Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-3897-2022
https://doi.org/10.5194/nhess-22-3897-2022
Research article
 | 
07 Dec 2022
Research article |  | 07 Dec 2022

Estimating dune erosion at the regional scale using a meta-model based on neural networks

Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe

Related authors

Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024,https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Global distribution of nearshore slopes with implications for coastal retreat
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019,https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary

Cited articles

Almar, R., Ranasinghe, R., Bergsma, E. W. J., Diaz, H., Melet, A., Papa, F., Vousdoukas, M., Athanasiou, P., Dada, O., Almeida, L. P., and Kestenare, E.: A global analysis of extreme coastal water levels with implications for potential coastal overtopping, Nat. Commun., 12, 3775, https://doi.org/10.1038/s41467-021-24008-9, 2021. 
Antolínez, J. A. A., Méndez, F. J., Anderson, D., Ruggiero, P., and Kaminsky, G. M.: Predicting Climate-Driven Coastlines With a Simple and Efficient Multiscale Model, J. Geophys. Res.-Earth Surf., 124, 1596–1624, https://doi.org/10.1029/2018JF004790, 2019. 
Arcadis/Deltares: Validation of dune erosion model XBeach. Development of “BOI Sandy Coasts,” Tech. report D10029117:2.0., 2022. 
Athanasiou, P., de Boer, W., Yoo, J., Ranasinghe, R., and Reniers, A.: Analysing decadal-scale crescentic bar dynamics using satellite imagery: A case study at Anmok beach, South Korea, Mar. Geol., 405, 1–11, https://doi.org/10.1016/j.margeo.2018.07.013, 2018. 
Download
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
Share
Altmetrics
Final-revised paper
Preprint