Articles | Volume 22, issue 5
https://doi.org/10.5194/nhess-22-1699-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1699-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
COMET, School of Earth and Environment, University of Leeds, Leeds,
LS2 9JT, UK
John R. Elliott
COMET, School of Earth and Environment, University of Leeds, Leeds,
LS2 9JT, UK
Susanna K. Ebmeier
COMET, School of Earth and Environment, University of Leeds, Leeds,
LS2 9JT, UK
María Antonieta Vásquez
College of Social Sciences and Humanities, Universidad San Francisco de Quito, Quito 170901, Ecuador
Camilo Zapata
College of Social Sciences and Humanities, Universidad San Francisco de Quito, Quito 170901, Ecuador
Santiago Bonilla-Bedoya
Research Center for the Territory and Sustainable Habitat, Universidad Tecnológica Indoamérica, Machala y Sabanilla, 170301, Quito, Ecuador
Paulina Cubillo
Centro de Información Urbana de Quito - CIUQ, Quito, Ecuador
Diego Francisco Orbe
Centro de Información Urbana de Quito - CIUQ, Quito, Ecuador
Marco Córdova
Facultad Latinoamericana de Ciencias Sociales, FLACSO, Quito,
Ecuador
Jonathan Menoscal
Facultad Latinoamericana de Ciencias Sociales, FLACSO, Quito,
Ecuador
Elisa Sevilla
College of Social Sciences and Humanities, Universidad San Francisco de Quito, Quito 170901, Ecuador
Related authors
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, Juliet Biggs, Fabien Albino, Sarah K. Brown, Helen Burns, Andrew Hooper, Milan Lazecky, Yasser Maghsoudi, Richard Rigby, and Tim J. Wright
Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, https://doi.org/10.5194/gc-6-75-2023, 2023
Short summary
Short summary
We evaluate the communication and open data processing of satellite Interferometric Synthetic Aperture Radar (InSAR) data, which measures ground deformation. We discuss the unique interpretation challenges and the use of automatic data processing and web tools to broaden accessibility. We link these tools with an analysis of InSAR communication through Twitter in which applications to earthquakes and volcanoes prevailed. We discuss future integration with disaster risk-reduction strategies.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
David R. Rounce, Daene C. McKinney, Jonathan M. Lala, Alton C. Byers, and C. Scott Watson
Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, https://doi.org/10.5194/hess-20-3455-2016, 2016
Short summary
Short summary
Glacial lake outburst floods pose a significant threat to downstream communities and infrastructure as they rapidly unleash stored lake water. Nepal is home to many potentially dangerous glacial lakes, yet a holistic understanding of the hazards faced by these lakes is lacking. This study develops a framework using remotely sensed data to investigate the hazards and risks associated with each glacial lake and discusses how this assessment may help inform future management actions.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, Juliet Biggs, Fabien Albino, Sarah K. Brown, Helen Burns, Andrew Hooper, Milan Lazecky, Yasser Maghsoudi, Richard Rigby, and Tim J. Wright
Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, https://doi.org/10.5194/gc-6-75-2023, 2023
Short summary
Short summary
We evaluate the communication and open data processing of satellite Interferometric Synthetic Aperture Radar (InSAR) data, which measures ground deformation. We discuss the unique interpretation challenges and the use of automatic data processing and web tools to broaden accessibility. We link these tools with an analysis of InSAR communication through Twitter in which applications to earthquakes and volcanoes prevailed. We discuss future integration with disaster risk-reduction strategies.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Ekbal Hussain, John R. Elliott, Vitor Silva, Mabé Vilar-Vega, and Deborah Kane
Nat. Hazards Earth Syst. Sci., 20, 1533–1555, https://doi.org/10.5194/nhess-20-1533-2020, https://doi.org/10.5194/nhess-20-1533-2020, 2020
Short summary
Short summary
Many of the rapidly expanding cities around the world are located near active tectonic faults that have not produced an earthquake in recent memory. But these faults are generally small, and so most previous seismic-hazard analysis has focussed on large, more distant faults. In this paper we show that a moderate-size earthquake on a fault close to the city of Santiago in Chile has a greater impact on the city than a great earthquake on the tectonic boundary in the ocean, about a 100 km away.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
David R. Rounce, Daene C. McKinney, Jonathan M. Lala, Alton C. Byers, and C. Scott Watson
Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, https://doi.org/10.5194/hess-20-3455-2016, 2016
Short summary
Short summary
Glacial lake outburst floods pose a significant threat to downstream communities and infrastructure as they rapidly unleash stored lake water. Nepal is home to many potentially dangerous glacial lakes, yet a holistic understanding of the hazards faced by these lakes is lacking. This study develops a framework using remotely sensed data to investigate the hazards and risks associated with each glacial lake and discusses how this assessment may help inform future management actions.
