Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1817-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-1817-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of preconditioning for extreme storm surges in the western Baltic Sea
Elin Andrée
Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen, Denmark
Dept. of Technology, Management and Economics, Produktionstorvet, Technical University of Denmark, Building 424, 2800 Kgs. Lyngby, Denmark
Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen, Denmark
Morten Andreas Dahl Larsen
Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen, Denmark
Dept. of Technology, Management and Economics, Produktionstorvet, Technical University of Denmark, Building 424, 2800 Kgs. Lyngby, Denmark
Dept. of Technology, Management and Economics, Produktionstorvet, Technical University of Denmark, Building 424, 2800 Kgs. Lyngby, Denmark
Martin Stendel
Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen, Denmark
Kristine Skovgaard Madsen
Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen, Denmark
Related authors
No articles found.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024, https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Short summary
Coastal floods occur due to extreme sea levels (ESLs) which are difficult to predict because of their rarity. Long records of accurate sea levels at the local scale increase ESL predictability. Here, we apply a machine learning technique to extend sea level observation data in the past based on a neighbouring tide gauge. We compared the results with a linear model. We conclude that both models give reasonable results with a better accuracy towards the extremes for the machine learning model.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Lea Skraep Svenningsen, Lisa Bay, Mads Lykke Doemgaard, Kirsten Halsnaes, Per Skougaard Kaspersen, and Morten Dahl Larsen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-30, https://doi.org/10.5194/nhess-2020-30, 2020
Publication in NHESS not foreseen
Short summary
Short summary
This study provides rigorous and detailed econometric estimates of damage costs for residential buildings resulting from a storm surge in Denmark, December 2013. Our results indicate that the isolated effect of inundation depth on damage costs is highly sensitive to the inclusion of other explanatory variables. Our findings highlight the importance of controlling for spatial effects, such as the level of emergency services and socio-economic conditions.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, and Gorm Dybkjær
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-126, https://doi.org/10.5194/tc-2019-126, 2019
Revised manuscript not accepted
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic, ice covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite derived T2m product covers clear sky snow and ice surfaces in the Arctic for the period 2000–2009.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus Tonboe, Gorm Dybkjær, and Emy Alerskans
The Cryosphere, 13, 1005–1024, https://doi.org/10.5194/tc-13-1005-2019, https://doi.org/10.5194/tc-13-1005-2019, 2019
Short summary
Short summary
The paper facilitates the construction of a satellite-derived 2 m air temperature (T2m) product for Arctic snow/ice areas. The relationship between skin temperature (Tskin) and T2m is analysed using weather stations. The main factors influencing the relationship are seasonal variations, wind speed and clouds. A clear-sky bias is estimated to assess the effect of cloud-limited satellite observations. The results are valuable when validating satellite Tskin or estimating T2m from satellite Tskin.
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019, https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
Per Skougaard Kaspersen, Nanna Høegh Ravn, Karsten Arnbjerg-Nielsen, Henrik Madsen, and Martin Drews
Hydrol. Earth Syst. Sci., 21, 4131–4147, https://doi.org/10.5194/hess-21-4131-2017, https://doi.org/10.5194/hess-21-4131-2017, 2017
S. Westermann, B. Elberling, S. Højlund Pedersen, M. Stendel, B. U. Hansen, and G. E. Liston
The Cryosphere, 9, 719–735, https://doi.org/10.5194/tc-9-719-2015, https://doi.org/10.5194/tc-9-719-2015, 2015
Short summary
Short summary
The development of ground temperatures in permafrost areas is influenced by many factors varying on different spatial and temporal scales. We present numerical simulations of ground temperatures for the Zackenberg valley in NE Greenland, which take into account the spatial variability of snow depths, surface and ground properties at a scale of 10m. The ensemble of the model grid cells suggests a spatial variability of annual average ground temperatures of up to 5°C.
M. A. D. Larsen, J. C. Refsgaard, M. Drews, M. B. Butts, K. H. Jensen, J. H. Christensen, and O. B. Christensen
Hydrol. Earth Syst. Sci., 18, 4733–4749, https://doi.org/10.5194/hess-18-4733-2014, https://doi.org/10.5194/hess-18-4733-2014, 2014
Short summary
Short summary
The paper presents results from a novel dynamical coupling between a hydrology model and a regional climate model developed to include a wider range of processes, land-surface/atmosphere interaction and finer spatio-temporal scales. The coupled performance was largely dependent on the data exchange frequency between the two model components, and longer-term precipitation was somewhat improved by the coupled system whereas the short-term dynamics for a range of variables was less accurate.
