Articles | Volume 22, issue 5
https://doi.org/10.5194/nhess-22-1699-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1699-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
COMET, School of Earth and Environment, University of Leeds, Leeds,
LS2 9JT, UK
John R. Elliott
COMET, School of Earth and Environment, University of Leeds, Leeds,
LS2 9JT, UK
Susanna K. Ebmeier
COMET, School of Earth and Environment, University of Leeds, Leeds,
LS2 9JT, UK
María Antonieta Vásquez
College of Social Sciences and Humanities, Universidad San Francisco de Quito, Quito 170901, Ecuador
Camilo Zapata
College of Social Sciences and Humanities, Universidad San Francisco de Quito, Quito 170901, Ecuador
Santiago Bonilla-Bedoya
Research Center for the Territory and Sustainable Habitat, Universidad Tecnológica Indoamérica, Machala y Sabanilla, 170301, Quito, Ecuador
Paulina Cubillo
Centro de Información Urbana de Quito - CIUQ, Quito, Ecuador
Diego Francisco Orbe
Centro de Información Urbana de Quito - CIUQ, Quito, Ecuador
Marco Córdova
Facultad Latinoamericana de Ciencias Sociales, FLACSO, Quito,
Ecuador
Jonathan Menoscal
Facultad Latinoamericana de Ciencias Sociales, FLACSO, Quito,
Ecuador
Elisa Sevilla
College of Social Sciences and Humanities, Universidad San Francisco de Quito, Quito 170901, Ecuador
Related authors
C. Scott Watson, Maggie Creed, Januka Gyawali, Sameer Shadeed, Jamal Dabbeek, Divya L. Subedi, and Rojina Haiju
EGUsphere, https://doi.org/10.5194/egusphere-2024-2722, https://doi.org/10.5194/egusphere-2024-2722, 2024
Preprint archived
Short summary
Short summary
We evaluate three flood modelling approaches to demonstrate their applicability in a data-sparse flash flood environment. We derive a reference flood extent using satellite imagery and show that a computationally fast flood model can match a fully physics-based model, whilst running 300 times faster. We also show that a 1 in 100-year rainfall event based on historical data (1985–2014) could increase by almost 40 % in the mid-future (2041–2060), which could cause 23 % (4 km2) greater inundation.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, Juliet Biggs, Fabien Albino, Sarah K. Brown, Helen Burns, Andrew Hooper, Milan Lazecky, Yasser Maghsoudi, Richard Rigby, and Tim J. Wright
Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, https://doi.org/10.5194/gc-6-75-2023, 2023
Short summary
Short summary
We evaluate the communication and open data processing of satellite Interferometric Synthetic Aperture Radar (InSAR) data, which measures ground deformation. We discuss the unique interpretation challenges and the use of automatic data processing and web tools to broaden accessibility. We link these tools with an analysis of InSAR communication through Twitter in which applications to earthquakes and volcanoes prevailed. We discuss future integration with disaster risk-reduction strategies.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
C. Scott Watson, Maggie Creed, Januka Gyawali, Sameer Shadeed, Jamal Dabbeek, Divya L. Subedi, and Rojina Haiju
EGUsphere, https://doi.org/10.5194/egusphere-2024-2722, https://doi.org/10.5194/egusphere-2024-2722, 2024
Preprint archived
Short summary
Short summary
We evaluate three flood modelling approaches to demonstrate their applicability in a data-sparse flash flood environment. We derive a reference flood extent using satellite imagery and show that a computationally fast flood model can match a fully physics-based model, whilst running 300 times faster. We also show that a 1 in 100-year rainfall event based on historical data (1985–2014) could increase by almost 40 % in the mid-future (2041–2060), which could cause 23 % (4 km2) greater inundation.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, Juliet Biggs, Fabien Albino, Sarah K. Brown, Helen Burns, Andrew Hooper, Milan Lazecky, Yasser Maghsoudi, Richard Rigby, and Tim J. Wright
Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, https://doi.org/10.5194/gc-6-75-2023, 2023
Short summary
Short summary
We evaluate the communication and open data processing of satellite Interferometric Synthetic Aperture Radar (InSAR) data, which measures ground deformation. We discuss the unique interpretation challenges and the use of automatic data processing and web tools to broaden accessibility. We link these tools with an analysis of InSAR communication through Twitter in which applications to earthquakes and volcanoes prevailed. We discuss future integration with disaster risk-reduction strategies.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Cited articles
Airbus Defence and Space: Pléiades Imagery User Guide, https://www.intelligence-airbusds.com/en/8718-user-guides (last access: 29 October 2019), 2012.
Allan, P., Bryant, M., Wirsching, C., Garcia, D., and Rodriguez, M. T.:
The Influence of Urban Morphology on the Resilience of Cities Following an
Earthquake, Journal of Urban Design, 18, 242–262,
https://doi.org/10.1080/13574809.2013.772881, 2013.
Altieri, M. A., Companioni, N., Cañizares, K., Murphy, C., Rosset, P.,
Bourque, M., and Nicholls, C. I.: The greening of the “barrios”: Urban
agriculture for food security in Cuba, Agr. Hum. Values, 16,
131–140, https://doi.org/10.1023/A:1007545304561, 1999.
Alvarado, A., Audin, L., Nocquet, J. M., Lagreulet, S., Segovia, M., Font,
Y., Lamarque, G., Yepes, H., Mothes, P., Rolandone, F., Jarrín, P., and
Quidelleur, X.: Active tectonics in Quito, Ecuador, assessed by
geomorphological studies, GPS data, and crustal seismicity, 33, 67–83,
https://doi.org/10.1002/2012tc003224, 2014.
