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Abstract. Sandy beaches and dune systems have high recre-
ational and ecological value, and they offer protection against
flooding during storms. At the same time, these systems
are very vulnerable to storm impacts. Process-based numer-
ical models are presently used to assess the morphological
changes of dune and beach systems during storms. However,
such models come with high computational costs, hinder-
ing their use in real-life applications which demand many
simulations and/or involve a large spatial–temporal domain.
Here we design a novel meta-model to predict dune erosion
volume (DEV) at the Dutch coast, based on artificial neu-
ral networks (ANNs), trained with cases from process-based
modeling. First, we reduce an initial database of ∼ 1400 ob-
served sandy profiles along the Dutch coastline to 100 repre-
sentative typological coastal profiles (TCPs). Next, we syn-
thesize a set of plausible extreme storm events, which repro-
duces the probability distributions and statistical dependen-
cies of offshore wave and water level records. We choose 100
of these events to simulate the dune response of the 100 TCPs
using the process-based model XBeach, resulting in 10 000
cases. Using these cases as training data, we design a two-
phase meta-model, comprised of a classifying ANN (which
predicts the occurrence (or not) of erosion) and a regression
ANN (which gives a DEV prediction). Validation against a
benchmark dataset created with XBeach and a sparse set of

available dune erosion observations shows high prediction
skill with a skill score of 0.82. The meta-model can predict
post-storm DEV 103–104 times faster (depending on the du-
ration of the storm) than running XBeach. Hence, this model
may be integrated in early warning systems or allow coastal
engineers and managers to upscale storm forcing to dune re-
sponse investigations to large coastal areas with relative ease.

1 Introduction

Extreme wave and storm-surge conditions induced by trop-
ical or extratropical storms can modify the morphological
shape of sandy coasts and dunes dramatically (Vellinga,
1982; McCall et al., 2010; Castelle et al., 2015), with high
impacts on local assets, infrastructure, ecosystems or touris-
tic value. More importantly, at dune-protected coasts the par-
tial or total erosion of the dunes during extreme storms can
cause flooding of the hinterland (van Dongeren et al., 2018;
Almar et al., 2021). The amount of dune erosion is associ-
ated with the offshore storm intensity (e.g., maximum wave
height and storm surge) but can locally vary for the same
storm due to spatial variabilities of pre-storm foreshore and
dune morphology and local hydrodynamics (Houser et al.,
2008; Athanasiou et al., 2018; Beuzen et al., 2019). Accurate
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predictions of dune erosion during storms can be critical in
early warning systems for the identification of dune erosion
hotspots along long coastal stretches, as well as for long-
term coastal zone management, aiding in decision making
and adaptation strategies to reinforce and/or nourish coasts
and dunes.

Conceptual models that identify storm-impact regimes
based on simple indicators using the relative elevations be-
tween the beach–dune and the total water levels have been
previously employed to assess coastal vulnerability at a re-
gional scale (Sallenger, 2000; Stockdon et al., 2007; Leaman
et al., 2021). While these simple models provide extremely
fast estimations of the expected impact, their output is quali-
tative, only describing the general scale of impact. Moreover,
simple empirical or behavioral models are commonly em-
ployed for probabilistic dune erosion risk assessments to en-
able fast run times (Ranasinghe et al., 2012; Li et al., 2014b;
Antolínez et al., 2019). However, their accuracy and adapt-
ability can be limited due to their simplifications. On the
other hand, process-based models, like XBeach (Roelvink et
al., 2009), have shown great skill in reproducing morpholog-
ical changes in the dune system during storms (Lindemer et
al., 2010; McCall et al., 2010; Vousdoukas et al., 2011; de
Winter et al., 2015; Passeri et al., 2018) but are computation-
ally demanding. This can become particularly problematic
for large spatial scales or when a large number of simula-
tions is needed, hindering their application in early warning
systems or probabilistic risk assessments. To this end, data-
driven methods based on statistical approaches can provide
a good alternative to achieve faster estimations. Since dune
erosion observations (with large spatial and temporal cover-
age) are scarce, a common approach is to generate synthetic
data of dune erosion based on plausible storm conditions us-
ing process-based modeling (Poelhekke et al., 2016; Pear-
son et al., 2017; Santos et al., 2019). Among the most used
data-driven methods in coastal applications are Bayesian net-
works (Gutierrez et al., 2011; Poelhekke et al., 2016; Beuzen
et al., 2017; Giardino et al., 2019; Sanuy and Jiménez, 2021),
which use conditional probabilities between system parame-
ters to study cause and effect. While they can provide useful
information on system dependencies (Beuzen et al., 2019),
their shortcoming lies in the mandatory discretization of the
parameters and their tendency for overfitting when used as
predictive tools (Beuzen et al., 2018).

In the last decade, artificial neural networks (ANNs) have
been increasingly employed in coastal engineering and man-
agement applications due to their effectiveness in modeling
complex non-linear systems with great speed. ANNs have
been employed for predictions of beach seasonal changes
(Hashemi et al., 2010), longshore sediment transport (Kabiri-
Samani et al., 2011; Güner et al., 2013), sandbar charac-
teristics (Kömürcü et al., 2013; López et al., 2017), storm
surge (Kim et al., 2015) and coastal overtopping (van Gent et
al., 2007; Verhaeghe et al., 2008; Chondros et al., 2021). Of
particular relevance to this study, Santos et al. (2019) tested

the use of ANNs, among other statistical models, to predict
changes in dune geometry during storms at Dauphin Island in
the USA. Due to the manageable size of the region of interest
(∼ 14 km), they simulated dune response with a 2D XBeach
model, and they developed an ANN for each of the 200 tran-
sects they studied using only storm conditions as the ANN
input parameters. However, since these ANNs were bound
to the pre-storm morphology of the individual transects, they
cannot be used for different beach and dune morphologies.

Here, we present a meta-model based on ANNs for the
prediction of dune erosion volume (DEV) during storms at
any location on the Dutch coast (∼ 260 km of dune fronted
coastline) (see Fig. 1). The novelty of the proposed meta-
model relative to previous similar methodologies is the in-
clusion of the pre-storm beach profile as input, which al-
lows for large-scale applications. The model was trained
based on a synthetic dataset created with XBeach 1D mod-
els, for a large number of cases with combinations of dif-
ferent coastal morphology and storm conditions. To ensure
that the training data sufficiently capture the variability in
the observed coastal morphology and possible storm condi-
tions while keeping the computational costs for the creation
of the synthetic dataset at a manageable level, input reduction
techniques and probabilistic analysis were used. First, using
clustering techniques, a set of 100 representative typological
coastal profiles (TCPs) were chosen from ∼ 1400 available
elevation transects at the Dutch coast based on local mor-
phological and hydrodynamic characteristics (Athanasiou et
al., 2021). Then, a simulator of synthetic and physically re-
alistic offshore storm events was developed using marginal
distribution and copula fitting methods on the observed storm
variables along the Dutch coast. Using a dissimilarity anal-
ysis, 100 storm events were chosen per station which were
used to force XBeach models for each of the 100 TCPs. The
pre-storm morphological and hydrodynamic profile charac-
teristics of each TCP, the offshore storm conditions, and the
simulated DEV were used to create a training dataset with
10 000 cases. Using the developed training dataset, a two-
phase ANN meta-model was created, which used the pre-
storm profile characteristics and offshore storm conditions
as inputs and provides a DEV estimate as output. The two
phases of the meta-model are composed of (1) a classifier,
which estimates if there is dune erosion (DEV > 0) or not
(DEV = 0), and (2) a regressor, which estimates DEV in the
case that the classifier predicts dune erosion. Different ANN
configurations were tested using a benchmark dataset based
on XBeach simulations, and the predictions of the final ANN
configuration were compared against observed DEV during
three historic storms.