Related subject area
Sea, Ocean and Coastal Hazards
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Regional modelling of extreme sea levels induced by hurricanes
New insights into combined surfzone, embayment, and estuarine bathing hazards
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
A brief history of tsunamis in the Vanuatu Arc
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Influence of data source and copula statistics on estimates of compound flood extremes in a river mouth environment
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Review Article: A Comprehensive Review of Compound Flooding Literature with a Focus on Coastal and Estuarine Regions
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Revisiting regression methods for estimating long-term trends in sea surface temperature
Global application of a regional frequency analysis to extreme sea levels
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Tsunami detection methods for Ocean-Bottom Pressure Gauges
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Simulating sea level extremes from synthetic low-pressure systems
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
The potential of global coastal flood risk reduction using various DRR measures
Thresholds for estuarine compound flooding using a combined hydrodynamic–statistical modelling approach
Nearshore tsunami amplitudes across the Maldives archipelago due to worst-case seismic scenarios in the Indian Ocean
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data
Proposal for a new meteotsunami intensity index
Probabilistic Tsunami Hazard Analysis of Batukaras Village as a Tourism Village in Indonesia
Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup
Hurricane Irma: an unprecedented event over the last 3700 years? Geomorphological changes and sedimentological record in Codrington Lagoon, Barbuda
Bayesian extreme value analysis of extreme sea levels along the German Baltic coast using historical information
Storm characteristics influence nitrogen removal in an urban estuarine environment
A new European coastal flood database for low–medium intensity events
Boulder transport and wave height of a seventeenth-century South China Sea tsunami on Penghu Islands, Taiwan
A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach
Human displacements from Tropical Cyclone Idai attributable to climate change
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joint probability analysis of storm surges and waves caused by tropical cyclones for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and the island of Hainan in China
Meteotsunami in the United Kingdom: the hidden hazard
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Bayesian hierarchical modelling of sea-level extremes in the Finnish coastal region
Assessing the coastal hazard of Medicane Ianos through ensemble modelling
A predictive equation for wave setup using genetic programming
Contribution of solitons to enhanced rogue wave occurrence in shallow depths: a case study in the southern North Sea
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025, https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary
Short summary
The present work, developed within the EU H2020 European Coastal Flood Awareness System (ECFAS) project, presents an approach used to estimate direct impacts of coastal flood on population, buildings, and roads along European coasts. The findings demonstrate that the ECFAS impact approach offers valuable estimates for affected populations, reliable damage assessments for buildings and roads, and improved accuracy compared to traditional grid-based approaches.
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024, https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Short summary
Shorelines retreat or advance in response to sea level changes, subsidence or uplift of the ground, and morphological processes (sedimentation and erosion). We show that the geometrical influence of each of these drivers on shoreline movements can be quantified by combining different remote sensing observations, including radar altimetry, lidar and optical satellite images. The focus here is to illustrate the uncertainties of these observations by comparing datasets that cover similar processes.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024, https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Short summary
Currents at beaches with an estuary mouth have rarely been studied before. Using field measurements and computer modelling, we show that surfzone currents can be driven by both estuary flow and rip currents. We show that an estuary mouth beach can have flows reaching 1.5 m s−1 and have a high likelihood of taking bathers out of the surfzone. The river channels on the beach direct the flows, and even though they change position over time, it was possible to predict when peak hazards would occur.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024, https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein, including dike failures. Recent studies on coastal flooding from the same region align well with the October 2023 surge, with differences in peak water levels of less than 30 cm. This rare coincidence is used to assess current capabilities and limitations of coastal flood modelling and derive key areas for future research.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024, https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Short summary
Accurate predictions of wave-driven flooding are essential to manage risk on low-lying, reef-lined coasts. Models to provide this information are, however, computationally expensive. We present and validate a modeling system that simulates flood drivers on diverse and complex reef-lined coasts as competently as a full-physics model but at a fraction of the computational cost to run. This development paves the way for application in large-scale early-warning systems and flood risk assessments.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024, https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Short summary
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247, https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024, https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Short summary
We coupled earth system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging system, especially when the wind direction aligns with the surge propagation direction.