Related subject area
Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Shoreline and land use–land cover changes along the 2004-tsunami-affected South Andaman coast: understanding changing hazard susceptibility
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
AscDAMs: Advanced SLAM-based channel detection and mapping system
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
A neural network model for automated prediction of avalanche danger level
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Quantifying unequal urban resilience to rainfall across China from location-aware big data
Comparison of machine learning techniques for reservoir outflow forecasting
Development of black ice prediction model using GIS-based multi-sensor model validation
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
A dynamic hierarchical Bayesian approach for forecasting vegetation condition
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Gridded flood depth estimates from satellite-derived inundations
ProbFire: a probabilistic fire early warning system for Indonesia
Index establishment and capability evaluation of space–air–ground remote sensing cooperation in geohazard emergency response
Brief communication: Monitoring a soft-rock coastal cliff using webcams and strain sensors
Multiscale analysis of surface roughness for the improvement of natural hazard modelling
EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds
Are sirens effective tools to alert the population in France?
UAV survey method to monitor and analyze geological hazards: the case study of the mud volcano of Villaggio Santa Barbara, Caltanissetta (Sicily)
Timely prediction potential of landslide early warning systems with multispectral remote sensing: a conceptual approach tested in the Sattelkar, Austria
CHILDA – Czech Historical Landslide Database
Review article: Detection of actionable tweets in crisis events
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Opportunities and risks of disaster data from social media: a systematic review of incident information
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Predicting power outages caused by extratropical storms
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin
Responses to severe weather warnings and affective decision-making
The object-specific flood damage database HOWAS 21
A spaceborne SAR-based procedure to support the detection of landslides
GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran
Review article: The spatial dimension in the assessment of urban socio-economic vulnerability related to geohazards
Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
CCAF-DB: the Caribbean and Central American active fault database
Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain
Study on real-time correction of site amplification factor
Three-dimensional rockfall shape back analysis: methods and implications
Effects of high-resolution geostationary satellite imagery on the predictability of tropical thunderstorms over Southeast Asia
InSAR technique applied to the monitoring of the Qinghai–Tibet Railway
Understanding the spatiotemporal development of human settlement in hurricane-prone areas on the US Atlantic and Gulf coasts using nighttime remote sensing
Vikas Ghadamode, Aruna Kumari Kondarathi, Anand K. Pandey, and Kirti Srivastava
Nat. Hazards Earth Syst. Sci., 24, 3013–3033, https://doi.org/10.5194/nhess-24-3013-2024, https://doi.org/10.5194/nhess-24-3013-2024, 2024
Short summary
Short summary
In 2004-tsunami-affected South Andaman, tsunami wave propagation, arrival times, and run-up heights at 13 locations are computed to analyse pre- and post-tsunami shoreline and land use–land cover changes to understand the evolving hazard scenario. The LULC changes and dynamic shoreline changes are observed in zones 3, 4, and 5 owing to dynamic population changes, infrastructural growth, and gross state domestic product growth. Economic losses would increase 5-fold for a similar tsunami.
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024, https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
Short summary
Early warning systems (EWSs) promise to decrease the vulnerability of self-constructed (informal) settlements. A living lab developed a partially functional prototype of an EWS for landslides in a Medellín neighborhood. The first findings indicate that technical aspects can be manageable, unlike social and political dynamics. A resilient EWS for informal settlements has to achieve sufficient social and technical redundancy to maintain basic functionality in a reduced-support scenario.
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
EGUsphere, https://doi.org/10.48550/arXiv.2401.13877, https://doi.org/10.48550/arXiv.2401.13877, 2024
Short summary
Short summary
The harsh environment limits the use of drone, satellite, and simultaneous localization and mapping technology to obtain precise channel morphology data. We propose AscDAMs, which include a deviation correction algorithm to reduce errors, a point cloud smoothing algorithm to diminish noise, and a cross section extraction algorithm to quantitatively assess the morphology data. AscDAMs solve the problems and provide researchers with more reliable channel morphology data for further analysis.
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149, https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites are also related to soil quality, and not necessarily to anomalous yields.
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024, https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Short summary
This study provided an opportunity to assess both the perception of the tsunami hazard and the knowledge of alerts in five municipalities located along the French Mediterranean coastlines. The age and location of the respondents explain several differences between the five municipalities surveyed – more so than gender or residence status. This study may help local authorities to develop future tsunami awareness actions and to identify more appropriate strategies to be applied in the short term.
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024, https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary
Short summary
Severe weather such as hail, lightning, and heavy rainfall can be hazardous to humans and property. Dual-polarization weather radars provide crucial information to forecast these events by detecting precipitation types. This study analyses the importance of dual-polarization data for predicting severe weather for 60 min using an existing deep learning model. The results indicate that including these variables improves the accuracy of predicting heavy rainfall and lightning.
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023, https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Short summary
Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if the use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such a machine learning system is not as straightforward as often hoped for.
