Articles | Volume 23, issue 4
https://doi.org/10.5194/nhess-23-1355-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1355-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Grain size modulates volcanic ash retention on crop foliage and potential yield loss
Environmental Sciences, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Patrick Bogaert
Environmental Sciences, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Sébastien Biass
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Guillaume Lobet
Agricultural Sciences, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Agrosphere Institute, IBG-3, Forschungszentrum Jülich, Jülich, Germany
Pierre Delmelle
Environmental Sciences, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Related authors
No articles found.
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025, https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Short summary
Cities near volcanoes expose populations to hazards. We ranked 1106 cities by population exposed to volcanoes within < 100 km, nearest distance, and number of nearby volcanoes. Bandung ranks highest, with ~8 M exposed within < 30 km of 12 volcanoes. Jakarta leads populations exposed within <100 km (~38 M). Central America has the highest proportion of city exposure, with San Salvador near 23 volcanoes. We provide a global city exposure perspective, identifying areas for localized mitigation.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Mona Giraud, Ahmet Kürşad Sırcan, Thilo Streck, Daniel Leitner, Guillaume Lobet, Holger Pagel, and Andrea Schnepf
EGUsphere, https://doi.org/10.5194/egusphere-2025-572, https://doi.org/10.5194/egusphere-2025-572, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We developed a multiscale simulation model that combines 3D plant architecture with carbon cycling in the rhizosphere and soil to understand how dry spells impact carbon and water flows, focusing on the activity of the soil microbes. We found that the microbial communities’ characteristics and dry spells’ start dates significantly affect rhizosphere CO2 emissions and carbon cycling. This model can help understand the effects of climate change on plant growth and soil organic matter dynamics.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Cited articles
Al Mamun Hossain, S. A., Lixue, W., Chen, T., and Li, Z.: Leaf area index assessment for tomato and cucumber growing period under different water treatments, Plant Soil Environ., 63, https://doi.org/10.17221/568/2017-PSE, 2017.
Arnalds, O.: The influence of volcanic tephra (ash) on ecosystems, in: Adv. Agron., edited by: Sparks, D. L., Academic Press, 331–380, https://doi.org/10.1016/B978-0-12-407685-3.00006-2, 2013.
Ayris, P. M. and Delmelle, P.: The immediate environmental effects of tephra emission, B. Volcanol., 74, 1905–1936, https://doi.org/10.1007/s00445-012-0654-5, 2012.
Bagheri, G. and Bonadonna, C.: Chapter 2 – Aerodynamics of volcanic particles: characterization of size, shape, and settling velocity, in: Volcanic Ash, edited by: Mackie, S., Cashman, K., Ricketts, H., Rust, A., and Watson, M., Elsevier, 39–52, https://doi.org/10.1016/B978-0-08-100405-0.00005-7, 2016.
Benson, H. and Benson, H. (Ed.): Physique I: Mécanique, 5th edn., De Boeck Supérieur, ISBN 9782761354998, 2015.
Bhushan, B. and Jung, Y. C.: Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces, Nanotechnology, 17, 2758, https://doi.org/10.1088/0957-4484/17/11/008, 2006.
Biass, S., Jenkins, S. F., Aeberhard, W. H., Delmelle, P., and Wilson, T.: Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data, Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, 2022.
Bilderback, D. E.: Mount St. Helens 1980: botanical consequences of the explosive eruptions, University of California Press, ISBN 0520056086, 1987.
Biscoe, P. V., Gallagher, J. N., Landsberg, J. J., and Cutting, C. V.: Weather, dry matter production and yield, in: Environmental Effects on Crop Physiology, edited by: Landsberg, J. J. and Cutting, C. V., Academic Press, London, 75–100, https://agris.fao.org/agris-search/search.do?recordID=US201302407787 (last access: 30 March 2023), 1977.