Section 2 describes the methods used to create the repre-
sentative training dataset and the development of the two-
phase ANN meta-model. The optimum configurations of the
ANNs and their error statistics are presented in Sect. 3. In
Sect. 4, the limitations of the presented methodology and po-
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Figure 1. Overview of the training and application of the proposed meta-model for dune erosion volume (DEV) predictions. Blue colors
indicate the steps associated with the profile characteristics, green colors the steps related to the offshore storm conditions, yellow colors the
steps connected with dune response and orange colors the steps connected with artificial neural networks.

tential applications are discussed. Finally, a summary of the
main conclusions of the work is presented in Sect. 5.

2 Methods

2.1 Case study and data availability

The Dutch coast, located at the North Sea, has a total length
of 432 km, including (1) the Delta region in the south, com-
posed of islands and estuaries; (2) the Holland coast in the
center, with long stretches of sandy beaches and dunes; and
(3) the Wadden islands in the north, comprising barrier is-
lands and tidal inlets (Fig. 2). Almost 60 % of the total coast-
line comprises of beach and dune systems (Ruessink and
Jeuken, 2002), which form part of the coastal defenses pro-
tecting the low-lying hinterland from flooding. Depth and
elevation measurements are available on an annual basis
(taking place between April and September) at fixed tran-

sects along the Dutch coast through the JARKUS (“Jaarlijkse
Kustmeting”, annual coastal measurement) program.

Time series of wave conditions (significant wave height
Hs, peak wave period Tp and mean direction “Dir”) at 3-
hourly intervals are available between 1979 and 2009 from
directional wave-rider buoys at four offshore locations at
depths of about 25 m on average (Fig. 2). Additionally, water
level time series at 10 min intervals are available from four
tide gauges along the coast (Fig. 2), for which a tidal analysis
was performed in Athanasiou et al. (2021) and the local tide
and storm surge level (SSL, difference between water level
and tidal level) were extracted. The wave and water level
time series are available from Rijkswaterstaat, an agency of
the Ministry of Infrastructure and Water Management of the
Netherlands.

In Athanasiou et al. (2021) 1430 of the JARKUS transects
which represent sandy beach and dune systems, were chosen
and the elevation profiles were extracted for the year 2019.
In that study, various morphological and hydrodynamic pa-
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Figure 2. Map of the Dutch coast indicating the location of the
JARKUS transects (yellow lines), the offshore stations (wave buoys
and tide gauges, black circles and triangles, respectively), and the
100 typological coastal profiles (TCPs, red dots) used as the train-
ing dataset in the present study. The thick black lines perpendicular
to the coastline separate the different Dutch coastal areas, each one
associated with one offshore station. The map is projected on the
“Amersfoort/RD New” coordinate system (EPSG: 28992) with the
x and y axis in meters. The basemap shown is obtained from ESRI
(ESRI, 2011).

rameters were calculated per profile and episodic dune ero-
sion volume was simulated per profile with the process-based
model XBeach for 10 representative storms.

2.2 Typological coastal profiles

A two-phase clustering approach similar to that in Athana-
siou et al. (2021) was applied to group the available profiles
into 100 clusters based on their similarities, each described
by its representative profile (centroid) called a typological
coastal profile (TCP) (red dots in Fig. 2). We excluded some
of the 1430 profiles from Athanasiou et al. (2021), which
were found to be at highly dynamic areas (e.g., transect at the
tips of the Wadden islands where no clear dune features were
identified) or transects at the non-exposed side of the Wadden
islands, leaving 1368 transect for our study. The 1368 profiles
were first clustered into 300 initial groups, leading to 300
initial TCPs, based on a set of 10 morphological and hydro-
dynamic parameters that characterize each profile (Table 1).
Then a second clustering was performed on the 300 initial

TCPs, where their simulated dune response to 10 different
storms was taken into account, to group them in 100 clus-
ters and obtain the final TCPs. For detailed information on
the exact methodology we refer to Athanasiou et al. (2021).
Most of the resulting TCPs were located at the Delta coast
(∼ 55 %), indicating that the similarity of the profiles there
is lower in comparison to the Holland (∼ 25 %) and Wadden
(∼ 20 %) coasts.

2.3 Selection of storm events

To ensure that our data-driven model will have predictive
capacity for storms that might not have been directly ob-
served in the offshore wave and water level records, synthetic
storms that are physically realistic according to the historic
offshore climate, should be included in the training process.
To accomplish this, first, marginal distributions were fitted to
the storm parameters of observed extreme events and then a
copula-based approach was used to simulate a much larger
number of synthetic events while preserving the interdepen-
dencies between the different storm parameters. Here, ex-
treme storm events are defined as instances whenHs and SSL
both exceed a threshold, making it more likely for dune ero-
sion to occur. To capture the spatial variability of the hydro-
dynamic environment along the Dutch coast, we divided the
coastal zone into four areas, each covered by the closest of
the four wave stations (along with their closest tide gauges)
as shown in Fig. 2.

Using an approach similar to Wahl et al. (2016), we iden-
tified the Hs and SSL thresholds per area implicitly by iden-
tifying the Hs and SSL conditions when the total water level
(TWL) exceeded an elevation threshold defined by the aver-
age dune toe elevation. We estimated the historic TWL per
area by adding the tidal level, the SSL and the wave run-up
R2 % components. R2 % is estimated from offshore wave con-
ditions and the average beach slope using the empirical for-
mulation of Stockdon et al. (2006). Then the instances when
the TWL exceeded a critical threshold, which here was de-
fined as the 10th percentile of dune toe elevation in each of
the four areas (to ensure that dune erosion occurs at some
profiles), were identified and the annually averaged values of
Hs and SSL during these instances were extracted (Wahl et
al., 2016). The lowest values of Hs and SSL per area were
used as the thresholds that defined the historic storm events
per area, which ranged between 3.2–3.6 m for Hs and 0.7–
0.8 m for SSL. The approach we used to identify the his-
toric extreme storms per area can be summarized as follows:
(1) find the Hs exceedances of the local Hs threshold in the
Hs historic time series; (2) calculate the duration (D) of the
event as the time period whenHs remained above the thresh-
old, while events with a time separation of less than 24 h
were merged as one event assuming they are associated with
the same storm (Wahl et al., 2016; Athanasiou et al., 2021);
(3) extract the maximum Hs during the event and the con-
current Tp and Dir; (4) extract the maximum SSL during the
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Table 1. Morphological and hydrodynamic parameters used to characterize each profile in the clustering procedure along with their individual
weights. A brief description of each parameter is provided. For more detailed information please see Athanasiou et al. (2021).