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530, https://doi.org/10.5194/nhess-23-2523-2023, https://doi.org/10.5194/nhess-23-2523-2023, 2023
Short summary
Short summary
Snow avalanches are a natural hazard that can cause danger to human lives. This threat can be reduced by accurate prediction of the danger levels. The development of mathematical models based on past data and present conditions can help to improve the accuracy of prediction. This research aims to develop a neural-network-based model for correlating complex relationships between the meteorological variables and the profile variables.
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999, https://doi.org/10.5194/nhess-23-1987-2023, https://doi.org/10.5194/nhess-23-1987-2023, 2023
Short summary
Short summary
Landslides and ground deformation associated with the construction of a hydropower mega dam in the Santa Cruz River in Argentine Patagonia have been monitored using radar and optical satellite data, together with the analysis of technical reports. This allowed us to assess the integrity of the construction, providing a new and independent dataset. We have been able to identify ground deformation trends that put the construction works at risk.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023, https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Short summary
This article presents a framework for semi-automated building damage assessment due to earthquakes from remote-sensing data and other supplementary datasets including high-resolution building inventories, while also leveraging recent advances in machine-learning algorithms. For three out of the four recent earthquakes studied, the machine-learning framework is able to identify over 50 % or nearly half of the damaged buildings successfully.
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023, https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Short summary
In Bangladesh, riverbank erosion occurs every year during the monsoon and affects thousands of households. Information on locations and extent of past erosion can help anticipate where erosion might occur in the upcoming monsoon season and to take preventive measures. In our study, we show how time series of radar satellite imagery can be used to retrieve information on past erosion events shortly after the monsoon season using a novel interactive online tool based on the Google Earth Engine.
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023, https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Short summary
Human activities across China show a similar trend in response to rains. However, urban resilience varies significantly by region. The northwestern arid region and the central underdeveloped areas are very fragile, and even low-intensity rains can trigger significant human activity anomalies. By contrast, even high-intensity rains might not affect residents in the southeast.
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022, https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Short summary
Extreme events have increased in the last few decades; having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. This study analyzes the efficiency of different machine learning techniques to predict reservoir outflow. The results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the results obtained with classical approaches.
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022, https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
Short summary
This study advances previous models through machine learning and multi-sensor-verified results. Using spatial and meteorological data from the study area (Suncheon–Wanju Highway in Gurye-gun), the amount and location of black ice were modelled based on system dynamics to predict black ice and then simulated with the geographic information system (m2). Based on the model results, multiple sensors were buried at four selected points in the study area, and the model was compared with sensor data.
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022, https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary
Short summary
The devastating effects of recurring drought conditions are mostly felt by pastoralists that rely on grass and shrubs as fodder for their animals. Using historical information from precipitation, soil moisture, and vegetation health data, we developed a model that can forecast vegetation condition and the probability of drought occurrence up till a 10-week lead time with an accuracy of 74 %. Our model can be adopted by policymakers and relief agencies for drought early warning and early action.
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2725–2749, https://doi.org/10.5194/nhess-22-2725-2022, https://doi.org/10.5194/nhess-22-2725-2022, 2022
Short summary
Short summary
The impact of drought may vary in a given region depending on whether it is dominated by trees, grasslands, or croplands. The differences in impact can also be the agro-ecological zones within the region. This paper proposes a hierarchical Bayesian model (HBM) for forecasting vegetation condition in spatially diverse areas. Compared to a non-hierarchical model, the HBM proved to be a more natural method for forecasting drought in areas with different land covers and
agro-ecological zones.
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022, https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Short summary
Landslide dams are secondary disasters caused by landslides, which can cause great damage to mountains. We have proposed a procedure to calculate the key parameters of these dams that uses only a single remote-sensing image and a pre-landslide DEM combined with landslide theory. The core of this study is a modeling problem. We have found the bridge between the theory of landslide dams and the requirements of disaster relief.
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022, https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
Short summary
The advent of new satellite technologies improves our ability to study floods. While the depth of water at flooded buildings is generally the most important variable for flood researchers, extracting this accurately from satellite data is challenging. The software tool presented here accomplishes this, and tests show the tool is more accurate than competing tools. This achievement unlocks more detailed studies of past floods and improves our ability to plan for and mitigate disasters.
Tadas Nikonovas, Allan Spessa, Stefan H. Doerr, Gareth D. Clay, and Symon Mezbahuddin
Nat. Hazards Earth Syst. Sci., 22, 303–322, https://doi.org/10.5194/nhess-22-303-2022, https://doi.org/10.5194/nhess-22-303-2022, 2022
Short summary
Short summary
Extreme fire episodes in Indonesia emit large amounts of greenhouse gasses and have negative effects on human health in the region. In this study we show that such burning events can be predicted several months in advance in large parts of Indonesia using existing seasonal climate forecasts and forest cover change datasets. A reliable early fire warning system would enable local agencies to prepare and mitigate the worst of the effects.