Blake, D. M., Hayes, J. L., Andreastuti, S., Hendrasto, M., Wilson, G., Jenkins, S. F., Daniswara, R., Cronin, S., Stewart, C., Wilson, T. M., Ferdiwijaya, D., Craig, H. M., Horwell, C. J., and Leonard, G. S.: The 2014 eruption of Kelud volcano, Indonesia: impacts on infrastructure, utilities, agriculture and health, GNS Science, New Zealand, 130 pp., https://www.researchgate.net/publication/312580340_The_2014_eruption_of_Kelud_volcano_Indonesia_impacts_on_infrastructure_utilities_agriculture_and_health (last access: 24 August 2022), 2015.
Blong, R.: The effects on agriculture, in: Volcanic Hazards: a sourcebook on the effects of eruptions, Academic Press, London, 311–350, https://doi.org/10.1016/0166-3097(86)90025-8, 1984.
Brown, S. K., Auker, M. R., and Sparks, R. S. J.: Populations around Holocene volcanoes and development of a Population Exposure Index, in: Global Volcanic Hazards and Risk, edited by: Vye-Brown, C., Brown, S. K., Sparks, S., Loughlin, S. C., and Jenkins, S. F., Cambridge University Press, Cambridge, 223–232, https://doi.org/10.1017/CBO9781316276273.006, 2015.
Burket, S. D., Furlow, E. P., Golding, P. R., Grant, L. C., Lipovsky, W. A., and Lopp, T. G.: The economic effects of the eruptions of Mt. St. Helens, United States International Trade Commission, Washington, D. C., 20438, 84 pp., USITC Publication 1096, 1980.
Campillo, C., García, M. I., Daza, C., and Prieto, M. H.: Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images, HortScience, 45, 1459–1463, https://doi.org/10.21273/hortsci.45.10.1459, 2010.
Chamberlain, A. C.: Transport of Lycopodium spores and other small particles to rough surfaces, P. Roy. Soc. Lond. A Mat., 296, 45–70, https://doi.org/10.1098/rspa.1967.0005, 1967.
Chamberlain, A. C. and Chadwick, R. C.: Deposition of spores and other particles on vegetation and soil, Ann. Appl. Biol., 71, 141–158, https://doi.org/10.1111/j.1744-7348.1972.tb02949.x, 1972.
Coltelli, M., Miraglia, L., and Scollo, S.: Characterization of shape and terminal velocity of tephra particles erupted during the 2002 eruption of Etna volcano, Italy, B. Volcanol., 70, 1103–1112, https://doi.org/10.1007/s00445-007-0192-8, 2008.
Cook, R. J., Barron, J. C., Papendick, R. I., and Williams, G. J.: Impact on agriculture of the mount St. Helens eruptions, Science, 211, 16–22, https://doi.org/10.1126/science.211.4477.16, 1981.
Costa, A., Pioli, L., and Bonadonna, C.: Assessing tephra total grain-size distribution: insights from field data analysis, Earth Planet. Sc. Lett., 443, 90–107, https://doi.org/10.1016/j.epsl.2016.02.040, 2016.
Craig, H., Wilson, T., Stewart, C., Outes, V., Villarosa, G., and Baxter, P.: Impacts to agriculture and critical infrastructure in Argentina after ashfall from the 2011 eruption of the Cordón Caulle volcanic complex: an assessment of published damage and function thresholds, J. Appl. Volcanol., 5, 7, https://doi.org/10.1186/s13617-016-0046-1, 2016a.
Craig, H., Wilson, T., Stewart, C., Villarosa, G., Outes, V., Cronin, S., and Jenkins, S.: Agricultural impact assessment and management after three widespread tephra falls in Patagonia, South America, Nat. Hazards, 82, 1167–1229, https://doi.org/10.1007/s11069-016-2240-1, 2016b.
Craig, H., Wilson, T., Magill, C., Stewart, C., and Wild, A. J.: Agriculture and forestry impact assessment for tephra fall hazard: fragility function development and New Zealand scenario application, Volcanica, 4, 345–367, https://doi.org/10.30909/vol.04.02.345367, 2021.
Craig, H. M.: Agricultural vulnerability to tephra fall impacts, Geology, University of Canterbury, Canterbury, 375 pp., https://doi.org/10.26021/6184, 2015.