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024, https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Short summary
Monitoring the long-term trends in sea surface warming is crucial for informed decision-making and adaptation. This study offers a comprehensive examination of prevalent trend extraction methods. We identify the least-squares regression as suitable for general tasks yet highlight the need to address seasonal signal-induced bias, i.e., the phase–distance imbalance. Our developed method, evaluated using simulated and real data, is unbiased and better than the conventional SST anomaly method.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024, https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
Short summary
The purpose of this study is to estimate the spatial distribution of the tsunami hazard in the South China Sea from the Manila subduction zone. The plate motion data are used to invert the degree of locking on the fault plane. The degree of locking is used to estimate the maximum possible magnitude of earthquakes and describe the slip distribution. A spatial distribution map of the 1000-year return period tsunami wave height in the South China Sea was obtained by tsunami hazard assessment.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-113, https://doi.org/10.5194/nhess-2024-113, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
To issue precise and timely tsunami alerts, detecting the propagating tsunami is fundamental. The most used instruments are pressure sensors positioned at the ocean bottom, called Ocean-Bottom Pressure Gauges (OBPGs). In this work, we study four different techniques that allow to recognize a tsunami as soon as it is recorded by an OBPG and a methodology to calibrate them. The techniques are compared in terms of their ability to detect and characterize the tsunami wave in real time.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024, https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Short summary
We study the relationship between tracks of low-pressure systems and related sea level extremes. We perform the studies by introducing a method to simulate sea levels using synthetic low-pressure systems. We test the method using sites located along the Baltic Sea coast. We find high extremes, where the sea level extreme reaches up to 3.5 m. In addition, we add the maximal value of the mean level of the Baltic Sea (1 m), leading to a sea level of 4.5 m.
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024, https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Short summary
Two numerical codes are used in a comparative analysis of the calculation of the tsunami wave due to an earthquake along the Peruvian coast. The comparison primarily evaluates the flow velocity fields in flooded areas. The relative importance of the various parts of the equations is determined, focusing on the nonlinear terms. The influence of the nonlinearity on the degree and volume of flooding, flow velocity, and small-scale fluctuations is determined.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Charlotte Lyddon, Nguyen Chien, Grigorios Vasilopoulos, Michael Ridgill, Sogol Moradian, Agnieszka Olbert, Thomas Coulthard, Andrew Barkwith, and Peter Robins
Nat. Hazards Earth Syst. Sci., 24, 973–997, https://doi.org/10.5194/nhess-24-973-2024, https://doi.org/10.5194/nhess-24-973-2024, 2024
Short summary
Short summary
Recent storms in the UK, like Storm Ciara in 2020, show how vulnerable estuaries are to the combined effect of sea level and river discharge. We show the combinations of sea levels and river discharges that cause flooding in the Conwy estuary, N Wales. The results showed flooding was amplified under moderate conditions in the middle estuary and elsewhere sea state or river flow dominated the hazard. Combined sea and river thresholds can improve prediction and early warning of compound flooding.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024, https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Short summary
Here we use a high-resolution bathymetry dataset of the Maldives archipelago, as well as corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that several factors contribute to mitigating and amplifying tsunami waves at the island scale.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2860, https://doi.org/10.5194/egusphere-2023-2860, 2024
Short summary
Short summary
Batukaras Village is a village on the southern coast of Java Island which is prone to tsunami hazards. To assess the potential tsunami hazard in the area, PTHA method was employed. It resulted in tsunami heights of 0.84 m, 1.63 m, 2.97 m, and 5.7 m for each earthquake return period of 250 years, 500 years, 1000 years, and 2500 years, respectively. The largest contribution of earthquake sources comes from the West Java-Central Java megathrust segment.
Chu-En Hsu, Katherine A. Serafin, Xiao Yu, Christie A. Hegermiller, John C. Warner, and Maitane Olabarrieta
Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, https://doi.org/10.5194/nhess-23-3895-2023, 2023
Short summary
Short summary
Total water levels (TWLs) induced by tropical cyclones (TCs) are among the leading hazards faced by coastal communities. Using numerical models, we examined how TWL components (surge and wave runup) along the South Atlantic Bight varied during hurricanes Matthew (2016), Dorian (2019), and Isaias (2020). Peak surge and peak wave runup were dominated by wind speeds and relative positions to TCs. The exceedance time of TWLs was controlled by normalized distances to TC and TC translation speeds.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando Javier Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci., 23, 3685–3701, https://doi.org/10.5194/nhess-23-3685-2023, https://doi.org/10.5194/nhess-23-3685-2023, 2023
Short summary
Short summary
Efficient adaptation planning for coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone are often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Anne Margaret H. Smiley, Suzanne P. Thompson, Nathan S. Hall, and Michael F. Piehler
Nat. Hazards Earth Syst. Sci., 23, 3635–3649, https://doi.org/10.5194/nhess-23-3635-2023, https://doi.org/10.5194/nhess-23-3635-2023, 2023
Short summary
Short summary
Floodwaters can deliver reactive nitrogen to sensitive aquatic systems and diminish water quality. We assessed the nitrogen removal capabilities of flooded habitats and urban landscapes. Differences in processing rates across land cover treatments and between nutrient treatments suggest that abundance and spatial distributions of habitats, as well as storm characteristics, influence landscape-scale nitrogen removal. Results have important implications for coastal development and climate change.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Véra Gastal, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 23, 3585–3602, https://doi.org/10.5194/nhess-23-3585-2023, https://doi.org/10.5194/nhess-23-3585-2023, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood-prone areas and regions sensitive to storm duration and water level peak were identified.