Yahong Liu and Jin Zhang
Nat. Hazards Earth Syst. Sci., 22, 227–244, https://doi.org/10.5194/nhess-22-227-2022, https://doi.org/10.5194/nhess-22-227-2022, 2022
Short summary
Short summary
Through a comprehensive analysis of the current remote sensing technology resources, this paper establishes the database to realize the unified management of heterogeneous sensor resources and proposes a capability evaluation method of remote sensing cooperative technology in geohazard emergencies, providing a decision-making basis for the establishment of remote sensing cooperative observations in geohazard emergencies.
Diego Guenzi, Danilo Godone, Paolo Allasia, Nunzio Luciano Fazio, Michele Perrotti, and Piernicola Lollino
Nat. Hazards Earth Syst. Sci., 22, 207–212, https://doi.org/10.5194/nhess-22-207-2022, https://doi.org/10.5194/nhess-22-207-2022, 2022
Short summary
Short summary
In the Apulia region (southeastern Italy) we are monitoring a soft-rock coastal cliff using webcams and strain sensors. In this urban and touristic area, coastal recession is extremely rapid and rockfalls are very frequent. In our work we are using low-cost and open-source hardware and software, trying to correlate both meteorological information with measures obtained from crack meters and webcams, aiming to recognize potential precursor signals that could be triggered by instability phenomena.
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 21, 3539–3562, https://doi.org/10.5194/nhess-21-3539-2021, https://doi.org/10.5194/nhess-21-3539-2021, 2021
Short summary
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Johnny Douvinet, Anna Serra-Llobet, Esteban Bopp, and G. Mathias Kondolf
Nat. Hazards Earth Syst. Sci., 21, 2899–2920, https://doi.org/10.5194/nhess-21-2899-2021, https://doi.org/10.5194/nhess-21-2899-2021, 2021
Short summary
Short summary
This study proposes to combine results of research regarding the spatial inequalities due to the siren coverage, the political dilemma of siren activation, and the social problem of siren awareness and trust for people in France. Surveys were conducted using a range of complementary methods (GIS analysis, statistical analysis, questionnaires, interviews) through different scales. Results show that siren coverage in France is often determined by population density but not risks or disasters.
Fabio Brighenti, Francesco Carnemolla, Danilo Messina, and Giorgio De Guidi
Nat. Hazards Earth Syst. Sci., 21, 2881–2898, https://doi.org/10.5194/nhess-21-2881-2021, https://doi.org/10.5194/nhess-21-2881-2021, 2021
Short summary
Short summary
In this paper we propose a methodology to mitigate hazard in a natural environment in an urbanized context. The deformation of the ground is a precursor of paroxysms in mud volcanoes. Therefore, through the analysis of the deformation supported by a statistical approach, this methodology was tested to reduce the hazard around the mud volcano. In the future, the goal is that this dangerous area will become both a naturalistic heritage and a source of development for the community of the area.
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Michal Bíl, Pavel Raška, Lukáš Dolák, and Jan Kubeček
Nat. Hazards Earth Syst. Sci., 21, 2581–2596, https://doi.org/10.5194/nhess-21-2581-2021, https://doi.org/10.5194/nhess-21-2581-2021, 2021
Short summary
Short summary
The online landslide database CHILDA (Czech Historical Landslide Database) summarises information about landslides which occurred in the area of Czechia (the Czech Republic). The database is freely accessible via the https://childa.cz/ website. It includes 699 records (spanning the period of 1132–1989). Overall, 55 % of all recorded landslide events occurred only within 15 years of the extreme landslide incidence.
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021, https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Short summary
Messages on social media can be an important source of information during crisis situations. This article reviews approaches for the reliable detection of informative messages in a flood of data. We demonstrate the varying goals of these approaches and present existing data sets. We then compare approaches based (1) on keyword and location filtering, (2) on crowdsourcing, and (3) on machine learning. We also point out challenges and suggest future research.
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary
Short summary
For many decades, natural disasters have been monitored by trained analysts using multiple satellite images to observe landscape change. This approach is incredibly useful, but our new tool, HazMapper, offers researchers and the scientifically curious public a web-accessible
cloud-based tool to perform similar analysis. We intend for the tool to both be used in scientific research and provide rapid response to global natural disasters like landslides, wildfires, and volcanic eruptions.
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444, https://doi.org/10.5194/nhess-21-1431-2021, https://doi.org/10.5194/nhess-21-1431-2021, 2021
Short summary
Short summary
In this paper, we study when social media is an adequate source to find metadata about incidents that cannot be acquired by traditional means. We identify six major use cases: impact assessment and verification of model predictions, narrative generation, recruiting citizen volunteers, supporting weakly institutionalized areas, narrowing surveillance areas, and reporting triggers for periodical surveillance.