Darge, A., Sharma, R. D. R., Zerihum, D., and Chung, P. Y. K.: Multi color image segmentation using L*A*B* color space, International Journal of Advanced Engineering, Management and Science, 5, 346–352, https://doi.org/10.22161/IJAEMS.5.5.8, 2019.
de Guzman, E. M.: The Pinatubo eruption of June 1991: the nature and impact of the disaster, Asian Disaster Reduction Center, https://reliefweb.int/report/philippines/eruption-mount-pinatubo-philippines-june-1991 (last access: 31 July 2022), 2005.
Dellino, P., Mele, D., Bonasia, R., Braia, G., La Volpe, L., and Sulpizio, R.: The analysis of the influence of pumice shape on its terminal velocity, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005gl023954, 2005.
Eggler, W. A.: Plant communities in the vicinity of the volcano El Paricutin, Mexico, after two and a half years of eruption, Ecology, 29, 415–436, https://doi.org/10.2307/1932635, 1948.
Elia, A. and Conversa, G.: Agronomic and physiological responses of a tomato crop to nitrogen input, Eur. J. Agron., 40, 64–74, https://doi.org/10.1016/j.eja.2012.02.001, 2012.
Eychenne, J., Le Pennec, J.-L., Troncoso, L., Gouhier, M., and Nedelec, J.-M.: Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador), B. Volcanol., 74, 187–205, https://doi.org/10.1007/s00445-011-0517-5, 2012.
Fang, H., Frederic, B., Plummer, S., and Schaepman-Strub, G.: An overview of global leaf area Index (LAI): methods, products, validation, and applications, Rev. Geophys., 57, 739–799, https://doi.org/10.1029/2018RG000608, 2019.
FAO (Food and Agriculture Organisation): The impact of disasters and crises on agriculture and food security: 2021, Rome, 245 pp., https://doi.org/10.4060/cb3673en, 2021.
Fierstein, J. and Nathenson, M.: Another look at the calculation of fallout tephra volumes, B. Volcanol., 54, 156–167, https://doi.org/10.1007/BF00278005, 1992.
Freire, S., Florczyk, A. J., Pesaresi, M., and Sliuzas, R.: An improved global analysis of population distribution in proximity to active volcanoes, 1975–2015, ISPRS Int. J. Geo-inf., 8, 341, https://doi.org/10.3390/ijgi8080341, 2019.
Gregory, P. H.: The microbiology of the atmosphere, 1st edn., L. Hill, London, https://doi.org/10.5962/bhl.title.7291, 1961.
Grishin, S. Y., del Moral, R., Krestov, P. V., and Verkholat, V. P.: Succession following the catastrophic eruption of Ksudach volcano (Kamchatka, 1907), Vegetatio, 127, 129–153, https://doi.org/10.1007/BF00044637, 1996.
Hatfield, J.: Radiation use efficiency: evaluation of cropping and management systems, Agron. J., 106, 1820, https://doi.org/10.2134/agronj2013.0310, 2014.
Hay, R. K. M.: Harvest index: A review of its use in plant breeding and crop physiology, Ann. Appl. Biol., 126, 197–216, https://doi.org/10.1111/j.1744-7348.1995.tb05015.x, 2008.
Hay, R. K. M. and Porter, J. R.: The physiology of crop yield, 2nd edn., Blackwell Publishing, 314 pp., https://doi.org/10.1017/S0014479707005595, 2006.
Hirano, T., Kiyota, M., Kitaya, Y., and Aiga, I.: The physical effects of dust on photosynthetic rate of plant leaves, J. Agric. Meteorol., 46, 1–7, https://doi.org/10.2480/agrmet.46.1, 1990.
Hirano, T., Kiyota, M., and Aiga, I.: The effects of dust by covering and plugging stomata and by increasing leaf temperature on photosynthetic rate of plant leaves, J. Agric. Meteorol., 46, 215–222, https://doi.org/10.2480/agrmet.46.215, 1991.