Amey, R. M. J., Elliott, J. R., Hussain, E., Walker, R., Pagani, M., Silva,
V., Abdrakhmatov, K. E., and Watson, C. S.: Significant Seismic Risk
Potential from Buried Faults Beneath Almaty City, Kazakhstan, revealed from
high-resolution satellite DEMs, Earth and Space Science, 8, e2021EA001664,
https://doi.org/10.1029/2021EA001664, 2021.
Anhorn, J. and Khazai, B.: Open space suitability analysis for emergency shelter after an earthquake, Nat. Hazards Earth Syst. Sci., 15, 789–803, https://doi.org/10.5194/nhess-15-789-2015, 2015.
Aragundi, S. M., Mena, A. P., and Zamora, J. J.: Historical Urban Landscape
as a Descriptive Feature for Risk Assessment: the “Quebradas” of Quito,
FICUP. An International Conference on Urban Physics, Quito – Galápagos,
Ecuador, 26–30 September 2016.
Aronson, M. F., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B.,
MacIvor, J. S., Nilon, C. H., and Vargo, T.: Biodiversity in the city: key
challenges for urban green space management,
Front. Ecol. Environ., 15, 189–196, https://doi.org/10.1002/fee.1480,
2017.
Baker, J. L.: Climate Change, Disaster Risk, and the Urban Poor: Cities Building Resilience for a Changing World, Urban Development, Washington, DC, World Bank, https://openknowledge.worldbank.org/handle/10986/6018 (last access: 16 May 2022), 2012.
Bauwelinck, M., Casas, L., Nawrot, T. S., Nemery, B., Trabelsi, S., Thomas,
I., Aerts, R., Lefebvre, W., Vanpoucke, C., Van Nieuwenhuyse, A., Deboosere,
P., and Vandenheede, H.: Residing in urban areas with higher green space is
associated with lower mortality risk: A census-based cohort study with ten
years of follow-up, Environ. Int., 148, 106365,
https://doi.org/10.1016/j.envint.2020.106365, 2021.
Beauval, C., Mariniere, J., Yepes, H., Audin, L., Nocquet, J. M., Alvarado,
A., Baize, S., Aguilar, J., Singaucho, J., and Jomard, H.: A New Seismic
Hazard Model for Ecuador, B. Seismol. Soc. Am.,
108, 1443–1464, https://doi.org/10.1785/0120170259, 2018.
Benedict, M. and MacMahon, E.: Green Infrastructure: Smart Conservation for
the 21st Century, Renewable Resources Journal, 20, 12–17, 2002.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology/Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant,
Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Bonilla-Bedoya, S., Estrella, A., Vaca Yánez, A., and Herrera, M.
Á.: Urban socio-ecological dynamics: applying the urban-rural gradient
approach in a high Andean city, Landscape Res., 45, 327–345,
https://doi.org/10.1080/01426397.2019.1641589, 2020a.
Bonilla-Bedoya, S., Mora, A., Vaca, A., Estrella, A., and Herrera, M.
Á.: Modelling the relationship between urban expansion processes and
urban forest characteristics: An application to the Metropolitan District of
Quito, Comput. Environ. Urban, 79, 101420,
https://doi.org/10.1016/j.compenvurbsys.2019.101420, 2020b.
Borland, J.: Small parks, big designs: reconstructed Tokyo's new green
spaces, 1923–1931, Urban History, 47, 106–125, https://doi.org/10.1017/S0963926819000567, 2020.
Boulton, C., Dedekorkut-Howes, A., and Byrne, J.: Factors shaping urban
greenspace provision: A systematic review of the literature,
Landscape Urban Plan., 178, 82–101,
https://doi.org/10.1016/j.landurbplan.2018.05.029, 2018.
Bryant, M. and Allan, P.: Open space innovation in earthquake affected
cities, in: Approaches to Disaster Management – Examining the Implications
of Hazards, Emergencies and Disasters, edited by: Tiefenbacher, J. P., London, In-Tech, 230 pp., https://doi.org/10.5772/55465, 2013.
Cardona, O.-D., van Aalst, M. K., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Pulwarty, R. S., Schipper, E. L. F., Sinh, B. T., Décamps, H., Keim, M., Davis, I., Ebi, K. L., Lavell, A., Mechler, R., Murray, V., Pelling, M., Pohl, J., Smith, A.-O., and Thomalla, F.: Determinants of Risk: Exposure and Vulnerability, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, edited by: Field, C., Barros, V., Stocker, T., and Dahe, Q., Cambridge University Press, Cambridge, 65–108, doi:10.1017/CBO9781139177245.005, 2012.
Carmin, J. and Anguelovski, I.: Planning Climate Resilient Cities: Early
Lessons from Early Adapters, World Bank, 5th Urban Research Symposium, Cities and Climate Change. Marseille, France, 28–30 June 2009.
Carrión, F. and Erazo Espinosa, J.: La forma urbana de Quito: una
historia de centros y periferias, Bulletin de l'Institut français
d'études andines, 41, 503–522, https://doi.org/10.4000/bifea.361, 2012.
Castelo, C. A. J., D'Howitt, M. C., Almeida, O. P., and
Toulkeridis, T.: Comparative Determination of the Probability of Landslide
Ocurrences and Susceptibility in Central Quito, Ecuador, 2018 International
Conference on eDemocracy and eGovernment (ICEDEG), Ambato, Equador, 4–6 April 2018, 136–143, https://doi.org/10.1109/ICEDEG.2018.8372341, 2018.
