presented methodological approaches are generally ap-
plicable to other regions. However, the established landslide
susceptibility model was based on only two landslide-event
inventories at the regional scale for a single study area. Thus,
the projected uncertainties and effects of climate and LULC
change on rainfall-induced landslide occurrences may be
specific to the local geological and geomorphological setting.
With a greater awareness of the need for a reliable landslide-
event inventory and with additional landslides surveyed in
the future, a more generalisable and less uncertain landslide
model may be established.

As a practical application, the prediction of landslide sus-
ceptibility, its projections of change in area and magnitude
with climate change, and its uncertainties may provide im-
portant tools for planners and decision-makers. With the cho-
sen approach it is possible not only to consider susceptibility
maps statically and retrospectively but also to project them
into the future, which is an essential prerequisite for climate
change adaptation in the context of slope stability. In the spa-
tial context, recommendations for the construction of new
settlement infrastructure may be derived based on a map, and
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zones of high landslide susceptibility along with uncertainty
graphs (Fig. S7) can be communicated to local planners and
environmental managers (cf. Petschko et al., 2014). In the en-
gineering context, grey (e.g. engineering structure) or green
(e.g. forest management) approaches may be considered a
scenario, and their effectiveness for potential slope stabilisa-
tion on a regional scale may be assessed (cf. Debele et al.,
2019). Such development scenarios also enable the analysis
of the exposure of elements at risk, potential mitigation mea-
surements, and sustainable adaptations plans.

6 Conclusions

In this study, we analysed uncertainties in storylines of high
landslide susceptibility in a changing environment. We estab-
lished a landslide model based on two large rainfall-triggered
landslide events in the Styrian Basin (2009 and 2014), show-
ing the direct link of hydrometeorological and LULC pat-
terns to landslide occurrences while also accounting for
residual spatial autocorrelation. We identified distinct signals
of projected changes in highly susceptible areas depending
on the storyline. In the worst case of 4 K warming, much
heavier rain may cause an increase of 35 % in highly sus-
ceptible area with additionally 37 % higher chances of land-
slide occurrence (HadGEM), while much drier soils might
even over-compensate for this effect, leading to more sta-
ble slopes (IPSL in 3 K warming, OR of 0.6 and —45 % in
high-landslide-susceptibility area). Proactive land-use man-
agement (i.e. afforestation and climate-resilient forest con-
version) has the potential to reduce the extent of highly sus-
ceptible areas. In the NO-CC scenario (i.e. pre-industrial,
counterfactual climate), the high susceptibility was generally
estimated to be lower (exception: GFDL).

The assessed landslide susceptibility uncertainty ac-
counted for climate change and parametric landslide model
uncertainty, and its uncertainty cascade was generally high.
Even though for some climate models and hydrometeorolog-
ical variables, within-event internal climate model variabil-
ity showed opposed delta change factors (e.g. GFDL for 5d
rainfall in PARIS), their associated uncertainties in the land-
slide predictions were by far lower than uncertainties aris-
ing from the landslide model (ratio of around 0.25). Further-
more, parametric landslide model uncertainty was found to
be of the same order as the climate scenario uncertainty in
the higher warming level (+3 and +4 K). In particular, the
most important predictor—response relationship, the 5 d rain-
fall, was identified to be the most uncertain not only for the
landslide susceptibility model but also in the within-event in-
ternal climate model variability assessment. For studies fo-
cusing on the climate signal or forced change, within-event
internal climate model variability can be accounted for by av-
eraging across the ensemble members (Maraun et al., 2022).

The compound characteristic of the extreme weather event
in the Styrian Basin in 2009 made an integrated modelling
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framework necessary. The assessment of future landslide oc-
currences and their associated uncertainties considering en-
vironmental change is a challenging task due to its com-
plexity, its feedbacks, and the requirement to involve mul-
tiple disciplines and their associated methodological uncer-
tainties. However, the analysis of compound events and their
uncertainties is crucial to understanding and improving the
underlying key processes and thus needed to support lo-
cal decision-makers and spatial planners in risk assessment
(Zscheischler et al., 2020; Kirchner et al., 2021). With a
higher awareness of the local institutes for the creation of re-
liable landslide inventories and the support of high-resolution
ground data, model uncertainties may be reduced.

Appendix A

Table A1. Overview of landslide susceptibility models.