Neng-Ti Yu, Cheng-Hao Lu, I-Chin Yen, Jia-Hong Chen, Jiun-Yee Yen, and Shyh-Jeng Chyi
Nat. Hazards Earth Syst. Sci., 23, 3525–3542, https://doi.org/10.5194/nhess-23-3525-2023, https://doi.org/10.5194/nhess-23-3525-2023, 2023
Short summary
Short summary
A paleotsunami deposit of cliff-top basalt debris was identified on the Penghu Islands in the southern Taiwan Strait and related to the 1661 earthquake in southwest Taiwan. A minimum wave height of 3.2 m is estimated to have rotated the biggest boulder for over 30 m landwards onto the cliff top at 2.5 m a.s.l. The event must have been huge compared to the 1994 M 6.4 earthquake with the ensuing 0.4 m high tsunami in the same area, validating the intimidating tsunami risks in the South China Sea.
Ye Yuan, Huaiwei Yang, Fujiang Yu, Yi Gao, Benxia Li, and Chuang Xing
Nat. Hazards Earth Syst. Sci., 23, 3487–3507, https://doi.org/10.5194/nhess-23-3487-2023, https://doi.org/10.5194/nhess-23-3487-2023, 2023
Short summary
Short summary
Rip currents are narrow jets of offshore-directed flow that originated in the surf zone, which can take swimmers of all ability levels into deeper water unawares. In this study, a 1 m fine-resolution wave-resolving model was configured to study rip current variability and the optimal swimmer escape strategies. Multiple factors contribute to the survival of swimmers. However, for weak-to-moderate rip and longshore currents, swimming onshore consistently seems to be the most successful strategy.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Zhang Haixia, Cheng Meng, and Fang Weihua
Nat. Hazards Earth Syst. Sci., 23, 2697–2717, https://doi.org/10.5194/nhess-23-2697-2023, https://doi.org/10.5194/nhess-23-2697-2023, 2023
Short summary
Short summary
Simultaneous storm surge and waves can cause great damage due to cascading effects. Quantitative joint probability analysis is critical to determine their optimal protection design values. The joint probability of the surge and wave for the eastern coasts of Leizhou Peninsula and Hainan are estimated with a Gumbel copula based on 62 years of numerically simulated data, and the optimal design values under various joint return periods are derived using the non-linear programming method.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Cited articles
Alexandersson, H., Schmith, T., Iden, K., and Tuomenvirta, H.: Long-term variations of the storm climate over NW Europe, The Global Atmosphere and Ocean System, 6, 97–120, 1998. a
Andrée, E., Su, J., Larsen, M. A. D., Madsen, K. S., and Drews, M.:
Simulating major storm surge events in a complex coastal region, Ocean
Model., 162, 101802, https://doi.org/10.1016/j.ocemod.2021.101802, 2021. a, b, c
Andrée, E., Drews, M., Su, J., Larsen, M. A. D., Drønen, N., and Madsen,
K. S.: Simulating wind-driven extreme sea levels: Sensitivity to wind speed
and direction, Weather and Climate Extremes, 36, 100422,
https://doi.org/10.1016/j.wace.2022.100422, 2022. a, b, c
Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P.,
Niehüser, S., and Jensen, J.: Non-linear interaction modulates global
extreme sea levels, coastal flood exposure, and impacts, Nat. Commun., 11, 1–9, 2020. a
Baensch, O.: Die Sturmfluth an den Ostsee-Küsten des Preussischen Staates vom 12./13. November 1872, Zeitschrift für Bauwesen, Berlin, 1875. a
Barriopedro, D., García-Herrera, R., Lupo, A. R., and Hernández, E.:
A climatology of Northern Hemisphere blocking, J. Climate, 19,
1042–1063, 2006. a
Bengtsson, L.: Medium-range forecasting at the ECMWF, in: Advances in
Geophysics, vol. 28, Elsevier, 3–54, https://doi.org/10.1016/S0065-2687(08)60184-3, 1985. a
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Science Advances, 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. a
Bischiniotis, K., van den Hurk, B., Jongman, B., Coughlan de Perez, E., Veldkamp, T., de Moel, H., and Aerts, J.: The influence of antecedent conditions on flood risk in sub-Saharan Africa, Nat. Hazards Earth Syst. Sci., 18, 271–285, https://doi.org/10.5194/nhess-18-271-2018, 2018. a