Chatelain, J. L., Tucker, B., Guillier, B., Kaneko, F., Yepes, H.,
Fernandez, J., Valverde, J., Hoefer, G., Souris, M., Dupérier, E.,
Yamada, T., Bustamante, G., and Villacis, C.: Earthquake risk management
pilot project in Quito, Ecuador, GeoJournal, 49, 185–196,
https://doi.org/10.1023/A:1007079403225, 1999.
Colding, J. and Barthel, S.: The potential of “Urban Green Commons” in the
resilience building of cities, Ecol. Econ., 86, 156–166,
https://doi.org/10.1016/j.ecolecon.2012.10.016, 2013.
Cuvi, N. and Vélez, L. C. G.: Los Parques Urbanos de Quito:
Distribución, Accesibilidad y Segregación Espacial, Environmental
Science, 10, 200–231, https://doi.org/10.21664/2238-8869.2021v10i2.p200-231, 2021.
De Sherbinin, A., Schiller, A., and Pulsipher, A.: The vulnerability of
global cities to climate hazards, Environ. Urban., 19, 39–64,
https://doi.org/10.1177/0956247807076725, 2007.
Deng, J., Huang, Y., Chen, B., Tong, C., Liu, P., Wang, H., and Hong, Y.: A
Methodology to Monitor Urban Expansion and Green Space Change Using a Time
Series of Multi-Sensor SPOT and Sentinel-2A Images, Remote Sensing, 11,
1230, https://doi.org/10.3390/rs11101230, 2019.
DMQ: Visión de Quito 2040 y su Nuevo Modelo de Ciudad, http://repositoriointerculturalidad.ec/jspui/handle/123456789/33016 (last access: 16 May 2022), 2018.
Domínguez-Castro, F., García-Herrera, R., and Vicente-Serrano, S.
M.: Wet and dry extremes in Quito (Ecuador) since the 17th century,
Int. J. Climatol., 38, 2006–2014, https://doi.org/10.1002/joc.5312, 2018.
Dou, K. and Zhan, Q.: Accessibility analysis of urban emergency shelters:
Comparing gravity model and space syntax, 2011 International Conference on
Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011, 5681–5684, 2011.
Emberson, R., Kirschbaum, D., and Stanley, T.: New global characterisation of landslide exposure, Nat. Hazards Earth Syst. Sci., 20, 3413–3424, https://doi.org/10.5194/nhess-20-3413-2020, 2020.
Escobedo, F. J. and Nowak, D. J.: Spatial heterogeneity and air pollution
removal by an urban forest, Landscape Urban Plan., 90, 102–110,
https://doi.org/10.1016/j.landurbplan.2008.10.021, 2009.
Estrella, M. and Saalismaa, N.: Ecosystem-based disaster risk reduction
(Eco-DRR): An overview, The role of ecosystems in disaster risk reduction,
edited by: Renaud, F. G., Sudmeier-Rieux, K., and Estrella, M., United
Nations University Press, 512 pp., https://globalplatform.undrr.org/sites/default/files/2022-02/The%20role%20of%20ecosystems%20in%20disaster%20risk%20reduction.pdf (last access: 16 May 2020), 2013.
Faivre, N., Sgobbi, A., Happaerts, S., Raynal, J., and Schmidt, L.:
Translating the Sendai Framework into action: The EU approach to
ecosystem-based disaster risk reduction,
Int. J. Disast. Risk Re., 32, 4–10,
https://doi.org/10.1016/j.ijdrr.2017.12.015, 2018.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Fenger, J.: Urban air quality, Atmos. Environ., 33, 4877–4900,
https://doi.org/10.1016/S1352-2310(99)00290-3, 1999.
Flörke, M., Schneider, C., and McDonald, R. I.: Water competition
between cities and agriculture driven by climate change and urban growth,
Nature Sustainability, 1, 51–58, https://doi.org/10.1038/s41893-017-0006-8, 2018.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Fuller, R., Groom, G., and Jones, A.: The land-cover map of great Britain:
an automated classification of landsat thematic mapper data,
Photogramm. Eng. Rem. S., 60, 553–562, 1994.
Galasso, C., McCloskey, J., Pelling, M., Hope, M., Bean, C. J., Cremen, G.,
Guragain, R., Hancilar, U., Menoscal, J., Mwang'a, K., Phillips, J., Rush,
D., and Sinclair, H.: Editorial. Risk-based, Pro-poor Urban Design and
Planning for Tomorrow's Cities, Int. J. Disast. Risk Re., 58, 102158,
https://doi.org/10.1016/j.ijdrr.2021.102158, 2021.
García-Lamarca, M., Connolly, J., and Anguelovski, I.: Green
gentrification and displacement in Barcelona, in: Housing Displacement,
Routledge, 156–170, 2020.
Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., and
Wolff, E.: Very High Resolution Object-Based Land Use–Land Cover Urban
Classification Using Extreme Gradient Boosting,
IEEE Geosci. Remote S., 15, 607–611, https://doi.org/10.1109/LGRS.2018.2803259, 2018.
Gill, J. C. and Malamud, B. D.: Anthropogenic processes, natural hazards,
and interactions in a multi-hazard framework, Earth-Sci. Rev., 166,
246–269, https://doi.org/10.1016/j.earscirev.2017.01.002, 2017.