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194, https://doi.org/10.5194/nhess-21-1179-2021, https://doi.org/10.5194/nhess-21-1179-2021, 2021
Short summary
Short summary
We trained a recurrent neural network model to classify microblogging posts related to urban waterlogging and establish an online monitoring system of urban waterlogging caused by flood disasters. We manually curated more than 4400 waterlogging posts to train the RNN model so that it can precisely identify waterlogging-related posts of Sina Weibo to timely determine urban waterlogging.
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci., 21, 607–627, https://doi.org/10.5194/nhess-21-607-2021, https://doi.org/10.5194/nhess-21-607-2021, 2021
Short summary
Short summary
Predicting the number of power outages caused by extratropical storms is a key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with a forest inventory. The storms are first identified from the data and then classified using several machine-learning methods. While there is plenty of room to improve, the results are already usable, with support vector classifier providing the best performance.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Luiz Felipe Galizia, Thomas Curt, Renaud Barbero, and Marcos Rodrigues
Nat. Hazards Earth Syst. Sci., 21, 73–86, https://doi.org/10.5194/nhess-21-73-2021, https://doi.org/10.5194/nhess-21-73-2021, 2021
Short summary
Short summary
This paper aims to provide a quantitative evaluation of three remotely sensed fire datasets which have recently emerged as an important resource to improve our understanding of fire regimes. Our findings suggest that remotely sensed fire datasets can be used to proxy variations in fire activity on monthly and annual timescales; however, caution is advised when drawing information from smaller fires (< 100 ha) across the Mediterranean region.
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Mohammad Malakootian and Majid Nozari
Nat. Hazards Earth Syst. Sci., 20, 2351–2363, https://doi.org/10.5194/nhess-20-2351-2020, https://doi.org/10.5194/nhess-20-2351-2020, 2020
Short summary
Short summary
The present study estimated the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. The aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.
Diana Contreras, Alondra Chamorro, and Sean Wilkinson
Nat. Hazards Earth Syst. Sci., 20, 1663–1687, https://doi.org/10.5194/nhess-20-1663-2020, https://doi.org/10.5194/nhess-20-1663-2020, 2020
Short summary
Short summary
The socio-economic condition of the population determines their vulnerability to earthquakes, tsunamis, volcanic eruptions, landslides, soil erosion and land degradation. This condition is estimated mainly from population censuses. The lack to access to basic services, proximity to hazard zones, poverty and population density highly influence the vulnerability of communities. Mapping the location of this vulnerable population makes it possible to prevent and mitigate their risk.
Simona Colombelli, Francesco Carotenuto, Luca Elia, and Aldo Zollo
Nat. Hazards Earth Syst. Sci., 20, 921–931, https://doi.org/10.5194/nhess-20-921-2020, https://doi.org/10.5194/nhess-20-921-2020, 2020
Short summary
Short summary
We developed a mobile app for Android devices which receives the alerts generated by a network-based early warning system, predicts the expected ground-shaking intensity and the available lead time at the user position, and provides customized messages to inform the user about the proper reaction to the alert. The app represents a powerful tool for informing in real time a wide audience of end users and stakeholders about the potential damaging shaking in the occurrence of an earthquake.
Richard Styron, Julio García-Pelaez, and Marco Pagani
Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, https://doi.org/10.5194/nhess-20-831-2020, 2020
Short summary
Short summary
The Caribbean and Central American region is both tectonically active and densely populated, leading to a large population that is exposed to earthquake hazards. Until now, no comprehensive fault data covering the region have been available. We present a new public fault database for Central America and the Caribbean that synthesizes published studies with new mapping from remote sensing to provide fault sources for the CCARA seismic hazard and risk analysis project and to aid future research.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Quancai Xie, Qiang Ma, Jingfa Zhang, and Haiying Yu
Nat. Hazards Earth Syst. Sci., 19, 2827–2839, https://doi.org/10.5194/nhess-19-2827-2019, https://doi.org/10.5194/nhess-19-2827-2019, 2019
Short summary
Short summary
This paper evaluates a new method for modeling the site amplification factor. Through implementing this method and making simulations for different cases, we find that this method shows better performance than the previous method and JMA report. We better understand the advantages and disadvantages of this method, although there are some problems that need to be considered carefully and solved; it shows good potential to be used in future earthquake early warning systems.
David A. Bonneau, D. Jean Hutchinson, Paul-Mark DiFrancesco, Melanie Coombs, and Zac Sala
Nat. Hazards Earth Syst. Sci., 19, 2745–2765, https://doi.org/10.5194/nhess-19-2745-2019, https://doi.org/10.5194/nhess-19-2745-2019, 2019
Short summary
Short summary
In mountainous regions around the world rockfalls pose a hazard to infrastructure and society. To aid in our understanding and management of these complex hazards, an inventory can be compiled. Three-dimensional remote sensing data can be used to locate the source zones of these events and generate models of areas which detached. We address the way in which the shape of a rockfall object can be measured. The shape of a rockfall has implications for forward modelling of potential runout zones.
