Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1769-2023
https://doi.org/10.5194/nhess-23-1769-2023
Research article
 | 
12 May 2023
Research article |  | 12 May 2023

Statistical modeling of sediment supply in torrent catchments of the northern French Alps

Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller

Related authors

The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025,https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary
Capture of near-critical debris flows by flexible barriers: an experimental investigation
Miao Huo, Stéphane Lambert, Firmin Fontaine, and Guillaume Piton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3575,https://doi.org/10.5194/egusphere-2024-3575, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Towards debris flows simulation using DualSPHysics v5.2 : Internal behaviour of viscous flows and mixtures
Suzanne Lapillonne, Georgios Fourtakas, Vincent Richefeu, Guillaume Piton, and Guillaume Chambon
EGUsphere, https://doi.org/10.22541/au.170628457.73131740/v2,https://doi.org/10.22541/au.170628457.73131740/v2, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024,https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Probing the exchange of CO2 and O2 in the shallow critical zone during weathering of marl and black shale
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024,https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary

Related subject area

Landslides and Debris Flows Hazards
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025,https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025,https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025,https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary

Cited articles

Altmann, M., Haas, F., Heckmann, T., Liébault, F., and Becht, M.: Modelling of sediment supply from torrent catchments in the Western Alps using the sediment contributing area (SCA) approach, Earth Surf. Proc. Land., 46, 889–906, https://doi.org/10.1002/esp.5046, 2021. a, b, c
Anderson, H. W.: Flood frequencies and sedimentation from forest watersheds, Eos, Transactions American Geophysical Union, 30, 567–586, 1949. a
Arabkhedri, M., Heidary, K., and Parsamehr, M.-R.: Relationship of sediment yield to connectivity index in small watersheds with similar erosion potentials, J. Soil. Sediment., 21, 2699–2708, https://doi.org/10.1007/s11368-021-02978-z, 2021. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. a
Bertrand, M., Liébault, F., and Piégay, H.: Debris-flow susceptibility of upland catchments, Nat. Hazards, 67, 497–511, https://doi.org/10.1007/s11069-013-0575-4, 2013. a, b, c, d
Download
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Share
Altmetrics
Final-revised paper
Preprint