Gill, J. C., Hussain, E., and Malamud, B. D.: Workshop Report: Multi-Hazard
Risk Scenarios for Tomorrow's Cities,
https://tomorrowscities.org/workshop-report-multi-hazard-risk-scenarios-tomorrows-cities, (last access: 18th May 2021), 2021.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence,
D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.:
Food Security: The Challenge of Feeding 9 Billion People, Science, 327,
812–818, https://doi.org/10.1126/science.1185383, 2010.
Gonzalez, C. G.: Seasons of Resistance: Sustainable Agriculture and Food
Security in Cuba, Tulane Environmental Law Journal, 16, 685–732, 2003.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Hall, M. L., Samaniego, P., Le Pennec, J. L., and Johnson, J. B.: Ecuadorian
Andes volcanism: A review of Late Pliocene to present activity,
J. Volcanol. Geoth. Res., 176, 1–6,
https://doi.org/10.1016/j.jvolgeores.2008.06.012, 2008.
Hastenrath, S.: Annual cycle of upper air circulation and convective
activity over the tropical Americas, J. Geophys. Res.-Atmos., 102, 4267–4274, https://doi.org/10.1029/96JD03122, 1997.
Hoekstra, A. Y., Buurman, J., and van Ginkel, K. C. H.: Urban water
security: A review, Environ. Res. Lett., 13, 053002,
https://doi.org/10.1088/1748-9326/aaba52, 2018.
Hosseini, S. A., de la Fuente, A., and Pons, O.: Multicriteria
decision-making method for sustainable site location of post-disaster
temporary housing in urban areas,
J. Constr. Eng. M., 142, 04016036, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001137, 2016.
IG-EPN, IGM, IRD.: Mapa de Peligros Volcánicos Potenciales del
Volcán Guagua Pichincha 3ra. Edición, Quito – Ecuador, https://www.igepn.edu.ec/ggp-mapa-de-peligros/file (last access: 10 December 2020), 2019.
Inglada, J. and Christophe, E.: The Orfeo Toolbox remote sensing image
processing software, 2009 IEEE International Geoscience and Remote Sensing
Symposium, Cape Town, South Africa, 12–17 July 2009, IV-733-IV-736, doi:10.1109/IGARSS.2009.5417481, 2009.
Instituto Geográfico Militar: Fotografía aérea 360 Rollo 19
Cámara RC10 Proyecto Carta Nacional N-III_1977 Escala
1:60000 B/N, https://www.geoportaligm.gob.ec/geonetwork/srv/spa/catalog.search#/metadata/e56534b0-3b16-423e-a076-e0e41df07a81 (last access: 20 March 2020), 1977 (in Spanish).
Instituto Geográfico Militar: Generation of geospatial information at a
scale 1:5000 for the determination of the physical fitness of the
territory and urban development through the use of geotechnologies, http://www.geograficomilitar.gob.ec/ (last access: 16 May 2022), 2019 (in Spanish).
Jalayer, F., De Risi, R., De Paola, F., Giugni, M., Manfredi, G., Gasparini,
P., Topa, M. E., Yonas, N., Yeshitela, K., Nebebe, A., Cavan, G., Lindley,
S., Printz, A., and Renner, F.: Probabilistic GIS-based method for
delineation of urban flooding risk hotspots, Nat. Hazards, 73, 975–1001,
https://doi.org/10.1007/s11069-014-1119-2, 2014.
James, P., Banay, R. F., Hart, J. E., and Laden, F.: A Review of the Health
Benefits of Greenness, Current Epidemiology Reports, 2, 131–142,
https://doi.org/10.1007/s40471-015-0043-7, 2015.
Jeong, D., Kim, M., Song, K., and Lee, J.: Planning a Green Infrastructure
Network to Integrate Potential Evacuation Routes and the Urban Green Space
in a Coastal City: The Case Study of Haeundae District, Busan, South Korea,
Sci. Total Environ., 761, 143179,
https://doi.org/10.1016/j.scitotenv.2020.143179, 2021.
Kelleher, C. and McPhillips, L.: Exploring the application of topographic
indices in urban areas as indicators of pluvial flooding locations,
Hydrol. Process., 34, 780–794, 2020.
Kennedy, R. E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen,
W. B., and Healey, S.: Implementation of the LandTrendr Algorithm on Google
Earth Engine, Remote Sensing, 10, 691, https://doi.org/10.3390/rs10050691, 2018.
Khazai, B., Anhorn, J., Girard, T., Brink, S., Daniell, J., Bessel, T.,
Mühr, B., Flörchinger, V., and Kunz-Plapp, T.: Shelter response and
vulnerability of displaced populations in the April 25, 2015 Nepal
Earthquake, Center for Disaster Management and Risk Reduction Technology of
the Karlsruhe Institute of Technology, and the South Asia Institute,
Heidelberg University, 5, 31 pp., https://reliefweb.int/sites/reliefweb.int/files/resources/CEDIM_FDA_NepalEarthquake_Report2Shelter-4%20%281%29.pdf (last access: 16 May 2022), 2015.
Kılcı , F., Kara, B. Y., and Bozkaya, B.: Locating temporary shelter
areas after an earthquake: A case for Turkey,
Eur. J. Oper. Res., 243, 323–332,
https://doi.org/10.1016/j.ejor.2014.11.035, 2015.
Kirschbaum, D., Stanley, T., and Yatheendradas, S.: Modeling landslide
susceptibility over large regions with fuzzy overlay, Landslides, 13,
485–496, https://doi.org/10.1007/s10346-015-0577-2, 2016.
Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of
Rainfall-Triggered Landslide Hazard for Situational Awareness, Earth's
Future, 6, 505–523, https://doi.org/10.1002/2017EF000715, 2018.
Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri,
S. M., Basu, B., Basu, A. S., Bowyer, P., Charizopoulos, N., Jaakko, J.,
Loupis, M., Menenti, M., Mickovski, S. B., Pfeiffer, J., Pilla, F.,
Pröll, J., Pulvirenti, B., Rutzinger, M., Sannigrahi, S., Spyrou, C.,
Tuomenvirta, H., Vojinovic, Z., and Zieher, T.: An overview of monitoring
methods for assessing the performance of nature-based solutions against
natural hazards, Earth-Sci. Rev., 217, 103603,
https://doi.org/10.1016/j.earscirev.2021.103603, 2021.
Labib, S. M. and Harris, A.: The potentials of Sentinel-2 and LandSat-8
data in green infrastructure extraction, using object based image analysis
(OBIA) method, Eur. J. Remote Sens., 51, 231–240,
https://doi.org/10.1080/22797254.2017.1419441, 2018.
Leblon, B., Gallant, L., and Granberg, H.: Effects of shadowing types on
ground-measured visible and near-infrared shadow reflectances, Remote Sens. Environ., 58, 322–328,
https://doi.org/10.1016/S0034-4257(96)00079-X 1996.
Lidberg, W., Nilsson, M., Lundmark, T., and Ågren, A. M.: Evaluating
preprocessing methods of digital elevation models for hydrological
modelling, Hydrol. Process., 31, 4660–4668, 2017.
Liu, Q., Ruan, X., and Shi, P.: Selection of emergency shelter sites for
seismic disasters in mountainous regions: Lessons from the 2008 Wenchuan Ms
8.0 Earthquake, China, J. Asian Earth Sci., 40, 926–934, 2011.
Loughlin, S. C., Sparks, R. S. J., Sparks, S., Brown, S. K., Jenkins, S. F.,
and Vye-Brown, C.: Global volcanic hazards and risk, Cambridge University
Press, https://doi.org/10.1017/CBO9781316276273, 2015.
Manfreda, S., Di Leo, M., and Sole, A.: Detection of flood-prone areas using
digital elevation models, J. Hydrol. Eng., 16, 781–790,
2011.
Maragno, D., Gaglio, M., Robbi, M., Appiotti, F., Fano, E. A., and Gissi,
E.: Fine-scale analysis of urban flooding reduction from green
infrastructure: An ecosystem services approach for the management of water
flows, Ecol. Model., 386, 1–10,
https://doi.org/10.1016/j.ecolmodel.2018.08.002, 2018.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, C. K., Schutz, B. E.,
Smith, B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation
Satellite-2 (ICESat-2): Science requirements, concept, and implementation,
Remote Sens. Environ., 190, 260–273,
https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Marmot, M., Friel, S., Bell, R., Houweling, T. A. J., and Taylor, S.:
Closing the gap in a generation: health equity through action on the social
determinants of health, The Lancet, 372, 1661–1669,
https://doi.org/10.1016/S0140-6736(08)61690-6, 2008.
Marselle, M. R., Bowler, D. E., Watzema, J., Eichenberg, D., Kirsten, T.,
and Bonn, A.: Urban street tree biodiversity and antidepressant
prescriptions, Scientific Reports, 10, 22445, https://doi.org/10.1038/s41598-020-79924-5,
2020.
Mattivi, P., Franci, F., Lambertini, A., and Bitelli, G.: TWI computation: a
comparison of different open source GISs, Open Geospatial Data,
Software and Standards, 4, 1–12, 2019.
McDonald, R. I., Mansur, A. V., Ascensão, F., Colbert, M. L., Crossman,
K., Elmqvist, T., Gonzalez, A., Güneralp, B., Haase, D., Hamann, M.,
Hillel, O., Huang, K., Kahnt, B., Maddox, D., Pacheco, A., Pereira, H. M.,
Seto, K. C., Simkin, R., Walsh, B., Werner, A. S., and Ziter, C.: Research
gaps in knowledge of the impact of urban growth on biodiversity,
Nature Sustainability, 3, 16–24, https://doi.org/10.1038/s41893-019-0436-6, 2020.
McPherson, E. G.: Accounting for benefits and costs of urban
greenspace, Landscape Urban Plan., 22, 41–51,
https://doi.org/10.1016/0169-2046(92)90006-L, 1992.
McVittie, A., Cole, L., Wreford, A., Sgobbi, A., and Yordi, B.:
Ecosystem-based solutions for disaster risk reduction: Lessons from European
applications of ecosystem-based adaptation measures, Int. J. Disast. Risk Re., 32, 42–54,
https://doi.org/10.1016/j.ijdrr.2017.12.014, 2018.
Metro Ecuador: En caso de un sismo en Quito, estos son los sitios seguros en
la ciudad. Metro Ecuador, 12 December,
https://www.metroecuador.com.ec/ec/noticias/2019/05/28/caso-temblor-estos-los-sitios-seguros-quito.html (last access: 1 November 2021), 2019.
Millard, K. and Richardson, M.: On the Importance of Training Data Sample
Selection in Random Forest Image Classification: A Case Study in Peatland
Ecosystem Mapping, Remote. Sens., 7, 8489–8515, 2015.