Hirano, T., Kiyota, M., Seki, K., and Aiga, I.: Effects of volcanic ashes from Mt. Unzen-Fugendake and Mt. Sakurajima on leaf temperature and stomatal conductance of cucumber, J. Agric. Meteorol., 48, 139–145, https://doi.org/10.2480/agrmet.48.139, 1992.
Hirano, T., Kiyota, M., and Aiga, I.: Physical effects of dust on leaf physiology of cucumber and kidney bean plants, Environ. Pollut., 89, 255–261, https://doi.org/10.1016/0269-7491(94)00075-O, 1995.
Hosseini, M., McNairn, H., Merzouki, A., and Pacheco, A.: Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data, Remote Sens. Environ., 170, 77–89, https://doi.org/10.1016/j.rse.2015.09.002, 2015.
Israelachvili, J. N.: Intermolecular and surface forces, 3rd edn., edited by: Burlington, U., Academic Press, Burlington, MA, ISBN: 9780080923635, 2011.
Jenkins, S. F., Spence, R. J. S., Fonseca, J. F. B. D., Solidum, R. U., and Wilson, T. M.: Volcanic risk assessment: quantifying physical vulnerability in the built environment, J. Volcanol. Geoth. Res., 276, 105–120, https://doi.org/10.1016/j.jvolgeores.2014.03.002, 2014.
Jenkins, S. F., Wilson, T. M., Magill, C. R., Miller, V., Stewart, C., Marzocchi, W., and Boulton, M.: Volcanic ash fall hazard and risk: technical background paper for the UNISDR Global Assessment Report on Disaster Risk Reduction 2015, Global Volcano Model and IAVCEI, 43 pp., https://ir.canterbury.ac.nz/bitstream/handle/10092/10551/12649572_GVMc.%20Global%20Volcanic%20Hazards%20and%20Risk%20Technical%20background%20paper%20on%20volcanic%20ash%20fall%20hazard%20and%20risk..pdf?sequence=1&isAllowed=y
(last access: 29 October 2021), 2015.
Jenkins, S. F., Biass, S., Williams, G. T., Hayes, J. L., Tennant, E., Yang, Q., Burgos, V., Meredith, E. S., Lerner, G. A., Syarifuddin, M., and Verolino, A.: Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards, Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, 2022.
Johnson, J. E. and Lovaas, A. I.: Progress report on simulated fallout studies, Colorado State University, https://apps.dtic.mil/sti/citations/AD0695683 (last access: 30 March 2023), 1969.
Kemanian, A. R., Stöckle, C. O., Huggins, D. R., and Viega, L. M.: A simple method to estimate harvest index in grain crops, Field Crop. Res., 103, 208–216, https://doi.org/10.1016/j.fcr.2007.06.007, 2007.
Kleinhenz, V., Katroschan, K.-U., Schütt, F., and Stützel, H.: Biomass accumulation and partitioning of tomato under protected cultivation in the humid tropics, Eur. J. Hortic. Sci., 71, 173–182, 2006.
Klepper, B., Rickman, R. W., and Peterson, C. M.: Quantitative characterization of vegetative development in small cereal grains, Agron. J., 74, 789–792, https://doi.org/10.2134/agronj1982.00021962007400050005x, 1982.
Le Guern, F., Bernard, A., and Chevrier, R. M.: Soufrière of guadeloupe 1976–1977 eruption – mass and energy transfer and volcanic health hazards, B. Volcanol., 43, 577–593, https://doi.org/10.1007/BF02597694, 1980.
Le Pennec, J.-L., Ruiz, G. A., Ramón, P., Palacios, E., Mothes, P., and Yepes, H.: Impact of tephra falls on Andean communities: the influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador, J. Volcanol. Geoth. Res., 217–218, 91–103, https://doi.org/10.1016/j.jvolgeores.2011.06.011, 2012.
Liang, S., Li, X., and Jindi, W.: Advanced remote sensing: terrestrial information extraction and applications, 1st edn., Elsevier, ISBN 0123859557, 2012.