Bradstock, R. A., Cohn, J. S., Gill, A. M., Bedward, M., and Lucas, C.: Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather, Int. J. Wildland Fire, 18, 932–943, https://doi.org/10.1071/WF08133, 2009. a
Brown, S., Nicholls, R. J., Goodwin, P., Haigh, I., Lincke, D., Vafeidis, A.,
and Hinkel, J.: Quantifying land and people exposed to sea-level rise with
no mitigation and 1.5 ∘C and 2.0 ∘C rise in global
temperatures to year 2300, Earths Future, 6, 583–600, 2018. a
Buchanan, M. K., Oppenheimer, M., and Kopp, R. E.: Amplification of flood frequencies with local sea level rise and emerging flood regimes, Environ. Res. Lett., 12, 064009, https://doi.org/10.1088/1748-9326/aa6cb3, 2017. a
Bureau Veritas: 44. Jahrgang (1872) Registre international de classification de navires, in: Deutsches Schiffahrtsmuseum Bremerhaven, vol. 44, Bureau Veritas, iSSN 11380883, http://www.digishelf.de/piresolver?id=54962810X (last access: 1 December 2022), 1872. a
Calafat, F. M. and Marcos, M.: Probabilistic reanalysis of storm surge extremes in Europe, P. Natl. Acad. Sci. USA, 117, 1877–1883, https://doi.org/10.1073/pnas.1913049117, 2020. a
Clemmensen, L. B., Bendixen, M., Hede, M. U., Kroon, A., Nielsen, L., and Murray, A. S.: Morphological records of storm floods exemplified by the impact of the 1872 Baltic storm on a sandy spit system in south-eastern Denmark, Earth Surf. Proc. Land., 39, 499–508, https://doi.org/10.1002/esp.3466, 2014. a
Colding, A.: Nogle Undersøgelser over Stormen over Nord- og Mellem-Europa af
12'te–14'de November 1872, Bianco Lunos Kgl. Hof-Bogtrykkeri,
https://doi.org/10.48563/dtu-0000041, 1881. a, b, c
Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduction to statistical modeling of extreme values, vol. 208, Springer, ISBN 978-1-4471-3675-0, 2001. a
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: : The twentieth century reanalysis project, Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011. a
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020. a
Dangendorf, S., Frederikse, T., Chafik, L., Klinck, J. M., Ezer, T., and
Hamlington, B. D.: Data-driven reconstruction reveals large-scale ocean
circulation control on coastal sea level, Nat. Clim. Change, 11,
514–520, https://doi.org/10.1038/s41558-021-01046-1, 2021. a
Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrolog. Sci. J., 61, 255–273, https://doi.org/10.1080/02626667.2015.1027710, 2016. a
European Commission and Joint Research Centre, Gazzard, R., Müller, M., Sciunnach, R., Pecl, J., Konstantinov, V., Sbirnea, R., Cruz, M., Chassagne, F., Nugent, C., Benchikha, A., Kok, E., Gonschorek, A., Mharzi Alaoui, H., Maianti, P., Timovska, M., Zaken, A., Repšienė, S., Ascoli, D., Botnen, D., Leray, T., Libertà, G., Moffat, A., San-Miguel-Ayanz, J., Leisavnieks, E., Mitri, G., Pezzatti, B., Ruuska, R., Kaliger, A., Stoof, C., Fonzo, M., Beyeler, S., Oom, D., Eritsov, A., Maren, A., Pešut, I., Papageorgiou, K., Sandahl, L., Pfeiffer, H., Fresu, G., Debreceni, P., Longauerová, V., Sydorenko, S., Glazko, Z., Branco, A., Marzoli, M., Theodoridou, C., De Rigo, D., Jaunķiķis, Z., Ferrari, D., Durrant, T., Micillo, G., Piwnicki, J., Humer, F., Vivancos, T., Joannelle, P., Szczygieł, R., Pereira, T., Moreira, J., Vacik, H., Assali, F., Lopez-Santalla, A., Dursun, K., Petkoviček, S., Baltaci, U., Nuijten, D., Nagy, D., Jakša, J., Conedera, M., Abbas, M., Toumasis, I., Boca, R., and Mara, S.: Forest fires in Europe, Middle East and North Africa 2018, Publications Office of the European Union, https://doi.org/10.2760/561734, 2019. a, b
Feistel, R., Seifert, T., Feistel, S., Nausch, G., Bogdanska, B., Broman, B.,
Hansen, L., Holfort, J., Mohrholz, V., Schmager, G., Hagen, E., Perlet, I.,
and Wasmund, N.: Digital Supplement, chap. 20, John Wiley &
Sons, Ltd, 625–667, https://doi.org/10.1002/9780470283134.ch20, 2008. a, b