GAM Variables Reference

GAM-Co land surface variables,
meteorological variables,

geology, LULC

Knevels et al. (2020)

GAM-SM GAM-Co, Maraun et al. (2022)
soil moisture
GAM-SM+TC GAM-SM, 5 d rainfall Maraun et al. (2022)

80 mm top-coded

GAM-Spatial GAM-SM+TC, Gaussian

process smoother

this study
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Figure A1. Overview of the proposed landslide susceptibility prediction and uncertainty assessment.
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Figure A2. Response—predictor relationships of 5 d rainfall. (a) GAM-Co from Knevels et al. (2020) and (b) enlarged. (c) GAM-SM from
Maraun et al. (2022) (enlarged). (d) GAM-Spatial from this study. Note that 95 % pointwise Bayesian credible intervals are plotted for
panels (c) and (d).

Table A2. Hydrometeorological storylines for the projected future climate.

Climate model 5 d rainfall Maximum 3 h Soil  Description
rainfall intensity ~ moisture

HadGEM2-CC ++ ++ ~  much heavier rain
MIROC-ESM ++ ++ —  much heavier rain, drier soil
IPSL-CM5A-MR + ++ ——  heavier rain, much drier soil
GFDL-ESM2M ~ ~ —  drier soil

++ Strong increase. + Increase. ~ No change. — Decrease. — Strong decrease. Adopted from Maraun et al. (2022).

Table A3. Delta change factors of hydrometeorological variables.

Climate model NO-CC PARIS 3K 4K

5 d rainfall

GFDL-ESM2M  0.99[0.93, 1.06]°  1.01 [0.93, 1.08]°  1.01[0.92, 1.09]°  1.00 [0.89, 1.07]°
HadGEM2-CC  0.94[0.89, 1.00]°  1.03[0.95, 1.11]°  1.21[1.07, 1.31] 1.28[1.11, 1.39]
IPSL-CM5A-MR  0.97 [0.88, 1.04]°  1.03 [0.97, 1.10]°  1.08 [1.04, 1.16] 1.10 [1.06, 1.18]
MIROC-ESM 0.95[0.86, 1.02]°  1.04[0.98, 1.12]°  1.24[1.19, 1.33] 1.34[1.29, 1.45]

Maximum 3 h rainfall intensity

GFDL-ESM2M  0.99[0.92, 1.04]  1.00 [0.94, 1.07]%¢  1.00 [0.85, 1.08]>¢  0.99 [0.94, 1.06]¢
HadGEM2-CC  0.90[0.85,0.96]  1.04[0.97, 1.13]°  1.31[1.19, 1.41] 1.42[1.29, 1.55]
IPSL-CM5A-MR  0.87[0.82,0.93]  1.06[1.00, 1.13]°  1.32[1.23, 1.41] 1.44[1.34, 1.55]
MIROC-ESM 0.87[0.81,0.93]  1.08 [1.02, 1.14] 1.39[1.28, 1.51] 1.61[1.47, 1.75]

Soil moisture

GFDL-ESM2M 1.01 [1.01, 1.01] 0.99[0.99, 0.99] 0.94 [0.94, 0.94] 0.95[0.94, 0.95]
HadGEM2-CC 1.00 [1.00, 1.00]>  1.00 [1.00, 1.00]2 0.99 [0.99, 0.99] 1.00 [1.00, 1.00]*
IPSL-CM5A-MR  1.02[1.01, 1.02] 0.98 [0.98, 0.99] 0.84 [0.84, 0.84] 0.89 [0.89, 0.89]
MIROC-ESM 1.01[1.01, 1.01] 0.99 [0.99, 0.99] 0.96 [0.96, 0.96] 0.94 [0.94, 0.94]

4 Mean greater than 1. b Mean lower than 1. ¢ The 2.5th or 97.5th percentile showed contrasting delta change factors.
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Table A4. Effective ranges of correlation functions.

Correlation function REML score ®  Effective range
Sph 3441.01 717 581.77
Exp 344483 237 709.99
Gau 3438.3 303 524.44
Matl 3438.99 126 597.73
Mat2 3438.32 103 609.62
Mat3 3438.59 88 605.15

Effective range was estimated using the R function
StempCens: :Ef fectiveRange for a correlation < 0.05.

Table AS. Performance assessment (folds-based).

Model X X Range Min Max IQR
GAM-Spatial 094 093 0.26 073 1 0.04
GAM-SM+TC 094 094 0.15 085 1 0.02
GAM-Co 094 094 0.15 0.84 099 0.02

Statistics: median (¥), mean (¥), range (Range), minimum (Min), maximum (Max),
interquartile range (IQR).

Table A6. Variable importance.