Ligot, N.: Crop vulnerability to tephra fall in volcanic regions: field, experimental and modelling approaches, Earth and Life Institute, UCLouvain, Belgium, 285 pp., http://hdl.handle.net/2078.1/270724 (last access: 30 March 2023), 2022.
Ligot, N.: R-scipt-LAI-LI-biomass-yield-loss, Zenodo [code], https://doi.org/10.5281/zenodo.7781693, 2023a.
Ligot, N.: ImageJ-macro, Zenodo [code], https://doi.org/10.5281/zenodo.7781728, 2023b.
Ligot, N., Guevara, C. A., and Delmelle, P.: Drivers of crop impacts from tephra fallout: insights from interviews with farming communities around Tungurahua volcano, Ecuador, Volcanica, 5, 163–181, https://doi.org/10.30909/vol.05.01.163181, 2022.
Mack, R. N.: Initial effects of ashfall from mount St. Helens on vegetation in eastern Washington and adjacent Idaho, Science, 213, 537–539, https://doi.org/10.1126/science.213.4507.537, 1981.
Magill, C., Wilson, T., and Okada, T.: Observations of tephra fall impacts from the 2011 Shinmoedake eruption, Japan, Earth Planets Space, 65, 18, https://doi.org/10.5047/eps.2013.05.010, 2013.
McLaren, K.: XIII – The development of the CIE 1976 (L* a* b*) uniform colour space and colour-difference formula, J. Soc. Dyers Colour., 92, 338–341, https://doi.org/10.1111/j.1478-4408.1976.tb03301.x, 1976.
Mendoza Perez, C., Ojeda, W., Carlos, R., and Flores, H.: Estimation of leaf area index and yield of greenhouse-grown poblano pepper, Ing. Agric. Biosist., 9, 37–50, https://doi.org/10.5154/r.inagbi.2017.04.009, 2017.
Miller, C. F.: The contamination behavior of fallout-like particles ejected by volcano Irazu, Stanford Research Institute, San Francisco, California, MU-5779, 61 pp., https://apps.dtic.mil/sti/citations/AD0634901 (last access: 19 August 2021), 1966.
Miller, C. F.: Operation ceniza-arena: The retention of fallout particles from volcan Irazu (Costa Rica) by plant and people. Part 2, Stanford Research Institute, San Francisco, California, MU-4890, 247 pp., https://apps.dtic.mil/sti/citations/AD0673202 (last access: 19 August 2021), 1967.
Monte, J. A., de Carvalho, D. F., Medici, L. O., da Silva, L. D. B., and Pimentel, C.: Growth analysis and yield of tomato crop under different irrigation depths, Rev. Bras. Eng. Agr. Amb., 17, 926–931, https://doi.org/10.1590/S1415-43662013000900003, 2013.
Monteith, J. L.: Light Interception and radiative exchange in crop stands, in: Physiological Aspects of Crop Yield, edited by: Easton, J. D., Haskins, F. A., Sullivan, C. Y., and van Bavel, C. H. M., American Society of Agronomy, Wisconsin, 89–115, https://doi.org/10.2135/1969.physiologicalaspects.c9, 1969.
Monteith, J. L.: Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 9, 747–766, https://doi.org/10.2307/2401901, 1972.
Monteith, J. L.: Climate and the efficiency of crop production in Britain, Philos. T. Roy. Soc. B, 281, 277–294, 1977.
Neild, J., O'Flaherty, P., Hedley, P., Underwood, R., Johnston, D., Christenson, B., and Brown, P.: Impact of a volcanic eruption on agriculture and forestry in New Zealand, Ministry of Agriculture and Forestry, New Zealand, 99/2, 88 pp., https://www.mpi.govt.nz/dmsdocument/138/direct (last access: 19 August 2021), 1998.
Neslon, G. L. M.: Land rehabilitation techniques of rice farmers in Pampanga (Philippines) after the Mt. Pinatubo eruption, Asia Life Sci., 22, 155–181, 2013.
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism, J. Geophys. Res., 87, 1231–1238, https://doi.org/10.1029/JC087iC02p01231, 1982.