Feuchter, D., Jörg, C., Rosenhagen, G., Auchmann, R., Martius, O., and Brönnimann, S.: The 1872 Baltic Sea storm surge, in: Weather extremes during the past 140 years, edited by: Brönnimann, S. and Martius, O., Geographica Bernensia G89, 91–98, https://doi.org/10.4480/GB2013.G89.10, 2013. a, b
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.-H.: The
causes of sea-level rise since 1900, Nature, 584, 393–397,
https://doi.org/10.1038/s41586-020-2591-3, 2020. a
Fu, W., She, J., and Dobrynin, M.: A 20-year reanalysis experiment in the Baltic Sea using three-dimensional variational (3DVAR) method, Ocean Sci., 8, 827–844, https://doi.org/10.5194/os-8-827-2012, 2012. a
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806, https://doi.org/10.1038/nclimate1979, 2013. a
Hallin, C., Hofstede, J. L. A., Martinez, G., Jensen, J., Baron, N., Heimann, T., Kroon, A., Arns, A., Almström, B., Sørensen, P., and Larson, M. A: A Comparative Study of the Effects of the 1872 Storm and Coastal Flood Risk Management in Denmark, Germany, and Sweden, Water, 13, 1697, https://doi.org/10.3390/w13121697, 2021. a, b, c, d
Harjanne, A., Haavisto, R., Tuomenvirta, H., and Gregow, H.: Risk management perspective for climate service development – Results from a study on Finnish organizations, Adv. Sci. Res., 14, 293–304, https://doi.org/10.5194/asr-14-293-2017, 2017. a
Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, 2019. a
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009. a
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, in: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 582, https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance
(last access: 1 December 2022), 2012. a
Johnson, F., White, C. J., van Dijk, A., Ekstrom, M., Evans, J. P., Jakob, D., Kiem, A. S., Leonard, M., Rouillard, A., and Westra, S.: Natural hazards in Australia: floods, Climatic Change, 139, 21–35,
https://doi.org/10.1007/s10584-016-1689-y, 2016. a
Jönsson, B., Döös, K., Nycander, J., and Lundberg, P.: Standing waves in the Gulf of Finland and their relationship to the basin-wide Baltic seiches, J. Geophys. Res.-Oceans, 113, C03004, https://doi.org/10.1029/2006JC003862, 2008. a
Kiecksee, H., Thran, P., and Kruhl, H.: Die Ostsee-Sturmflut 1872: Heinz Kiecksee; mit einem Beitrag von P. Thran und H. Kruhl, Schriften des
Deutschen Schiffahrtsmuseums, Westholsteinische Verlagsanstalt Boyens, ISBN 3-8042-0116-4, 1972. a
Kleine, E.: Das operationelle Modell des BSH für Nordsee und Ostsee:
Konzeption und Übersicht, Bundesamt für Seeschiffahrt und
Hydrographie, 1994. a
Lavaud, L., Bertin, X., Martins, K., Arnaud, G., and Bouin, M.-N.: The
contribution of short-wave breaking to storm surges: The case Klaus in the
Southern Bay of Biscay, Ocean Model., 156, 101710, https://doi.org/10.1016/j.ocemod.2020.101710, 2020. a
Leppäranta, M. and Myrberg, K.: Physical oceanography of the Baltic Sea, Springer Science & Business Media, ISBN 978-3-540-79703-6, 2009. a
Lillo, S. P. and Parsons, D. B.: Investigating the dynamics of error growth in ECMWF medium-range forecast busts, Q. J. Roy. Meteor. Soc., 143, 1211–1226, 2017. a
Lin, M., Qiao, J., Hou, X., Steier, P., Golser, R., Schmidt, M., Dellwig, O., Hansson, M., Örjan Bäck, Vartti, V.-P., Stedmon, C., She, J., Murawski, J., Aldahan, A., and Schmied, S. A.: Anthropogenic 236U and 233U in the Baltic Sea: Distributions, source terms, and budgets, Water Res., 210, 117987,
https://doi.org/10.1016/j.watres.2021.117987, 2022. a
Lisitzin, E.: Seiches, in: Sea-Level Changes, Elsevier Oceanography Series, chap. 7, Elsevier, 185–196, https://doi.org/10.1016/S0422-9894(08)70781-5, 1974. a
Madsen, K. S.: Recent and future climatic changes in temperture, salinity, and sea level of the the North Sea and the Baltic Sea, PhD thesis, University of Copenhagen, ISBN 978-3-844-31270-6, 2009. a
Marcos, M., Calafat, F. M., Berihuete, Á., and Dangendorf, S.: Long-term
variations in global sea level extremes, J. Geophys. Res.-Oceans, 120, 8115–8134, 2015. a
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T. K., Waterfield, T. O., Yelekçi, R. Y.,