Kwonmin Lee, Hye-Sil Kim, and Yong-Sang Choi
Nat. Hazards Earth Syst. Sci., 19, 2241–2248, https://doi.org/10.5194/nhess-19-2241-2019, https://doi.org/10.5194/nhess-19-2241-2019, 2019
Short summary
Short summary
This study examined the advances in the predictability of thunderstorms using geostationary satellite imageries. Our present results show that by using the latest geostationary satellite data (with a resolution of 2 km and 10 min), thunderstorms can be predicted 90–180 min ahead of their mature state. These data can capture the rapidly growing cloud tops before the cloud moisture falls as precipitation and enable prompt preparation and the mitigation of hazards.
Qingyun Zhang, Yongsheng Li, Jingfa Zhang, and Yi Luo
Nat. Hazards Earth Syst. Sci., 19, 2229–2240, https://doi.org/10.5194/nhess-19-2229-2019, https://doi.org/10.5194/nhess-19-2229-2019, 2019
Short summary
Short summary
Before the opening of the railway, the deformation of the Qinghai–Tibet Railway was very small and considered stable. After opening, the overall stability of the railway section was good. The main deformation areas are concentrated in the areas where railway lines turn and geological disasters are concentrated. In order to ensure the safety of railway operation, it is necessary to carry out long-term time series observation along the Qinghai–Tibet Railway.
Xiao Huang, Cuizhen Wang, and Junyu Lu
Nat. Hazards Earth Syst. Sci., 19, 2141–2155, https://doi.org/10.5194/nhess-19-2141-2019, https://doi.org/10.5194/nhess-19-2141-2019, 2019
Short summary
Short summary
This study examined the spatiotemporal dynamics of nighttime satellite-derived human settlement in response to different levels of hurricane proneness in a period from 1992 to 2013. It confirms the
Snow Belt-to-Sun BeltUS population shift trend. The results also suggest that hurricane-exposed human settlement has grown in extent and area, as more hurricane exposure has experienced a larger increase rate in settlement intensity.
Cited articles
Airbus Defence and Space: Pléiades Imagery User Guide, https://www.intelligence-airbusds.com/en/8718-user-guides (last access: 29 October 2019), 2012.
Allan, P., Bryant, M., Wirsching, C., Garcia, D., and Rodriguez, M. T.:
The Influence of Urban Morphology on the Resilience of Cities Following an
Earthquake, Journal of Urban Design, 18, 242–262,
https://doi.org/10.1080/13574809.2013.772881, 2013.
Altieri, M. A., Companioni, N., Cañizares, K., Murphy, C., Rosset, P.,
Bourque, M., and Nicholls, C. I.: The greening of the “barrios”: Urban
agriculture for food security in Cuba, Agr. Hum. Values, 16,
131–140, https://doi.org/10.1023/A:1007545304561, 1999.
Alvarado, A., Audin, L., Nocquet, J. M., Lagreulet, S., Segovia, M., Font,
Y., Lamarque, G., Yepes, H., Mothes, P., Rolandone, F., Jarrín, P., and
Quidelleur, X.: Active tectonics in Quito, Ecuador, assessed by
geomorphological studies, GPS data, and crustal seismicity, 33, 67–83,
https://doi.org/10.1002/2012tc003224, 2014.
Amey, R. M. J., Elliott, J. R., Hussain, E., Walker, R., Pagani, M., Silva,
V., Abdrakhmatov, K. E., and Watson, C. S.: Significant Seismic Risk
Potential from Buried Faults Beneath Almaty City, Kazakhstan, revealed from
high-resolution satellite DEMs, Earth and Space Science, 8, e2021EA001664,
https://doi.org/10.1029/2021EA001664, 2021.
Anhorn, J. and Khazai, B.: Open space suitability analysis for emergency shelter after an earthquake, Nat. Hazards Earth Syst. Sci., 15, 789–803, https://doi.org/10.5194/nhess-15-789-2015, 2015.
Aragundi, S. M., Mena, A. P., and Zamora, J. J.: Historical Urban Landscape
as a Descriptive Feature for Risk Assessment: the “Quebradas” of Quito,
FICUP. An International Conference on Urban Physics, Quito – Galápagos,
Ecuador, 26–30 September 2016.
Aronson, M. F., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B.,
MacIvor, J. S., Nilon, C. H., and Vargo, T.: Biodiversity in the city: key
challenges for urban green space management,
Front. Ecol. Environ., 15, 189–196, https://doi.org/10.1002/fee.1480,
2017.
Baker, J. L.: Climate Change, Disaster Risk, and the Urban Poor: Cities Building Resilience for a Changing World, Urban Development, Washington, DC, World Bank, https://openknowledge.worldbank.org/handle/10986/6018 (last access: 16 May 2022), 2012.