Niklas, K. J.: A mechanical perspective on foliage leaf form and function, New Phytol., 143, 19–31, https://doi.org/10.1046/j.1469-8137.1999.00441.x, 1999.
Nurfiani, D. and Bouvet de Maisonneuve, C.: Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles, J. Volcanol. Geoth. Res., 354, 102–114, https://doi.org/10.1016/j.jvolgeores.2017.12.001, 2017.
Onofri, A.: The broken bridge between biologists and statisticians: A blog and R package, https://github.com/OnofriAndreaPG/aomisc (last access: 2 February 2022), 2020.
Pinheiro, J. and Bates, D.: Package “nlme”. The Comprehensive R Archive Network, https://cran.r-project.org/web/packages/nlme/nlme.pdf, last access: 31 July 2022.
Poorter, H., Jagodziński, A., Ruiz-Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., Usol'tsev, V., Buckley, T., Reich, P., and Sack, L.: How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents, New Phytol., 208, 736–749, https://doi.org/10.1111/nph.13571, 2015.
Ram, S. S., Majumder, S., Chaudhuri, P., Chanda, S., Santra, S. C., Maiti, P. K., Sudarshan, M., and Chakraborty, A.: Plant canopies: bio-monitor and trap for re-suspended dust particulates contaminated with heavy metals, Mitig. Adapt. Strat. Gl., 19, 499–508, https://doi.org/10.1007/s11027-012-9445-8, 2012.
Rosso, P., Nendel, C., Gilardi, N., Udroiu, C., and Chlébowski, F.: Processing of remote sensing information to retrieve leaf area index in barley: a comparison of methods, Precis. Agric., 23, 1449–1472, https://doi.org/10.1007/s11119-022-09893-4, 2022.
Rust, A. and Cashman, K.: Permeability controls on expansion and size distributions of pyroclasts, J. Geophys. Res.-Sol. Ea., 116, 1–17, https://doi.org/10.1029/2011JB008494, 2011.
Sæbø, A., Popek, R., Nawrot, B., Hanslin, H. M., Gawronska, H., and Gawronski, S. W.: Plant species differences in particulate matter accumulation on leaf surfaces, Sci. Total Environ., 427–428, 347–354, https://doi.org/10.1016/j.scitotenv.2012.03.084, 2012.
Schindelin, J., Rueden, C. T., Hiner, M. C., and Eliceiri, K. W.: The ImageJ ecosystem: an open platform for biomedical image analysis, Mol. Reprod. Dev., 82, 518–529, https://doi.org/10.1002/mrd.22489, 2015.
Small, C. and Naumann, T.: The global distribution of human population and recent volcanism, Environ. Hazards-UK, 3, 93–109, https://doi.org/10.3763/ehaz.2001.0309, 2001.
Smith, W. H. and Staskawicz, B. J.: Removal of atmospheric particles by leaves and twigs of urban trees: some preliminary observations and assessment of research needs, Environ. Manage., 1, 317–330, https://doi.org/10.1007/BF01865859, 1977.
Solargis: Solar resource maps of Belgium, https://solargis.com/maps-and-gis-data/download/belgium, last access: 17 March 2022.
Starr, J. R.: Inertial impaction of particulates upon bodies of simple geometry, Ann. Occup. Hyg., 10, 349–361, https://doi.org/10.1093/annhyg/10.4.349, 1967.
Sword-Daniels, V., Wardman, J., Stewart, C., Wilson, T., Johnston, D., and Rossetto, T.: Infrastructure impacts, management and adaptations to eruptions at Volcán Tungurahua, Ecuador, 1999–2010, Institute of Geological and Nuclear Sciences, New Zealand, 90 pp., https://ir.canterbury.ac.nz/handle/10092/7135 (last access: 7 February 2022), 2011.
Tabor, D.: Surface forces and surface interactions, J. Colloid Interf. Sci., 58, 3–14, https://doi.org/10.1016/B978-0-12-404501-9.50009-2, 1977.