Parameter Unit Description Weight

Beach volume m3 m−1 Subaerial sand volume, per alongshore running meter, seaward and
above the m.s.l. (mean sea level) point.

1.00

Beach width m Cross-shore distance between the m.s.l. and dune toe locations. 0.95

Beach slope – Linear slope between the m.s.l. and dune toe points. 0.95

Nearshore slope – Linear slope between the depth of closure and the m.s.l. points. 0.70

aextreme,mean
◦ Average angle of incidence at the depth of closure during historic ex-

treme events.
0.70

MHW m Mean high water level. 0.65

SSLRP100 m Storm surge level with a return period of 100 years. 0.35

Tp,RP100 s Nearshore peak wave period with a return period of 100 years. 0.30

Px, extreme,mean kW h m−1 Average nearshore wave energy flux toward the coast during historic
extreme events.

0.25

Max dune volume m3 m−1 Subaerial sand volume, per alongshore running meter, seaward of the
max dune crest and above the dune toe elevation.

0.20

event; and (5) exclude events with a maximum SSL less than
the local SSL threshold.

As mentioned before, the first step toward simulating plau-
sible storm events is to fit marginal distributions to the ex-
treme storm parameters (Hs, Tp, SSL, D). Since in the dune
erosion modeling approach we are using here we assume that
the wave direction is shore-normal (see Sect. 2.4), the Dir
storm parameter is not taken into account in the event sim-
ulation process (except the step in the event selection pro-
cess described previously that ensures that only storms di-
rected to the coasts are taken into account). For the remaining
storm parameters, we followed an approach similar to Li et
al. (2014a), fitting a generalized Pareto (GP) distribution to
the storm parameters above a specific threshold. This thresh-
old was identified by an iterative process, where we tested
different values of thresholds, in order to minimize the root
mean square error (RMSE) of the fitted values against the
observed values that had a return period larger than 1 year
(ensuring that the fit is best for the extreme case, i.e., tail
of the distribution, for which we are mostly interested), fol-
lowing Li et al. (2014a). The shape and scale parameters of
the GP distribution were obtained using a maximum likeli-
hood estimation, and the goodness of fit was verified using
the Kolmogorov–Smirnov test (Massey, 1951) considering a
5 % significance level. Ultimately, the marginal distribution
of each storm parameter was described by its fitted GP dis-
tribution for the values above the threshold and by its empir-
ical distribution for the value below the threshold (Li et al.,
2014a). This approach was applied to all the four storm pa-

rametersHs, Tp, SSL andD and was repeated for each of the
four areas of the Dutch coast.

The simulated extreme events should preserve the ob-
served dependency structure between the storm parameters,
and to do so we followed a copula-based approach. Li et
al. (2014a) compared four different methods to construct
the dependency structure of the offshore storm variables at
the IJmuiden-06 station (see Fig. 2), identifying the Gaus-
sian copula as the best approach due to both its performance
and its simplicity. The Gaussian copula, which belongs to
the elliptical copulas family, is essentially a distribution over
the unit hypercube [0, 1]d and can be easily generalized to
a higher number of dimensions. We first transformed the
observations using their ranks normalized by a factor of
1/(n+ 1), where n is the number of observed events, and
we then fit a multivariate Gaussian copula to the transformed
observations using the linear correlation coefficient between
the variates. Then using a Monte Carlo scheme we gener-
ated 100 000 quadruplets in the unit hypercube, which we
then transformed to their real units using the inverse cumu-
lative distribution functions of the respective marginal distri-
butions. To test if our simulator was able to capture the de-
pendency structure between the storm parameters, we com-
pared various dependency statistics (Pearson correlation ρ,
Kendall’s rank correlation τ , non-parametric tail dependence
coefficient – TDC; Wahl et al., 2016) derived for the simu-
lated and observed events for all the different combinations
of storm parameters. The differences between the observed
and simulated dependency statistics were on average smaller
than 5 %, 1 % and 2 % for ρ, τ and TDC, respectively, for all
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four stations (Figs. 3 and S1–S3), verifying that the simulator
was able to capture the dependency structure.

Finally, since we cannot simulate all 100 000 events with
our process-based model (Sect. 2.4) due to computational
constraints, we used the maximum dissimilarity algorithm
(MDA) (Camus et al., 2011; Athanasiou et al., 2021) to sam-
ple a representative subset of 100 events (Fig. 3). We pre-
ferred to use the MDA relative to other input reduction ap-
proaches (e.g., K-means) to ensure that the chosen events
were sampling the extreme cases well enough (Santos et al.,
2019). Another useful attribute of the MDA is that the most
dissimilar cases are picked iteratively, based on their similar-
ity with the rest of the cases. This means that, e.g., the 50
first events from 100 events picked with the MDA will be the
same as the 50 events picked with the MDA if a total of 50
samples were chosen. The number of events was chosen to
ensure that the subset of events sampled the parameter space
sufficiently while keeping the simulation computational costs
at a feasible level. This choice was similar to the number of
events used in similar studies for the creation of synthetic
training cases (Poelhekke et al., 2016; Santos et al., 2019).
The copula-based Monte Carlo simulation and the applica-
tion of the MDA were applied to all four offshore stations
(Fig. 2), leading to 100 storm events per area.

2.4 Dune impact synthetic dataset

The process-based model XBeach (Roelvink et al., 2009)
was used to simulate the dune response of the 100 TCPs
(Sect. 2.2) during the 100 synthetic storm events (Sect. 2.3).
XBeach is an open-source, process-based model which sim-
ulates shortwave energy and longwave transformation, wave-
driven currents, sediment transport, and corresponding mor-
phological changes at sandy coasts. In the present study, the
XBeach-v1.24.5867 version was used in a “surfbeat” mode,
where the shortwave variations are resolved at the wave
group scale. A one-dimensional (1D) cross-shore model was
created for each TCP using the topo-bathymetry as extracted
from the JARKUS dataset (extended to a 30 m depth assum-
ing a slope of 0.01, to make sure that the offshore bound-
ary was deep enough so that the waves at the boundary
are in intermediate water). The cross-shore grid resolution
changed from the offshore boundary to the dry beach, reach-
ing a 1 m spacing at the dune area. An extensive calibration
of the XBeach settings for use at the Dutch coast was per-
formed in Deltares/Arcadis (2022) using both laboratory ex-
periments and field data (from Belgium, the Netherlands and
Germany), resulting in a relative bias of −0.03 and a scat-
ter index of 0.23 for the simulated dune erosion volumes.
To reduce the computational time while ensuring minimal
influence in computed morphological changes, we used a
morphological acceleration factor (morfac) of 5, following
Athanasiou et al. (2021).