Ministry of Territory: Habitat and Housing: Accidentes,
https://territorio.maps.arcgis.com/home/item.html?id=5270bc85cf3249b29937d25d0b363396 (last access: 16 May 2022), 2020.
Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., and Weng, Q.:
Per-pixel vs. object-based classification of urban land cover extraction
using high spatial resolution imagery, Remote Sens. Environ., 115,
1145–1161, https://doi.org/10.1016/j.rse.2010.12.017, 2011.
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner,
A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W.,
Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder,
L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., and
Thomas, T. C.: The Ice, Cloud, and Land Elevation Satellite – 2 mission: A
global geolocated photon product derived from the Advanced Topographic Laser
Altimeter System, Remote Sens. Environ., 233, 111325,
https://doi.org/10.1016/j.rse.2019.111325, 2019.
Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck,
K., Gibbons, A., Lee, J., Luthcke, S. B., and Rebold, T.: ATLAS/ICESat-2 L2A
Global Geolocated Photon Data, Version 3, NASA
National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 22 pp., https://doi.org/10.5067/ATLAS/ATL03.003, 2020.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Oliver-Smith, A., Alcántara-Ayala, I., Burton, I., and Lavell, A.: Forensic
Investigations of Disasters (FORIN): a conceptual framework and guide to
research, https://www.irdrinternational.org/uploads/files/2020/08/n0EpdIvgoGZuwbrhioKRFLQiw5XlLfF1vIDE7tEB/FORIN-2-29022016.pdf
(last access: 16 May 2022), 2016.
Olofsson, P., Foody, G. M., Stehman, S. V., and Woodcock, C. E.: Making
better use of accuracy data in land change studies: Estimating accuracy and
area and quantifying uncertainty using stratified estimation, Remote Sens. Environ., 129, 122–131,
https://doi.org/10.1016/j.rse.2012.10.031, 2013.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and
Wulder, M. A.: Good practices for estimating area and assessing accuracy of
land change, Remote Sens. Environ., 148, 42–57,
https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Onuma, A. and Tsuge, T.: Comparing green infrastructure as ecosystem-based
disaster risk reduction with gray infrastructure in terms of costs and
benefits under uncertainty: A theoretical approach, Int. J. Disast. Risk Re., 32, 22–28,
https://doi.org/10.1016/j.ijdrr.2018.01.025, 2018.
Pagani, M., Garcia-Pelaez, J., Gee, R., Johnson, K., Poggi, V., Styron, R.,
Weatherill, G., Simionato, M., Viganò, D., Danciu, L., and Monelli, D.:
Global Earthquake Model (GEM) Seismic Hazard Map (version 2018.1 – December
2018), https://doi.org/10.13117/GEM-GLOBAL-SEISMIC-HAZARD-MAP-2018.1,
2018.
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J.
R., Bode, C. A., Crosby, C., DeLong, S. B., Glenn, N. F., Kelly, S. A.,
Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T.,
and Wheaton, J. M.: Analyzing high resolution topography for advancing the
understanding of mass and energy transfer through landscapes: A review,
Earth-Sci. Rev., 148, 174–193,
https://doi.org/10.1016/j.earscirev.2015.05.012, 2015.
Pelling, M., Maskrey, A., Ruiz, P., Hall, P., Peduzzi, P., Dao, Q.-H.,
Mouton, F., Herold, C., and Kluser, S.: Reducing disaster risk: a challenge
for development, http://archive-ouverte.unige.ch/unige:77685 (last access: 16 May 2022), 2004.
Peralta Arias, J. J. and Higueras García, E.: Evaluación
sostenible de los Planes Directores de Quito, Periodo 1942–2012, 5, 21–34, https://doi.org/10.18537/est.v005.n009.03, 2016.
Perrin, J. L., Bouvier, C., Janeau, J. L., Ménez, G., and Cruz, F.:
Rainfall/runoff processes in a small peri-urban catchment in the Andes
mountains. The Rumihurcu Quebrada, Quito (Ecuador), Hydrol. Process.,
15, 843–854, https://doi.org/10.1002/hyp.190, 2001.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J.,
and Stenseth, N. C.: Using the satellite-derived NDVI to assess ecological
responses to environmental change, Trends Ecol. Evol., 20,
503–510, https://doi.org/10.1016/j.tree.2005.05.011, 2005.
Phillips, C. and Marden, M.: Reforestation Schemes to Manage Regional
Landslide Risk, in: Landslide Hazard and Risk, chapter 18, 517–547, https://doi.org/10.1002/9780470012659.ch18, 2005.
Rebotier, J.: El riesgo y su gestión en Ecuador: una mirada de
geografía social y política, Centro de Publicaciones Pontificia
Universidad Católica del Ecuador, 132 pp., https://biblio.flacsoandes.edu.ec/libros/digital/56738.pdf (last access: 16 May 2022), 2016.
Robin, C., Samaniego, P., Le Pennec, J.-L., Mothes, P., and van der Plicht,
J.: Late Holocene phases of dome growth and Plinian activity at Guagua
Pichincha volcano (Ecuador), J. Volcanol. Geoth. Res.,
176, 7–15, https://doi.org/10.1016/j.jvolgeores.2007.10.008, 2008.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and
Rigol-Sanchez, J. P.: An assessment of the effectiveness of a random forest
classifier for land-cover classification,
ISPRS J. Photogramm., 67, 93–104,
https://doi.org/10.1016/j.isprsjprs.2011.11.002, 2012.