and Zhou, B. (Eds.): Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Summary for Policymakers,
Cambridge University Press, in press, 2021. a
Matsueda, M. and Palmer, T.: Estimates of flow-dependent predictability of wintertime Euro-Atlantic weather regimes in medium-range forecasts, Q. J. Roy. Meteor. Soc., 144, 1012–1027, 2018. a
McMillan, S. K., Wilson, H. F., Tague, C. L., Hanes, D. M., Inamdar, S., Karwan, D. L., Loecke, T., Morrison, J., Murphy, S. F., and Vidon, P.: Before the storm: antecedent conditions as regulators of hydrologic and biogeochemical response to extreme climate events, Biogeochemistry, 141, 487–501, https://doi.org/10.1007/s10533-018-0482-6, 2018. a
Modrakowski, L.-C., Su, J., and Nielsen, A. B.: The Precautionary Principles of the Potential Risks of Compound Events in Danish Municipalities, Frontiers in Climate, 3, 772629, https://doi.org/10.3389/fclim.2021.772629, 2022. a
Mudersbach, C. and Jensen, J.: Küstenschutz an der Deutschen Ostseeküste, Zur Ermittlung von Eintrittswahrscheinlichkeiten extremer Sturmflutwasserstände, Korrespondenz Wasserwirtschaft, 3, 136–144, 2010. a
Murawski, J., She, J., Mohn, C., Frishfelds, V., and Nielsen, J. W.: Ocean
Circulation Model Applications for the Estuary-Coastal-Open Sea Continuum,
Frontiers in Marine Science, 8, 657720, https://doi.org/10.3389/fmars.2021.657720, 2021. a
Nabizadeh, E., Hassanzadeh, P., Yang, D., and Barnes, E. A.: Size of the Atmospheric Blocking Events: Scaling Law and Response to Climate Change, Geophys. Res. Lett., 46, 13488–13499, https://doi.org/10.1029/2019GL084863, 2019. a
Oppenheimer, M., Glavovic, B. C. Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019.
Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019. a
Poulsen, J. W. and Berg, P.: More details on HBM-general modelling theory and survey of recent studies, Tech. rep., Danish Meteorological Institute, 2012. a
Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., Bowen, S. G., Camargo, S. J., Hess, J., Kornhuber, K., Oppenheimer, M., Ruane, A. C., Wahl, T., and White, K.: Understanding and managing connected extreme events, Nat. Clim. Change, 10, 611–621, https://doi.org/10.1038/s41558-020-0790-4, 2020. a
Ridal, M., Olsson, E., Unden, P., Zimmermann, K., and Ohlsson, A.: Uncertainties in Ensembles of Regional Re-Analyses-Deliverable D2.7 HARMONIE reanalysis report of results and dataset, Tech. rep., Swedish Meteorological and Hydrological Institute, http://www.uerra.eu/publications/deliverable-reports.html (last access: 30 June 2021), 2017. a
Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Larsén, X. G., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., and Wasmund, N.: Natural hazards and extreme events in the Baltic Sea region, Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, 2022. a
Samuelsson, M. and Stigebrandt, A.: Main characteristics of the long-term sea level variability in the Baltic Sea, Tellus A, 48, 672–683, 1996. a
Santos, V. M., Casas-Prat, M., Poschlod, B., Ragno, E., van den Hurk, B., Hao, Z., Kalmár, T., Zhu, L., and Najafi, H.: Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands, Hydrol. Earth Syst. Sci., 25, 3595–3615, https://doi.org/10.5194/hess-25-3595-2021, 2021. a
She, J., Berg, P., and Berg, J.: Bathymetry impacts on water exchange modelling through the Danish Straits, J. Marine Syst., 65, 450–459, 2007. a
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J., Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman, J. E., Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan, A., Kubota, H., Le Blancq, F., Lee, T. C., Lorrey, A., Luterbacher, J., Maugeri, M., Mock, C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason, C., Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang, X. L., Wilkinson, C., Wood, K., and Wyszyński, P.: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system, Q. J. Roy. Meteor. Soc., 145, 2876–2908, 2019. a, b
Soomere, T. and Pindsoo, K.: Spatial variability in the trends in extreme storm surges and weekly-scale high water levels in the eastern Baltic Sea,