For each of the 100 TCPs, the 100 synthetic storms de-
rived for the respective offshore wave station (see Fig. 2

and Sect. 2.3) were used to create the XBeach hydrody-
namic boundary conditions. The time evolution of the bound-
ary conditions was configured similarly to Athanasiou et
al. (2021) using a triangular approach for Hs and Tp and
a normalized hydrograph for SSL (derived from the his-
toric events of the respective station), which is rescaled us-
ing the individual storm’s maximum SSL. The tidal signal
was created for each TCP based on observed tidal records
and the local MHW, assuming a high tide during the peak
of the storm (center of the hydrograph) (Fig. 4a–c). This
assumption could give a conservative result with respect to
dune erosion. The duration D was used to define the start-
ing and ending time of each simulation. Since the influence
of wave obliqueness is not fully resolved in the 1D ver-
sion of XBeach, here we assumed that the wave direction
is shore-normal. This assumption may lead to underestima-
tion of dune erosion when the generation of alongshore cur-
rents becomes important for sediment stirring and thus sed-
iment transport (de Winter and Ruessink, 2017). The syn-
thetic wave time series were then used to construct Joint
North Sea Wave Observation Project (JONSWAP) spectra
time series (γ = 3.3 and wave directional spreading of 30◦)
that were imposed at the offshore boundary of the model, to-
gether with the superimposition of the SSL and tidal signal.

Here, the dune erosion volume (DEV) was chosen as the
dune impact indicator (Giardino et al., 2014; Athanasiou et
al., 2021) and was calculated for each simulation as the dif-
ference of the dune volume per running meter (m3 m−1)
above the highest water level during an event, between the
pre- and post-storm elevation profiles (Fig. 4d). For the cases
were DEV was negative (resulting from storms with rela-
tively small SSL and newly formed dunes fronting the first
dune row, leading to onshore sediment transport) or very
small (DEV≤ 0.01, values in this range are not expected
to be representative because of grid spacing limitations), the
DEV was given a zero value. Additionally, local accretion
can be connected with alongshore variability of pre-storm
morphology (Cohn et al., 2018; Harley et al., 2022) but can-
not be resolved with the 1D approach used in this study.

The synthetic training dataset comprised a total of 10 000
simulations (100 TCPs× 100 storms). Additionally, a syn-
thetic benchmark dataset was created for calibration and val-
idation purposes. This was created by simulating DEV with
XBeach for 20 storms, selected using the MDA for each off-
shore wave station but for a new Monte Carlo simulation (to
ensure that the events are different for the ones used in the
training dataset) using 127 profiles along the Dutch coast (1
every 10 transects, excluding the TCPs). The previous steps
were followed to ensure that the benchmark dataset was in-
dependent from the training data but still accounted for the
morphological and hydrodynamic variabilities observed at
the Dutch coast. In this way, overfitting during model training
was avoided while the validation set was still representative
enough. The benchmark dataset comprised a total of 2540
simulations (127 profiles× 20 storms).
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Figure 3. Copula-based events simulator for the Euro platform station location (see Fig. 2). Red, gray and black dots indicate observed,
simulated and the 100 MDA selected events, respectively. The black dots are a subset of the gray dots (simulated events) that are selected
with the MDA. Histograms of each storm parameter (Hs, Tp, SSL andD) for both observed and simulated events can be seen in the diagonal
graphs. Below the diagonal, scatterplots for each pair are plotted. Above the diagonal, three different dependency coefficients (ρ: Pearson
correlation, τ : Kendall’s rank correlation, TDC: non-parametric tail dependence coefficient) are shown for each pair for the observed and
simulated events.

2.5 Artificial neural network

Artificial neural networks (ANNs) are computational net-
works that are a subset of machine learning and more specif-
ically deep learning algorithms, inspired by the neuron struc-
ture of the human brain. ANNs comprise a series of layers,

each one containing fundamental units or nodes of a network.
The number of layers of an ANN characterizes the depth,
while the number of nodes per layer describes the width of
the network. More specifically, multi-layer perceptron feed-
forward ANNs include an input layer, one or more hidden
layers, and an output layer, with the neurons of each layer
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Figure 4. Example of XBeach offshore boundary conditions and dune impact for one selected storm and TCP. (a)Hs time series, (b) Tp time
series and (c) water level time series at offshore boundary. (d) Post-storm simulated profile and calculation of dune erosion volume (DEV).

being fully connected with the neurons of the previous one
and the information passing in a single direction (i.e., from
input to output). Thus, each neuron in the hidden and output
layers translates the input values that are fed from the neu-
rons of the previous layer to a single output using a set of
weights (one for each input neuron), a bias and an activation
function. The output yj of the j th neuron of a layer with m
neurons is calculated as follows:

yj = f

((
n∑
i=1

wijxi

)
+ bj

)
, with j = 1, 2, . . ., m (1)

where n is the number of neurons in the previous layer,wij is
the weight of the connection of the ith neuron of the previous
layer to the j th neuron of the current layer, bj is the bias of
the j th neuron and f is an activation function.

Here, we built a two-phase ANN for the estimation of
DEV, composed of a classification ANN, which first predicts
whether there is dune erosion or not, and then a regression
ANN, which quantifies the DEV. With this two-phase ap-
proach we ensured that overprediction for smaller DEVs was
avoided and enabled the prediction of zero DEV (Verhaeghe
et al., 2008). For the input layer a total of 14 parameters (neu-
rons) were used (Fig. 5), with 10 parameters describing the
characteristics of the pre-storm profile (which are the same
parameters used for the clustering procedure in Sect. 2.2) and
the 4 storm parameters as defined in Sect. 2.3. To avoid is-
sues in the training of the ANN related to the different scales
of the continuous input parameter space, the input data were
first normalized to unity range. For both ANNs the initial
weights and biases of the neurons in the hidden and out-
put layers were randomly assigned, and then the optimum
weights and biases were calculated during an iterative train-

ing phase using the standard error backpropagation with the
gradient descent method. More specifically, the adaptive mo-
ment estimation algorithm (Kingma and Ba, 2017) was used
to calculate the optimum weights, by minimizing a loss func-
tion between the ANN-estimated DEV values and the target
values from the training dataset (the 10 000 cases described
in Sect. 2.4).