Salazar, E., Henríquez, C., Sliuzas, R., and Qüense, J.: Evaluating
Spatial Scenarios for Sustainable Development in Quito, Ecuador, ISPRS Int.
J. Geo Inf., 9, 141, https://doi.org/10.3390/ijgi9030141, 2020.
Salazar, E., Henríquez, C., Durán, G., Qüense, J., and
Puente-Sotomayor, F.: How to Define a New Metropolitan Area? The Case of
Quito, Ecuador, and Contributions for Urban Planning, Land, 10, 413, https://doi.org/10.3390/land10040413, 2021.
Salmon, N., Yépez, G., Duque, M., Yépez, M., Báez, A.,
Masache-Heredia, M., Mejía, G., Mejía, P., Garofalo, G., and
Montoya, D.: Co-design of a Nature-Based Solutions Ecosystem for
Reactivating a Peri-Urban District in Quito, Ecuador, in: Governance of
Climate Responsive Cities: Exploring Cross-Scale Dynamics, edited by: Peker,
E. and Ataöv, A., Springer International Publishing, Cham, 79–104,
2021.
Sandholz, S., Lange, W., and Nehren, U.: Governing green change:
Ecosystem-based measures for reducing landslide risk in Rio de Janeiro,
Int. J. Disast. Risk Re., 32, 75–86,
https://doi.org/10.1016/j.ijdrr.2018.01.020, 2018.
Schneider, A. and Woodcock, C. E.: Compact, Dispersed, Fragmented,
Extensive? A Comparison of Urban Growth in Twenty-five Global Cities using
Remotely Sensed Data, Pattern Metrics and Census Information, Urban Studies,
45, 659–692, https://doi.org/10.1177/0042098007087340, 2008.
Shimpo, N., Wesener, A., and McWilliam, W.: How community gardens may
contribute to community resilience following an earthquake,
Urban For. Urban Gree., 38, 124–132,
https://doi.org/10.1016/j.ufug.2018.12.002, 2019.
Shrestha, S. R., Sliuzas, R., and Kuffer, M.: Open spaces and risk
perception in post-earthquake Kathmandu city, Appl. Geogr., 93, 81–91,
https://doi.org/10.1016/j.apgeog.2018.02.016, 2018.
Sierra, A.: La política de mitigación de los riesgos en las laderas
de Quito: ?“qué vulnerabilidad combatir?, 737–753, https://doi.org/10.4000/bifea.2421, 2009.
SNI: Archivos de Informacion Geografica, Peligro Volcánico, https://sni.gob.ec/coberturas (last access: 16 May 2022), 2020.
Sphere Association: The Sphere Handbook: Humanitarian Charter and MinimumStandards in Humanitarian Response, fourth edition, Geneva, Switzerland, https://www.spherestandards.org/handbook/ (last access: 16 May 2022), 2018.
Stanley, T. and Kirschbaum, D. B.: A heuristic approach to global landslide
susceptibility mapping, Nat. Hazards, 87, 145–164,
https://doi.org/10.1007/s11069-017-2757-y, 2017.
Styron, R.: GEMScienceTools/gem-global-active-faults: First release of 2019 (Version 2019.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3376300, 2019.
Sudmeier-Rieux, K., Arce-Mojica, T., Boehmer, H. J., Doswald, N., Emerton,
L., Friess, D. A., Galvin, S., Hagenlocher, M., James, H., Laban, P.,
Lacambra, C., Lange, W., McAdoo, B. G., Moos, C., Mysiak, J., Narvaez, L.,
Nehren, U., Peduzzi, P., Renaud, F. G., Sandholz, S., Schreyers, L.,
Sebesvari, Z., Tom, T., Triyanti, A., van Eijk, P., van Staveren, M.,
Vicarelli, M., and Walz, Y.: Scientific evidence for ecosystem-based
disaster risk reduction, Nature Sustainability, 4, 803–810,
https://doi.org/10.1038/s41893-021-00732-4, 2021.
Taylor, L. and Hochuli, D. F.: Defining greenspace: Multiple uses across
multiple disciplines, Landscape Urban Plan., 158, 25–38,
https://doi.org/10.1016/j.landurbplan.2016.09.024, 2017.
Testori, G.: Gobierno Barrial de Atucucho. An urban alternative based on
self-governance and direct democracy, 17 pp., http://contested-cities.net/working-papers/wp-content/uploads/sites/8/2016/07/WPCC-165011-TestoriGiulia-GobiernoBarrialAtucucho.pdf (last access: 16 May 2022), 2016.
Tidball, K. G. and Krasny, M. E.: Greening in the red zone: Disaster, Resilience and Community Greening, 1 edn., Springer, 503 pp., https://doi.org/10.1007/978-90-481-9947-1, 2012.
Tucker, C. J., Holben, B. N., Elgin, J. H., and McMurtrey, J. E.: Remote
sensing of total dry-matter accumulation in winter wheat, Remote Sens. Environ., 11, 171–189,
https://doi.org/10.1016/0034-4257(81)90018-3, 1981.
UN DESA: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420), New York: United Nations, https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (last access: 16 May 2022), 2019.
UNDRR: Ecosystem-Based Disaster Risk Reduction: Implementing Nature-based
Solutions for Resilience, United Nations Office for Disaster Risk Reduction
– Regional Office for Asia and the Pacific, Bangkok, Thailand, https://www.undrr.org/publication/ecosystem-based-disaster-risk-reduction-implementing-nature-based-solutions-0 (last access: 16 May 2022), 2020.
