Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-3897-2022
https://doi.org/10.5194/nhess-22-3897-2022
Research article
 | 
07 Dec 2022
Research article |  | 07 Dec 2022

Estimating dune erosion at the regional scale using a meta-model based on neural networks

Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe

Related authors

Global Coastal Characteristics (GCC): A global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-313,https://doi.org/10.5194/essd-2023-313, 2023
Revised manuscript accepted for ESSD
Short summary
Global distribution of nearshore slopes with implications for coastal retreat
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019,https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024,https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Simulating sea level extremes from synthetic low-pressure systems
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024,https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024,https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
The potential of global coastal flood risk reduction using various DRR measures
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024,https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Modeling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-41,https://doi.org/10.5194/nhess-2024-41, 2024
Revised manuscript under review for NHESS
Short summary

Cited articles

Almar, R., Ranasinghe, R., Bergsma, E. W. J., Diaz, H., Melet, A., Papa, F., Vousdoukas, M., Athanasiou, P., Dada, O., Almeida, L. P., and Kestenare, E.: A global analysis of extreme coastal water levels with implications for potential coastal overtopping, Nat. Commun., 12, 3775, https://doi.org/10.1038/s41467-021-24008-9, 2021. 
Antolínez, J. A. A., Méndez, F. J., Anderson, D., Ruggiero, P., and Kaminsky, G. M.: Predicting Climate-Driven Coastlines With a Simple and Efficient Multiscale Model, J. Geophys. Res.-Earth Surf., 124, 1596–1624, https://doi.org/10.1029/2018JF004790, 2019. 
Arcadis/Deltares: Validation of dune erosion model XBeach. Development of “BOI Sandy Coasts,” Tech. report D10029117:2.0., 2022. 
Athanasiou, P., de Boer, W., Yoo, J., Ranasinghe, R., and Reniers, A.: Analysing decadal-scale crescentic bar dynamics using satellite imagery: A case study at Anmok beach, South Korea, Mar. Geol., 405, 1–11, https://doi.org/10.1016/j.margeo.2018.07.013, 2018. 
Download
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
Altmetrics
Final-revised paper
Preprint