The benchmark dataset (the 2540 cases described in
Sect. 2.4) was equally divided into a calibration and a valida-
tion dataset. The former is used for the tuning of the ANN’s
hyperparameters and comparing the different ANN config-
urations to choose the optimum one. The latter is used for
assessing the actual accuracy and prediction skill of the se-
lected ANN. To avoid overfitting of the model to the training
dataset, the learning phase of the ANNs was optimized by
using the calibration dataset to stop training when the losses
(differences between predictions and targets) for the calibra-
tion dataset stop decreasing. Additionally, the hyperparam-
eters of the ANNs, like the batch size (number of samples
to work through before updating the internal model param-
eters), the learning rate (how much to change the model in
response to the estimated loss each time the model weights
are updated) and the hidden-layer activation functions, were
chosen using a grid-search approach identifying the combi-
nation minimizing the calibration dataset losses. The division
of the benchmark dataset into a calibration and validation
dataset was performed 10 times with different randomization
seeds, and the final mean error statistics were used, to en-
sure that any bias of the individual divisions was minimized.
This meant that 10 different ANNs were produced (with the
same architecture but different weights and biases), which
will give an ensemble of DEV predictions that can work as
an uncertainty range.
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Figure 5. Configuration of the artificial neural network (ANN) for either DEV classification or regression. The first layer (input layer)
comprises 14 (10 profile and 4 forcing) parameters, which are normalized. Then, n hidden layers with variable numbers of nodes are defined
iteratively, while connections to the nodes of the previous layer are established using weights, biases and an activation function. The last
layer is the output layer for which there can be two configurations: (1) classification (upper right), where the output layer comprises one node
presenting the probability of DEV> 0, which provides an estimate of dune erosion occurrence or not, and (2) regression (lower right), where
the output layer comprises one node, which is the log(DEV) that is translated back to its real units using an exponential function.

For the neurons in the hidden layer(s) of both the classi-
fying and regression ANNs, the rectified linear (ReL) activa-
tion function (Nair and Hinton, 2010) was used:

f (x)=max{0, x}. (2)

For the classification ANN, all the cases in the training and
benchmark datasets was used. The simulated DEV of all
the training and benchmark cases were translated to 0 or 1,
representing, respectively, no erosion (DEV= 0) or erosion
(DEV> 0). For the neurons in the output layer the sigmoid
activation function was used:

f (x)=
1

1+ e−x
. (3)

With this function, the output neuron will always give a value
in the range [0, 1], which indicates the probability of having
dune erosion and is used to classify the output to “erosion”
if it is > 0.5 or “no erosion” if it is ≤ 0.5. Since the problem
was a binary-classification one, the loss function used to op-
timize the classification ANN was the binary cross-entropy
(BCE) defined as follows:

BCE=−
1
N

N∑
i=1

yi · log(p (yi))+ (1− yi) · log(1−p(yi)),

(4)

where N is the number of samples in the training batch; yi
is the actual (observed) class, which is 0 or 1 for no erosion
or erosion, respectively; and p(yi) is the probability of the
erosion class as calculated by the ANN.

For the regression ANN only the cases where DEV> 0
were used, which comprised 79 % and 77 % of the total cases
in the training and benchmark cases, respectively. The DEV
values were first transformed to log(DEV) to ensure that dur-
ing the calculation of losses, similar importance was given to
minor and larger DEV cases (van Gent et al., 2007). For the
output layer a linear activation function was used, which is
defined as f (x)= x, and the final DEV estimation was ac-
quired by using the exponential function on the output neu-
ron to transform them back to real units. Since this problem
was a regression one and the natural logarithm of DEV was
used as the output, the loss function used in the regression
ANN was the mean absolute error (MAE) defined as:

MAE=
1
N

N∑
i=1

∣∣log
(
DEVpred

)
− log(DEVsim)

∣∣ , (5)

where N is the number of samples in the training batch,
DEVsim is the dune erosion volume as simulated by XBeach
and DEVpred is the dune erosion volume as calculated by the
ANN.
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Different architectures of the hidden layers (number of
hidden layers and neurons per layer) were tested for both
ANNs to find the optimum ones with respect to the calibra-
tion dataset. The accuracy metric (i.e., the percentage of cor-
rect class predictions) was used to find the optimum architec-
ture of the classification ANN. For the regression ANN, the
skill score (Murphy, 1988) was used to choose the optimum
architecture, which is defined as follows:

skill= 1−
RMSE2

σ 2
DEVsim

, (6)

RMSE=

√∑N
i=1
(
DEVpred−DEVsim

)2
N

, (7)

where σDEVsim is the standard deviation of the XBeach-
simulated DEV in the calibration dataset and N is the num-
ber of cases in the calibration dataset. A skill score of 1 in-
dicates a perfect prediction. The bias index (BI), RMSE and
the modified index of Mielke (λ) (Duveiller et al., 2016; San-
tos et al., 2019) were also computed as complementary error
statistics.

3 Results

3.1 Performance of classification ANN

Different depths (number of hidden layers) and widths (num-
ber of neurons per layer) of the ANN were tested to find
the optimum architecture of the classifier. Architectures with
one, two or three hidden layers were tested, with similar
numbers of neurons ranging between 2 and 128 (with a
quadratic step increase between the tests). The mean accu-
racy of the predictions for the calibration cases (1270 cases)
increased for wider networks, starting from an average accu-
racy of ∼ 85 % for a small number of neurons per layer and
reaching up to ∼ 95 % for wider networks (Fig. 6). The dif-
ference between networks with one and three hidden layers
was negligible, while for networks with more than 16 neu-
rons per hidden layer the relative increase in accuracy was
again negligible. This indicated that the accurate binary clas-
sification for the prediction of whether dune erosion occurs
or not does not necessarily require a complex ANN. There-
fore and since the differences between the different architec-
tures beyond a threshold of 16 neurons per layer were in the
same order of magnitude as the expected differences of re-
running the algorithm (due to the inherit stochasticity of the
training process and the weight initialization), here we opted
to use a relatively simple ANN architecture with two hidden
layers of 32 neurons each.

Using the 1270 validation cases the accuracy of the se-
lected ANN was further assessed. The classification ANN
predicted the correct class (erosion or no erosion) with an av-
erage accuracy of ∼ 94 %. The confusion matrix shows that
the model had an average accuracy of ∼ 96 % in correctly

identifying cases with erosion, while it accurately found
∼ 85 % of the cases that there is no erosion (Fig. 7). The
quite high accuracy in identifying erosion cases provided
confidence in the use of this classification ANN as a first
filtering step in the proposed meta-model, while the “false
positive” cases (∼ 15 %) are handled in the next phase with
the regression ANN, where they can still have a small DEV
value. Since the actual output of the classification ANN is the
probability of erosion, a prediction confidence can be calcu-
lated as the probability of the class with the highest proba-
bility. When analyzing the statistics of the prediction confi-
dences (Fig. 7), it can be seen that for accurate predictions
(true positive or true negative) the prediction confidence was
higher (25th–75th percentiles: 99.7 %–100 %) than that for
false negatives (63.7 %–94.1 %) and false positives (67.1 %–
97.2 %), indicating that the prediction confidence as given
by the ANN is a good measure of the confidence level of the
predictions.