Bauwelinck, M., Casas, L., Nawrot, T. S., Nemery, B., Trabelsi, S., Thomas,
I., Aerts, R., Lefebvre, W., Vanpoucke, C., Van Nieuwenhuyse, A., Deboosere,
P., and Vandenheede, H.: Residing in urban areas with higher green space is
associated with lower mortality risk: A census-based cohort study with ten
years of follow-up, Environ. Int., 148, 106365,
https://doi.org/10.1016/j.envint.2020.106365, 2021.
Beauval, C., Mariniere, J., Yepes, H., Audin, L., Nocquet, J. M., Alvarado,
A., Baize, S., Aguilar, J., Singaucho, J., and Jomard, H.: A New Seismic
Hazard Model for Ecuador, B. Seismol. Soc. Am.,
108, 1443–1464, https://doi.org/10.1785/0120170259, 2018.
Benedict, M. and MacMahon, E.: Green Infrastructure: Smart Conservation for
the 21st Century, Renewable Resources Journal, 20, 12–17, 2002.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology/Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant,
Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Bonilla-Bedoya, S., Estrella, A., Vaca Yánez, A., and Herrera, M.
Á.: Urban socio-ecological dynamics: applying the urban-rural gradient
approach in a high Andean city, Landscape Res., 45, 327–345,
https://doi.org/10.1080/01426397.2019.1641589, 2020a.
Bonilla-Bedoya, S., Mora, A., Vaca, A., Estrella, A., and Herrera, M.
Á.: Modelling the relationship between urban expansion processes and
urban forest characteristics: An application to the Metropolitan District of
Quito, Comput. Environ. Urban, 79, 101420,
https://doi.org/10.1016/j.compenvurbsys.2019.101420, 2020b.
Borland, J.: Small parks, big designs: reconstructed Tokyo's new green
spaces, 1923–1931, Urban History, 47, 106–125, https://doi.org/10.1017/S0963926819000567, 2020.
Boulton, C., Dedekorkut-Howes, A., and Byrne, J.: Factors shaping urban
greenspace provision: A systematic review of the literature,
Landscape Urban Plan., 178, 82–101,
https://doi.org/10.1016/j.landurbplan.2018.05.029, 2018.
Bryant, M. and Allan, P.: Open space innovation in earthquake affected
cities, in: Approaches to Disaster Management – Examining the Implications
of Hazards, Emergencies and Disasters, edited by: Tiefenbacher, J. P., London, In-Tech, 230 pp., https://doi.org/10.5772/55465, 2013.
Cardona, O.-D., van Aalst, M. K., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Pulwarty, R. S., Schipper, E. L. F., Sinh, B. T., Décamps, H., Keim, M., Davis, I., Ebi, K. L., Lavell, A., Mechler, R., Murray, V., Pelling, M., Pohl, J., Smith, A.-O., and Thomalla, F.: Determinants of Risk: Exposure and Vulnerability, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, edited by: Field, C., Barros, V., Stocker, T., and Dahe, Q., Cambridge University Press, Cambridge, 65–108, doi:10.1017/CBO9781139177245.005, 2012.
Carmin, J. and Anguelovski, I.: Planning Climate Resilient Cities: Early
Lessons from Early Adapters, World Bank, 5th Urban Research Symposium, Cities and Climate Change. Marseille, France, 28–30 June 2009.
Carrión, F. and Erazo Espinosa, J.: La forma urbana de Quito: una
historia de centros y periferias, Bulletin de l'Institut français
d'études andines, 41, 503–522, https://doi.org/10.4000/bifea.361, 2012.
Castelo, C. A. J., D'Howitt, M. C., Almeida, O. P., and
Toulkeridis, T.: Comparative Determination of the Probability of Landslide
Ocurrences and Susceptibility in Central Quito, Ecuador, 2018 International
Conference on eDemocracy and eGovernment (ICEDEG), Ambato, Equador, 4–6 April 2018, 136–143, https://doi.org/10.1109/ICEDEG.2018.8372341, 2018.
Chatelain, J. L., Tucker, B., Guillier, B., Kaneko, F., Yepes, H.,
Fernandez, J., Valverde, J., Hoefer, G., Souris, M., Dupérier, E.,
Yamada, T., Bustamante, G., and Villacis, C.: Earthquake risk management
pilot project in Quito, Ecuador, GeoJournal, 49, 185–196,
https://doi.org/10.1023/A:1007079403225, 1999.
Colding, J. and Barthel, S.: The potential of “Urban Green Commons” in the
resilience building of cities, Ecol. Econ., 86, 156–166,
https://doi.org/10.1016/j.ecolecon.2012.10.016, 2013.
Cuvi, N. and Vélez, L. C. G.: Los Parques Urbanos de Quito:
Distribución, Accesibilidad y Segregación Espacial, Environmental
Science, 10, 200–231, https://doi.org/10.21664/2238-8869.2021v10i2.p200-231, 2021.