Variable GAM-Spatial GAM-SM+TC  GAM-Co

Land surface variables

Convergence index, 100 m 0.12 (12) 0.29 (11) 0.34 (10)
Convergence index, 500 m 0.00 (18)* 0.00 (16)* 0.30 (11)
Curvature, plan 0.00 (15)* 0.00 (14)* 0.21 (14)
Curvature, profile 1.09 (5) 1.40 (4) 1.31 4)
Flow accumulation, logarithmised ~ 0.01 (13)* 0.01 (12)* 0.27 (13)
Normalised height 0.56 (10) 0.70 (8) 0.55(9)
Slope angle 5.48 (4) 7.09 (3) 5.31(3)
Slope angle, catchment area 0.00 (17)* 0.00 (15)* 0.08 (16)
Slope aspect, S-N 0.00 (14)* 0.00 (17)* 0.09 (15)
Slope aspect, W-E 0.00 (16)* 0.00 (13)* 0.27 (12)
TPI 0.33 (11) 0.46 (10) 0.66 (8)
SWI 0.76 (8) 0.85(7) 0.71 (7)

Hydrometeorological variables

5 d rainfall 10.76 (1) 12.74 (1) 15.13 (1)
Maximum 3 h rainfall intensity 0.85 (6) 1.25(5) 1.05 (5)
Soil moisture 0.6 (9) 0.57 (9)

Geology

Geology 0.82 (7) 1.06 (6) 0.73 (6)

Land use/land cover

Forest type 8.8 (2) 10.73 (2) 8.57 (2)

Gaussian process smooth

Longitude, latitude 5.98 (3)

Variable importance measured in mean decrease in deviance explained (%), rank of variable in parentheses.
Note that estimates for GAM-Co were based on SpCV models in Knevels et al. (2020). * Model term was
shrunk to zero.
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Figure A3. Relationship of mgcv: : gam.mh’s hyperparameter values to acceptance rates. Dashed blue line: smooth function.

Table A7. Critical values for simultaneous credible intervals of non-parametric transformation functions at the 95 % credible level.

Variable GAM-Spatial GAM-SM
gam.mh rmvn rmvn

Land surface variables

Convergence index, 100 m 1.982 (1.01) 1.922 (0.98) 3.178 (1.62)

Convergence index, 500 m
Curvature, plan

0.008* (0.00)
0.030* (0.02)

Curvature, profile 4.348 (2.22)
Flow accumulation, logarithmised ~ 1.102* (0.56)
Normalised height 2.046 (1.04)
Slope angle 7.104 (3.62)

Slope angle, catchment area
Slope aspect, S—-N
Slope aspect, W-E

0.021* (0.01)
0.005* (0.00)
0.002* (0.00)

0.008* (0.00)
0.028* (0.01)
4.120 (2.10)
1.082* (0.55)
1.987 (1.01)
6.724 (3.43)
0.021* (0.01)
0.005* (0.00)
0.002* (0.00)

0.017* (0.00)
0.075* (0.04)
5.419 (2.77)
1.825% (0.93)
3.171 (1.62)
9.542 (4.87)
0.062* (0.03)
0.010* (0.01)
0.005* (0.00)

TPI 4.089 (2.09) 3.848 (1.96) 5.168 (2.64)
SWI 3.081 (1.57) 2.979 (1.52) 3.325 (1.70)
Hydrometeorological variables

5 d rainfall 37.846 (19.31) 35.422(18.07) 22.650 (11.56)
Maximum 3 h rainfall intensity 2.149 (1.10) 2.068 (1.05) 3.003 (1.53)
Soil moisture 2.451 (1.25) 2.388 (1.22) 2.439 (1.24)
Gaussian process smooth

Longitude, latitude 3.691 (1.88) 3.616 (1.84)

Critical values are estimated at the 95 % credible level; mgcv: : gam.mh: simple posterior simulation with gam fits;

mgcv: : rmvn: generate from or evaluate multivariate normal or ¢ densities. Note that the default coverage factor is
1.96 for the 95 % credible level. Parentheses show the ratio to the default. * Model term was shrunk to zero.
GAM-SM: GAM-Co including soil moisture but no top-coded 5 d rainfall.
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Table A8. Uncertainty in predicted highly landslide susceptible area.