3.2 Performance of regression ANN

The same architectures as for the classification ANN were
tested for the regression ANN. The mean skill score of the
predictions for the calibration cases (∼ 980 cases with DEV
> 0) strongly increased for wider networks, while the influ-
ence of the network’s depth was more evident for less wide
networks (Fig. 8). The consistency of the skill score between
the calibration randomizations (shown by the line around the
bars in Fig. 8) increased with wider and deeper networks as
well. This indicated that for a skillful prediction of DEV a
relatively higher number of neurons (and thus complexity)
was needed. Ultimately, a regression ANN with three hid-
den layers and 32 neurons per layer was selected as the best-
performing one.

Using the validation cases (∼ 980 cases) the error statistics
of the DEV predictions with the selected ANN configuration
were further assessed (Fig. 9). The ANN-based DEV predic-
tions showed a good agreement with the XBeach-simulated
DEVs, with a skill score between 0.71–0.89 (among the 10
randomizations) with an average of 0.82, while the RMSE
and the bias had an average value of 19.4 and 0.23 m3 m−1,
respectively.

3.3 Comparison with observations

In the JARKUS program, elevation profiles are measured
along the Dutch coastline every year around April as de-
scribed in Sect. 2.1. However, these profiles cannot directly
be used as pre- and post-storm profile observations to find
dune erosion, since several different events occur and dune
recovery occurs between the two measurements.

In this section, we used available pre- and post-storm ob-
servations for three historic storms (1953, 1979 and 2019) to
validate the prediction capacity of the proposed meta-model
against observed DEV. These three storms have been used
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Figure 6. Accuracy of classification prediction for the calibration cases using different architectures of the classification ANN with a different
number of hidden layers and neurons per layer. On the x axis the architecture of each ANN is represented by the number of neurons per
layer, with layers separated by “–”. The bars indicate the mean accuracy values between the 10 randomizations of the benchmark dataset,
and the lines show the min and max values.

Figure 7. Prediction accuracy of the predicted DEV class using the selected classification ANN configuration (two hidden layers of 32
neurons each) against the XBeach simulated classes for the validation cases. (a) Confusion matrix showing the percentage of each class
prediction per observed class (each column sums to 100 %), with the diagonal indicating a correct prediction. Numbers in the center of each
cell show the mean accuracy over the 10 randomizations of the benchmark cases, while brackets in the lower part give the min–max values.
(b) Boxplots of the prediction confidence (as given by the ANN) grouped by the prediction’s accuracy, defined here as the difference between
the predicted DEV class and the observed DEV class (orange line: median, box: 25th–75th percentile range, lines: 5th–95th percentile range).

in the validation of the XBeach model as well (Arcadis-
/Deltares, 2022). For these storms we extracted the storm
conditions using the same methodology as used in the event
definition in Sect. 2.3. The storm conditions for three differ-
ent storms along with a description of the available elevation

data are given in Table 2. The input for the ANN-based meta-
model was obtained by calculating the morphological indica-
tors of the pre-storm profiles, while the hydrodynamic indi-
cators were obtained from the corresponding transects of in-
terest as calculated in Athanasiou et al. (2021) (see Table 1).
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Figure 8. Skill of the DEV prediction for the calibration cases using different configurations of the regression ANN with a different number
of hidden layers and nodes per layer. On the x axis the architecture of each ANN is represented by the number of neurons per layer, with
layers separated by “–”. The bars indicate the mean values between the 10 randomizations of the benchmark dataset, and the lines show
the min and max values. The lower limit of the y axis has been set to 0 to avoid visualization issues when skill was negative for some
configurations with low number of layers and nodes.

Table 2. Cases used for the validation of the meta-model predictions.

Storm SSL Hs Tp D Number of Remarks
(m) (m) (s) (h) transects

February 1953 2.84 7.3 14.1 37 1 A typical schematized profile of the Holland coast is used as the
pre-storm profile, while for the observed dune erosion, reported
values of 90± 26 m3 m−1 are used (Van Thiel de Vries, 2009).

January 1976 2.20 6.1 10.8 35 30 Pre- and post-storm elevation data at the northern part of the
Holland coast. These data account only for the profile part up
to the new dune toe. Final pre- and post-storm profiles are
created by combining the previously described data with the
JARKUS elevations of 1975 for the non-measured points (Ar-
cadis/Deltares, 2022).

January 2019 1.30 5.2 11.1 27 7 Complete pre- and post-storm beach–dune profiles near
Egmond aan Zee, available from Ruessink et al. (2019).

A scatterplot of the observed versus the ANN-predicted
DEV for the different storms and transects (Fig. 10) reveals
that the variability in DEV values between the three storms
was modeled well. For the moderate-intensity storm of 2019,
the variability between the different measured transects was
captured accurately. However, for the case of the 1976 storm
there was some underestimation for the transects with ob-
served DEV > 40 m3 m−1 and some overestimation for the
transects with DEV < 40 m3 m−1. This might be an artifact
of the way the pre- and post-storm profiles were created in
that the 1976 storm observations only included the part up to
the dune toe. For that reason, part of these discrepancies can

be attributed to the quality of the measured data. For the dis-
astrous event of 1953, the mean DEV prediction was in the
range of the reported DEV values. Using these 38 cases, er-
ror statistics were computed for the mean DEV prediction
of the ANN-based meta-model. The DEV predictions had
a skill score of 0.84 and RMSE of 9.15 m3 m−1 against the
38 observed DEVs. The error statistics against the observed
cases (Fig. 10) are comparable to the ones derived against the
benchmark cases (Fig. 9), with the exception of the RMSE,
which is almost half the size. This is due to the relatively
smaller scale of observed DEV in comparison to the simu-
lated DEV in the benchmark dataset.
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Figure 9. Scatterplot between the XBeach-simulated (x axis) and
ANN-predicted (y axis) DEV for the validation cases with DEV
> 0 m3 m−1 using the selected regression ANN configuration (three
hidden layers of 32 neurons each). The scatterplot shows the vali-
dation cases for one of the randomizations, while statistics in the
upper left show the mean over the 10 randomizations of the bench-
mark cases, with brackets giving the min–max values. The black
line indicates the 1 : 1 line, while the red line is the linear regression
fit (equation given in red).