UN General Assembly: Transforming our world: the 2030 Agenda for Sustainable
Development, Report No. A/RES/70/1, https://www.unfpa.org/sites/default/files/resource-pdf/Resolution_A_RES_70_1_EN.pdf (last access: 16 May 2022), 2015.
UN-Habitat: The Challenge of Slums: Global Report on Human Settlements 2003, 345 pp., https://www.alnap.org/help-library/the-challenge-of-slums-global-report-on-human-settlements-2003
(last access: 4 May 2021), 2003.
UNISDR: Sendai framework for disaster risk reduction 2015–2030,
https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf (last access: 5 February 2020), 2015.
Valcárcel, J., Despotaki, V., Burton, C., Yepes-Estrada, C., Silva, V.,
and Villacis, C.: Integrated Assessment of Earthquake Risk in Quito, Ecuador
Using Openquake, 16th World Conference on Earthquake Engineering, 16WCEE
2017, Santiago Chile, 9–13 January 2017.
Valencia, V. H., Levin, G., and Hansen, H. S.: Modelling the spatial extent
of urban growth using a cellular automata-based model: a case study for
Quito, Ecuador, Geogr. Tidsskr., 120,
156–173, https://doi.org/10.1080/00167223.2020.1823867, 2020.
Vidal, X., Burgos, L., and Zevallos, O.: 11 Protection and environmental
restoration of the slopes of Pichincha in Quito, Ecuador, Water and Cities
in Latin America: Challenges for Sustainable Development, Routledge, London, 181, 298 pp., https://doi.org/10.4324/9781315848440, 2015.
Vincenti, S. S., Zuleta, D., Moscoso, V., Jácome, P., Palacios, E., and
Villacís, M.: Análisis estadístico de datos meteorológicos
mensuales y diarios para la determinación de variabilidad climática
y cambio climático en el Distrito Metropolitano de Quito, La Granja, 16,
23–47, https://lagranja.ups.edu.ec/index.php/granja/article/download/16.2012.03/232 (last access: 16 May 2022), 2012.
Watson, C. S., Elliott, J. R., Ebmeier, S. K., Vásquez, M. A., Zapata, C., Bonilla-Bedoya, S., Cubillo, P., Orbe, D. F., Córdova, M., Menoscal, J., and Sevilla, E.: Datasets supporting the paper “Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador”, Zenodo [data set], https://doi.org/10.5281/zenodo.5881876, 2022.
WHO Regional Office for Europe: Urban green spaces and health, https://www.euro.who.int/__data/assets/pdf_file/0005/321971/Urban-green-spaces-and-health-review-evidence.pdf (last access: 16 May 2022), 2016.
Wilson, T. M., Stewart, C., Sword-Daniels, V., Leonard, G. S., Johnston, D.
M., Cole, J. W., Wardman, J., Wilson, G., and Barnard, S. T.: Volcanic ash
impacts on critical infrastructure,
Phys. Chem. Earth, Parts A/B/C, 45-46, 5–23,
https://doi.org/10.1016/j.pce.2011.06.006, 2012.
Wolch, J. R., Byrne, J., and Newell, J. P.: Urban green space, public
health, and environmental justice: The challenge of making cities “just
green enough”, Landscape Urban Plan., 125, 234–244,
https://doi.org/10.1016/j.landurbplan.2014.01.017, 2014.
Yamazaki, F., Liu, W., and Takasaki, M.: Characteristics of shadow and
removal of its effects for remote sensing imagery, 2009 IEEE International
Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009, 4, IV-426–IV-429 pp.,
https://doi.org/10.1109/IGARSS.2009.5417404, 2009.
Zalakeviciute, R., López-Villada, J., and Rybarczyk, Y.: Contrasted
Effects of Relative Humidity and Precipitation on Urban PM2.5 Pollution in
High Elevation Urban Areas, Sustainability, 10, 2064, https://doi.org/10.3390/su10062064, 2018.
Zambrano-Barragán, C., Zevallos, O., Villacís, M., and
Enríquez, D.: Quito's Climate Change Strategy: A Response to Climate
Change in the Metropolitan District of Quito, Ecuador, in: Resilient Cities,
Dordrecht, 515–529, https://doi.org/10.1007/978-94-007-0785-6_51, 2011.
Zhou, Y., Parsons, B., Elliott, J. R., Barisin, I., and Walker, R. T.:
Assessing the ability of Pleiades stereo imagery to determine height changes
in earthquakes: A case study for the El Mayor-Cucapah epicentral area,
J. Geophys. Res.-Sol. Ea., 120, 8793–8808,
https://doi.org/10.1002/2015jb012358, 2015.
Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P.,
Loveland, T. R., Jin, S., Dahal, D., Yang, L., and Auch, R. F.: Optimizing
selection of training and auxiliary data for operational land cover
classification for the LCMAP initiative, ISPRS J. Photogramm., 122, 206–221,
https://doi.org/10.1016/j.isprsjprs.2016.11.004, 2016.
Short summary
We assess how greenspaces could guide risk-informed planning and reduce disaster risk for the urbanising city of Quito, Ecuador, which experiences earthquake, volcano, landslide, and flood hazards. We use satellite data to evaluate the use of greenspaces as safe spaces following an earthquake. We find disparities regarding access to and availability of greenspaces. The availability of greenspaces that could contribute to community resilience is high; however, many require official designation.
We assess how greenspaces could guide risk-informed planning and reduce disaster risk for the...
Altmetrics
Final-revised paper
Preprint