Cont. Shelf Res., 115, 53–64, 2016. a
Stendel, M., Francis, J., White, R., Williams, P. D., and Woollings, T.: Chapter 15 – The jet stream and climate change, Climate Change, 2021, 327–357, https://doi.org/10.1016/B978-0-12-821575-3.00015-3, 2021. a, b, c, d
Su, J.: HBM DKSS version 2013 (DKSS-2013), Zenodo [code], https://doi.org/10.5281/zenodo.6769238, 2022. a
Su, J., Andrée, E., Nielsen, J. W., Olsen, S. M., and Madsen, K. S.: Sea
Level Projections From IPCC Special Report on the Ocean and Cryosphere Call
for a New Climate Adaptation Strategy in the Skagerrak-Kattegat Seas,
Front. Mar. Sci., 8, 629470, https://doi.org/10.3389/fmars.2021.629470, 2021. a
Thorarinsdottir, T. L., Guttorp, P., Drews, M., Kaspersen, P. S., and de Bruin, K.: Sea level adaptation decisions under uncertainty, Water Resour. Res., 53, 8147–8163, https://doi.org/10.1002/2016WR020354, 2017. a
Tian, T., Su, J., Boberg, F., Yang, S., and Schmith, T.: Estimating uncertainty caused by ocean heat transport to the North Sea: experiments downscaling EC-Earth, Clim. Dynam., 46, 99–110, https://doi.org/10.1007/s00382-015-2571-8, 2016. a
Travis, W. R. and Bates, B.: What is climate risk management?, Climate Risk Management, 1, 1–4, https://doi.org/10.1016/j.crm.2014.02.003, 2014. a
Vafeidis, A. T., Schuerch, M., Wolff, C., Spencer, T., Merkens, J. L., Hinkel, J., Lincke, D., Brown, S., and Nicholls, R. J.: Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 973–984, https://doi.org/10.5194/nhess-19-973-2019, 2019. a
Vogel, J., Paton, E., Aich, V., and Bronstert, A.: Increasing compound warm spells and droughts in the Mediterranean Basin, Weather and Climate Extremes,
32, 100312, https://doi.org/10.1016/j.wace.2021.100312, 2021. a
Vousdoukas, M. I., Voukouvalas, E., Mentaschi, L., Dottori, F., Giardino, A., Bouziotas, D., Bianchi, A., Salamon, P., and Feyen, L.: Developments in large-scale coastal flood hazard mapping, Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, 2016. a
Vousdoukas, M. I., Mentaschi, L., Hinkel, J., Ward, P. J., Mongelli, I., Ciscar, J.-C., and Feyen, L.: Economic motivation for raising coastal flood
defenses in Europe, Nat. Commun., 11, 1–11, 2020. a
Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J., and Slangen, A. B. A.: Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis, Nat. Commun., 8, 16075,
https://doi.org/10.1038/ncomms16075, 2017. a, b
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., and Zorita, E.: Sea level dynamics and coastal erosion in the Baltic Sea region, Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, 2021. a
Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., and Lydeikaitė, Ž.: Extreme sea levels at selected stations on the Baltic Sea coast, Oceanologia, 56, 259–290, https://doi.org/10.5697/oc.56-2.259, 2014. a
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and Merrifield, M. A.: Forcing factors affecting sea level changes at the coast, Surv. Geophys., 40, 1351–1397, 2019. a
Woollings, T., Barriopedro, D., Methven, J., Son, S.-W., Martius, O., Harvey, B., Sillmann, J., Lupo, A. R., and Seneviratne, S.: Blocking and its response
to climate change, Current Climate Change Reports, 4, 287–300, 2018. a
Wubber, C. and Krauss, W.: The two dimensional seiches of the Baltic Sea, Oceanol. Acta, 2, 435–446, 1979. a
Zappa, G., Masato, G., Shaffrey, L., Woollings, T., and Hodges, K.: Linking
Northern Hemisphere blocking and storm track biases in the CMIP5 climate
models, Geophys. Res. Lett., 41, 135–139, 2014. a
Short summary
When natural processes interact, they may compound each other. The combined effect can amplify extreme sea levels, such as when a storm occurs at a time when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge in 1872 to show that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
When natural processes interact, they may compound each other. The combined effect can amplify...
Special issue
Altmetrics
Final-revised paper
Preprint