4 Discussion

4.1 Insights

During the creation of the ANN-based meta-model, a specific
set of profile and storm parameters was used as input features
for the DEV predictions (Fig. 5). The 10 profile parameters
used herein were the same ones used in the clustering pro-
cedure as presented in Athanasiou et al. (2021), which were
found to drive DEV variability during storms at the Dutch
coast. During the clustering procedure (Sect. 2.2), specific
weights were assigned to each of these 10 parameters ac-
cording to their importance (Table 1). These weights, how-
ever, were not used in the ANN creation because a weight-
ing scheme is implicitly taking place during the training of
the ANN when weights are assigned to each incoming con-
nection of each individual neuron. Since there are numerous
connections and different layers, it is not straightforward to
get individual weights for each of the input parameters of the
trained ANN as a measure of input importance. Still, there
are techniques that allow for assessing the individual impact
of inputs in an ANN (Wang et al., 2000).

Here we employed a permutation importance approach
(Breiman, 2001; Logue et al., 2019) to assess the individual

Figure 10. Scatterplot between the observed (x axis) and ANN-
predicted (y axis) DEV for three historic storms with a variable
number of transects per storm. The dots indicate the average pre-
dictions of the ANN, while the vertical lines show the min and max
values as given by the ensemble of the ANN output. For the storm
of 1953 the horizontal line gives the range of the values reported.

Figure 11. Input parameter importance using a permutation impor-
tance approach. The bars indicate the mean MAE difference be-
tween the MAE when permutating a single-input parameter and the
MAE of the benchmark cases with no permutations.

importance of the input parameters in predicting DEV using
the ANN framework. To this end, the trained regression ANN
was used to predict DEV for the validation cases after each
feature (i.e., input parameter) was first randomly permuted
one at a time. Then, the MAE was calculated for each per-
mutation and compared with the benchmark MAE (using the
validation cases without permutations) (Fig. 11). The under-
lying idea is that if an input feature is important, then shuf-
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fling its values will lead to larger errors in the predictions.
The pre-storm beach volume was found to be the most impor-
tant input in predicting DEV. The other beach characteristics
(width and slope) were important as well, highlighting that
the beach fronting the dune acts as a first buffer protecting the
dune from erosion. The storm’s SSL, Tp and D were found
to be quite important inputs as well (in that order). These
results agree with Beuzen et al. (2019), who found beach
width and the exceedance of wave run-up above the dune toe
as the most important drivers of observed dune erosion vari-
ability during a single storm along the southeast Australian
coastline. The max dune volume was found to be the least
important input for the DEV predictions, which agrees with
Athanasiou et al. (2021). It should be noted, though, that
some of the parameters that are expected to be important,
e.g., the storm’s Hs, did not lead to a high MAE difference,
something that could be connected with their correlation to
other more important parameters (see Fig. 3) that mask part
of the individual importance during the permutations.

One of the most critical aspects when training machine
learning models, like the ANN presented here, is the training
dataset. The predictive capacity of the ANN is highly depen-
dent on how well the training cases sample the parameter
space, allowing for generalization of the model and avoiding
overfitting. To ensure a representative (for the Dutch coast)
training dataset, here 100 elevation profiles (TCPs) were cho-
sen based on a clustering analysis of all the available tran-
sects at the Dutch coast (Athanasiou et al., 2021), while for
the storms, a total of 100 storms was selected based on pre-
vious studies and available computational power. However,
since for the selection of storm events the MDA was used,
which does not randomly pick events from the storm param-
eter space but rather incrementally includes the most dissim-
ilar events in the chosen subset (i.e., the order the events are
picked is always the same); there is a chance that not all of
the 100 events used here were needed to capture the variabil-
ity of the synthetic storms produced in Sect. 2.3. To test this,
we trained the regression ANN with a different number of
cases representing the combination of the 100 TCPs with a
different number of events as given by the MDA (5, 10, 20,
50 and 100 storm events) and validated the prediction skill of
each ANN (Fig. 12). The prediction skill reached a plateau
after 20–50 storm events were used. This means that with
around 20–50 events, the MDA has already picked the most
dissimilar events.

In our study, running 10 000 XBeach simulations for the
training dataset was feasible using parallel computing. How-
ever, as shown in Fig. 12, more than half of these simula-
tions were actually not necessary to attain the predictive skill
that was demonstrated in Sect. 3.2. To this end, this “spare”
computational effort for creating a synthetic training dataset
could be devoted to adding complexity to the meta-model
by reducing some of the assumptions used in the presented
framework. For example, 2D XBeach models could be used
instead of 1D, enabling the simulation of oblique waves dur-

Figure 12. Skill value for a different number of training storm
events used from the MDA (5, 10, 20, 50 and 100). The thick line
shows the mean values while the patch indicates the min and max
values between the 10 randomizations of the validation dataset. The
patch extents have been smoothed using a Gaussian smoother.

ing storms by adding the wave direction as an extra input
parameter in the ANN. Additionally, the assumptions with
respect to the time evolution of the water levels and wave
conditions during a storm used here (see Sect. 2.4) could be
replaced by expanding the simulations with different Hs and
SSL hydrographs and different phasing between the peak of
SSL with the high tide. The effects of the aforementioned
assumptions are further discussed in the next subsection.

4.2 Limitations

Machine learning models based on supervised learning, like
the presented ANN-based meta-model, are as good as the
data used to train them. Due to lack of a sufficiently large
number of post-storm dune erosion observations at the Dutch
coast, the training dataset used here was a synthetic dataset
created using a calibrated version of the process-based model
XBeach, which has shown good skill in predicting dune ero-
sion at the Dutch Coast (Arcadis/Deltares, 2022) and has
been previously used in numerous studies showing good skill
in reproducing dune erosion during storms (Lindemer et al.,
2010; McCall et al., 2010; Vousdoukas et al., 2011; de Win-
ter et al., 2015; Passeri et al., 2018). Still, due to the com-
putational burden of creating the synthetic cases, specific as-
sumptions and simplifications needed to be followed, which
can affect the predicting capacity of the presented meta-
model.

One of the main simplifications was using a 1D model
and assuming that waves are shore-normal. This was de-
cided due to the high computational cost of running∼ 10000
2D-XBeach models, which can handle the incoming wave
obliqueness. Nevertheless, storms are not everywhere shore-
normally incident along the Dutch coast and alongshore non-
uniformity and incoming wave angle can affect the dune ero-
sion intensity due to generation of alongshore currents and
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sediment transport gradients (de Winter and Ruessink, 2017).
Additionally, since with the copula-based approach used here
(Sect. 2.3) we could only simulate the main storm param-
eters (Hs, Tp, SSL and D), the time evolution of the wave
characteristics and water levels used in the XBeach bound-
ary conditions needed to be schematized. Here we used a
triangular hydrograph for the time evolution of the signifi-
cant wave height and a representative normalized hydrograph
based on historic events for the time evolution of storm surge
while it was assumed that the high tide always occurs at the
same time as the surge peak. While these choices were based
on a previous study showing good agreement with observed
parameters that can drive dune erosion (Athanasiou et al.,
2021), these assumptions have been previously found to in-
troduce extra uncertainties into the modeling of dune impacts
(Duo et al., 2020). Some of these assumptions might explain
some of the differences between the predicted and observed
DEV for the historic cases (Fig. 10).