Scenario GFDL GFDL HadGEM HadGEM IPSL IPSL  MIROC MIROC
LULCC LULCC LULCC LULCC
NO-CC 5.1 4.4 4.8 4.7
(3.8, 6.8] [3.2,6.1] (3.6, 6.4] (3.5, 6.3]
PARIS 4.7 43 5.1 4.6 4.7 43 5.0 45
[34,65] [3.1,59] [3.7.69] [34,63] [34,6.6] [3.1,60] [3.6,68] [3.3,62]
3K 3.6 33 5.9 54 2.7 2.5 5.4 4.9
[2.1,54] [1.9,49] [4.1,82] [3.8,7.6] [1.3,50] [1.1,4.6] [3.580] [3.2,7.4]
4K 37 33 6.6 6.1 4.0 3.7 5.7 5.3

[2.4,54] [22,49] [4.6,93] [42,87] [22,6.7] [2.0,6.2] [3.589] [3.2, 8.4.1]

Note that the area is relative to the total study area. The 95 % ClIs are based on within-event internal climate model variability and parametric
landslide model uncertainty (i.e. Clgory)- For results for low, medium, and high landslide susceptibility, please refer to Table S1.

Table A9. Odds ratios of landslide occurrences of the high-susceptibility class relative to present-day high landslide susceptibility.

Scenario GFDL GFDL HadGEM HadGEM IPSL IPSL MIROC MIROC
LULCC LULCC LULCC LULCC
NO-CC 1.05 0.91 0.98 0.96
[1.00, 1.10] [0.87, 0.96] [0.93, 1.03] [0.92, 1.01]
PARIS 0.97 0.95 1.04 1.03 0.97 0.96 1.02 1.01
[0.92,1.02] [0.91,1.01] [0.98,1.11] [0.96,1.09] [0.92,1.03] [091,1.02] [0.97,1.07] [0.96, 1.06]
3K 0.75 0.74 1.22 1.20 0.60 0.60 1.11 1.10
[0.67,0.8] [0.66,0.79] [1.12,1.32] [1.1,1.3] [0.55,0.65] [0.55,0.65] [1.02,1.22] [1.01,1.21]
4K 0.77 0.76 1.37 1.35 0.85 0.85 1.20 1.19

[0.73,0.81]  [0.72,0.8] [1.24,1.52] [1.23,1.5] [0.78,0.93] [0.78,0.93] [1.08,1.33] [1.08,1.32]

Note that 95 % Cls are based on within-event internal climate model variability (i.e. Clyy). For results for low, medium, and high landslide susceptibility, please refer to
Table S2.

Table A10. Ratio of uncertainty sources in predicted high landslide susceptibility.

Scenario GFDL GFDL HadGEM HadGEM IPSL IPSL MIROC MIROC
LULCC LULCC LULCC LULCC

Riv:Lsi | Res:Lsi

NO-CC  0.2010.28 0.18 10.28 0.20 10.29 0.22 10.29

PARIS 0.1910.30 0.20]0.34 0241030 0.25]0.33 0.19]029 020032 0.18]0.29 0.18 | 0.31
3K 0251]1.28 027|146 029]1.07 029]1.15 0.13]1.02 0.13]1.11 0.26]097 0.27 |1.05
4K 0.15]1.23 0.16 |1.38 034092 035]1.00 0.19 086 0.20]0.95 0.2710.77 0.28 | 0.82

Ryy.Lg1: within-event internal climate variability to landslide model uncertainty (see Eq. 2). Rcs;| ¢ climate scenario to landslide model uncertainty (see Eq. 3). For
results for low, medium, and high landslide susceptibility, please refer to Table S3.
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Code and data availability. The calibrated land-
slide  susceptibility = models can be accessed from
https://doi.org/10.5281/zenodo.6365228 (Knevels et al., 2022).
Landslide data can be requested from the state of Styria
(raimund.adelwoehrer@stmk.gv.at), the Geological Survey (GBA,
arben.kociu@geolba.ac.at), and the Institute of Military Geoin-
formation (IMG, helene.kautz@bmlv.gv.at). Rainfall data from
the Integrated Nowecasting through Comprehensive Analysis
(INCA) system are available from the Central Institute for
Meteorology and Geodynamics (https://data.hub.zamg.ac.at,
last access: 20 May 2022; Haiden et al., 2010). Climate model
data for the IFS (Integrated Forecasting System) boundary con-
ditions for the CCLM RCM can be obtained from ECMWF
(https://www.ecmwf.int/en/forecasts/datasets  (cycle35r2), last
access: 20 May 2022; Bechtold et al., 2008); ERAS and ERA-
Interim reanalysis data from ECMWF are available from https:
/Iwww.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
(last access: 20 May 2022; Hersbach et al, 2020; Dee
et al., 2011), and data from the chosen CMIP5 GCM
simulations can be downloaded from the Climate and
Environmental Retrieval and Archive (CERA) Database
(https://cera-www.dkrz.de/WDCC/ui/cerasearch,  last  access:
20 May 2022; Taylor et al., 2009).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-23-205-2023-supplement.
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