Tampubolon, J., Nainggolan, H. L., Ginting, A., and Aritonang, J.: Mount Sinabung eruption: Impact on local economy and smallholder farming in KaroRegency, North Sumatra, IOP Conference Series: Earth and Environmental Science, 178, 012039, https://doi.org/10.1088/1755-1315/178/1/012039, 2018.
Tarasenko, I.: Environmental effects of volcanic eruptions: A multidisciplinary study of tephra impacts on plant and soil, Université catholique de Louvain, Belgium, https://dial.uclouvain.be/pr/boreal/object/boreal:203017 (last access: 19 August 2021), 2018.
Thompson, J. R., Mueller, P. W., Flückiger, W., and Rutter, A. J.: The effect of dust on photosynthesis and its significance for roadside plants, Environ. Pollut. Control, 34, 171–190, https://doi.org/10.1016/0143-1471(84)90056-4, 1984.
UNDRO (Office of the United Nations Disaster Relief co-Ordinator): Natural disasters and vulnerability analysis: report of expert group meeting, 9–12 July 1979, UN, Geneva, 48 pp., https://digitallibrary.un.org/record/95986/files/UNDRO_ExpGrp_1-EN.pdf (last access: 16 February 2022), 1980.
Van den Bogaard, P. and Schmincke, H. U.: The eruptive center of the late quaternary Laacher See tephra, Geol. Rundsch., 73, 933–980, https://doi.org/10.1007/BF01820883, 1984.
Vogel, S.: Drag and reconfiguration of broad leaves in high winds, J. Exp. Bot., 40, 941–948, https://doi.org/10.1093/jxb/40.8.941, 1989.
Weraduwage, S. M., Chen, J., Anozie, F. C., Morales, A., Weise, S. E., and Sharkey, T. D.: The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana, Front. Plant Sci., 6, 167, https://doi.org/10.3389/fpls.2015.00167, 2015.
Wilson, J. W.: Ecological data on dry-matter production by plants and plant communities, in: The Collection and Processing of Field Data, edited by: Bradley, E. F. and Denmead, O. T., Interscience Publishers, New York, USA, 1967.
Wilson, T. M. and Kaye, G. D.: Agricultural fragility estimates for volcanic ash fall hazards, Institute of Geological and Nuclear Sciences, New Zealand, 51 pp., https://www.worldcat.org/title/agricultural-fragility-estimates-for-volcanic-ash-fall-hazards/oclc/217260623 (last access: 18 August 2021), 2007.
Wilson, T. M., Kaye, G., Stewart, C., and Cole, J.: Impacts of the 2006 eruption of Merapi volcano, Indonesia, on agriculture and infrastructure, Institute of Geological and Nuclear Sciences, New Zealand, 64 pp., http://hdl.handle.net/10092/760 (last access: 30 March 2023), 2007.
Wilson, T. M., Cole, J., Cronin, S., Stewart, C., and Johnston, D.: Impacts on agriculture following the 1991 eruption of Vulcan Hudson, Patagonia: lessons for recovery, Nat. Hazards, 57, 185–212, https://doi.org/10.1007/s11069-010-9604-8, 2011.
Witherspoon, J. P. and Taylor Jr., F. G.: Interception and retention of a simulated fallout by agricultural plants, Health Phys., 19, 493–499, https://doi.org/10.1097/00004032-197010000-00003, 1970.
Wohletz, K. H.: Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies, J. Volcanol. Geoth. Res., 17, 31–63, https://doi.org/10.1016/0377-0273(83)90061-6, 1983.
Zhang, W., Wang, B., and Niu, X.: Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing, Forests, 8, 92, https://doi.org/10.3390/f8030092, 2017.
Short summary
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on agriculture for their livelihood and food security. Ash retention on crop leaves is a key process in damage initiation. Experiments with tomato and chilli pepper plants revealed that ash retention increases with decreasing ash grain size and is enhanced when leaves are pubescent or their surfaces are wet. We propose a new relationship to quantify potential crop yield loss as a function of ash retention.
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on...
Altmetrics
Final-revised paper
Preprint