The choice of the profile and storm parameters used as
input in the ANN was based on previous studies looking
into drivers of dune erosion variability (Beuzen et al., 2019;
Cohn et al., 2019; Athanasiou et al., 2021). However, there
are other variables that can be of importance at other dune-
fronted coastlines around the world. For example, sediment
grain size effects were not taken into account in the present
study, since the D50 variability at the Dutch coast is not
high enough and is not expected to drive strong differences
in DEV variability (Athanasiou et al., 2021). Additionally,
vegetation characteristics can play an important role in con-
trolling dune erosion intensity during extreme events (Char-
bonneau et al., 2017) and were not studied here. In the pre-
sented meta-model, the nearshore area of the profile was only
described by the nearshore slope. However, pre-storm bar
morphology is of importance for post-storm dune erosion
(Castelle et al., 2015). Moreover, since the training data of
the ANN comprise a set of parameters that are defined in a
quite specific manner (see Table 1), it is critical to follow
the exact same definition when making predictions, since the
model is data-driven rather than process-driven.

The width and height of the dunes along the Dutch coast
result in the former being in the collision regime (Sallenger,
2000) during storms, and overwash or inundation is ex-
tremely rare. The dune response indicator used in the present
study was the dune erosion volume, which is a good indica-
tor to characterize the scale of erosion during extreme storms
and provides useful information in long-term planning of
nourishment strategies (Giardino et al., 2014). However, sev-
eral flooding or erosion indicators can be of relevance for
other applications or locations (Leaman et al., 2021), such as
dune retreat or dune crest lowering (Santos et al., 2019). The
presented techniques could be expanded for these impact in-
dicators.

4.3 Applications

The proposed meta-model could have various applications
in coastal zone management due to its accuracy and effi-
ciency in generating output. A prediction of DEV for all
sandy transects of the Dutch coast when a forecast of an in-
coming storm is available takes a matter of seconds using this
model. This highlights its potential use in an early warning
system when compared to the computational power needed
when running XBeach for all transects, leading to 103–104

times faster computations depending on the storm’s dura-
tion. A hybrid approach could be followed as well, where
the ANN meta-model could be used as a screening tool to
identify hotspots of dune erosion, reducing the number of
XBeach model runs needed to only the locations that are ex-
pected to have higher impacts.

Another potential application could be in dune erosion
risk assessments, where the meta-model could be applied to
quickly quantify DEV along the Dutch coast for all historic
storms observed from the offshore stations. Then with ex-
treme value analysis at each transect, local extreme values
of DEV could be derived which can aid in assessing local
coastal protection. Moreover, if the presented framework is
expanded to predict dune retreat and include sea level rise,
it could be used for sea-level-rise-induced coastal retreat as-
sessments as well using the Probabilistic Coastal Recession
(PCR) tool (Ranasinghe et al., 2012). By efficiently picking
the storm boundary conditions to model for the creation of
the training data (Fig. 12), extra computational power will be
available to include sea level rise (SLR) scenarios. For exam-
ple, with 100 TCPs, 20 synthetic storms per TCP and 5 SLR
scenarios (e.g., 0.2, 0.4, 0.6, 0.8, 1), a total of 10 000 simula-
tions will be needed. The SLR could directly be imposed in
the offshore boundary of the new XBeach runs. Then a sim-
ilar ANN-based meta-model could be trained with the extra
input parameter of SLR and having dune retreat as output.
The PCR tool has been previously applied to one location at
the Dutch coast (Li et al., 2014b) using an empirical rela-
tionship to estimate dune retreat during extremes. This prob-
abilistic model requires a quite high number of simulations of
coastal retreat, something that could be easily handled with
the meta-model approach presented here.

The presented framework could be also expanded to en-
able the assessment of nourishment strategies. As mentioned
in the previous section, the predictive capacity of an ANN is
dependent on the training data. This means that elevation pro-
files with a sand nourishment might not look like any of the
TCPs used in the training dataset. To address this, schematic
profiles with various nourishment options could be created,
then simulated with XBeach and finally added to the training
cases. This will allow for more versatility in the predictive
capacity and application range of the technique.

Finally, the ANN-based meta-model presented here is tai-
lored to the Dutch coast, and applying it anywhere else in
the world would not be straightforward (except where the
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elevation profiles and forcing look similar). Particularly, the
training data used here to develop the meta-model were spe-
cific for the Dutch coastal setting with respect to coastal mor-
phology and storm conditions. This means that the predictive
capacity of the meta-model is dictated by the training data
coverage of the input parameter space. However, the method-
ological framework (Fig. 1) could be upscaled by creating a
new training dataset, which would be based on XBeach simu-
lations of a larger set of profiles that are representative of the
global range of beach–dune morphologies and forcing condi-
tions. When doing so, care should be taken to potentially in-
troduce other critical input parameters, which can vary glob-
ally, like the sediment grain size. Additionally, special care
should be taken in applying these methods in tropical-storm-
prone areas, where it should be ensured that the training forc-
ing conditions are representative of the extremes induced by
tropical cyclones (Bloemendaal et al., 2022). A meta-model
like this could be used as a fast screening tool for dune ero-
sion estimation at any study site with dunes around the globe,
especially at data-poor locations. However, availability of
dune erosion data will remain a limiting factor for validat-
ing the model.

5 Conclusions

A meta-model based on artificial neural networks (ANNs)
and the process-based model XBeach has been developed to
derive estimates of dune erosion volume (DEV) at the Dutch
coast. The model can provide DEV predictions for the en-
tire Dutch coast in a matter of seconds when compared to
brute-force modeling with XBeach. The first step of this two-
phase model was to predict whether dune erosion occurs or
not using a classifying ANN which showed a mean accuracy
of 94 % against a benchmark dataset created with XBeach
simulations. The second step comprised a regression ANN
which estimated DEV with a mean prediction skill of 0.82
and RMSE of 19.4 m3 m−1 against the benchmark data. Ad-
ditionally, the predictive capacity was tested against some
sparse observations of dune erosion for three historic storms
at the Dutch coast, showing similarly good performance.

Input reduction techniques were used to ensure that the
training data used for the ANNs included representative com-
binations of elevation profiles and storm conditions. The in-
put parameters of the meta-model included local morpholog-
ical and hydrodynamic parameters as well as a set of storm-
specific forcing conditions. Moreover, various ANN archi-
tectures were tested to find the optimum classification and
regression ANNs. Using an input importance analysis, the lo-
cal beach geometry, storm surge level, peak wave period and
duration of the storm were found to be the most important in-
puts for more accurately predicting DEV. Potential applica-
tions of the presented model include early warning systems
and probabilistic risk assessments of dune erosion, while the

methodology could potentially be upscaled using more data
from other beach and dune coasts around the world.
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