De Sherbinin, A., Schiller, A., and Pulsipher, A.: The vulnerability of
global cities to climate hazards, Environ. Urban., 19, 39–64,
https://doi.org/10.1177/0956247807076725, 2007.
Deng, J., Huang, Y., Chen, B., Tong, C., Liu, P., Wang, H., and Hong, Y.: A
Methodology to Monitor Urban Expansion and Green Space Change Using a Time
Series of Multi-Sensor SPOT and Sentinel-2A Images, Remote Sensing, 11,
1230, https://doi.org/10.3390/rs11101230, 2019.
DMQ: Visión de Quito 2040 y su Nuevo Modelo de Ciudad, http://repositoriointerculturalidad.ec/jspui/handle/123456789/33016 (last access: 16 May 2022), 2018.
Domínguez-Castro, F., García-Herrera, R., and Vicente-Serrano, S.
M.: Wet and dry extremes in Quito (Ecuador) since the 17th century,
Int. J. Climatol., 38, 2006–2014, https://doi.org/10.1002/joc.5312, 2018.
Dou, K. and Zhan, Q.: Accessibility analysis of urban emergency shelters:
Comparing gravity model and space syntax, 2011 International Conference on
Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011, 5681–5684, 2011.
Emberson, R., Kirschbaum, D., and Stanley, T.: New global characterisation of landslide exposure, Nat. Hazards Earth Syst. Sci., 20, 3413–3424, https://doi.org/10.5194/nhess-20-3413-2020, 2020.
Escobedo, F. J. and Nowak, D. J.: Spatial heterogeneity and air pollution
removal by an urban forest, Landscape Urban Plan., 90, 102–110,
https://doi.org/10.1016/j.landurbplan.2008.10.021, 2009.
Estrella, M. and Saalismaa, N.: Ecosystem-based disaster risk reduction
(Eco-DRR): An overview, The role of ecosystems in disaster risk reduction,
edited by: Renaud, F. G., Sudmeier-Rieux, K., and Estrella, M., United
Nations University Press, 512 pp., https://globalplatform.undrr.org/sites/default/files/2022-02/The%20role%20of%20ecosystems%20in%20disaster%20risk%20reduction.pdf (last access: 16 May 2020), 2013.
Faivre, N., Sgobbi, A., Happaerts, S., Raynal, J., and Schmidt, L.:
Translating the Sendai Framework into action: The EU approach to
ecosystem-based disaster risk reduction,
Int. J. Disast. Risk Re., 32, 4–10,
https://doi.org/10.1016/j.ijdrr.2017.12.015, 2018.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Fenger, J.: Urban air quality, Atmos. Environ., 33, 4877–4900,
https://doi.org/10.1016/S1352-2310(99)00290-3, 1999.
Flörke, M., Schneider, C., and McDonald, R. I.: Water competition
between cities and agriculture driven by climate change and urban growth,
Nature Sustainability, 1, 51–58, https://doi.org/10.1038/s41893-017-0006-8, 2018.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Fuller, R., Groom, G., and Jones, A.: The land-cover map of great Britain:
an automated classification of landsat thematic mapper data,
Photogramm. Eng. Rem. S., 60, 553–562, 1994.
Galasso, C., McCloskey, J., Pelling, M., Hope, M., Bean, C. J., Cremen, G.,
Guragain, R., Hancilar, U., Menoscal, J., Mwang'a, K., Phillips, J., Rush,
D., and Sinclair, H.: Editorial. Risk-based, Pro-poor Urban Design and
Planning for Tomorrow's Cities, Int. J. Disast. Risk Re., 58, 102158,
https://doi.org/10.1016/j.ijdrr.2021.102158, 2021.
García-Lamarca, M., Connolly, J., and Anguelovski, I.: Green
gentrification and displacement in Barcelona, in: Housing Displacement,
Routledge, 156–170, 2020.
Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., and
Wolff, E.: Very High Resolution Object-Based Land Use–Land Cover Urban
Classification Using Extreme Gradient Boosting,
IEEE Geosci. Remote S., 15, 607–611, https://doi.org/10.1109/LGRS.2018.2803259, 2018.
Gill, J. C. and Malamud, B. D.: Anthropogenic processes, natural hazards,
and interactions in a multi-hazard framework, Earth-Sci. Rev., 166,
246–269, https://doi.org/10.1016/j.earscirev.2017.01.002, 2017.
Gill, J. C., Hussain, E., and Malamud, B. D.: Workshop Report: Multi-Hazard
Risk Scenarios for Tomorrow's Cities,
https://tomorrowscities.org/workshop-report-multi-hazard-risk-scenarios-tomorrows-cities, (last access: 18th May 2021), 2021.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence,
D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.:
Food Security: The Challenge of Feeding 9 Billion People, Science, 327,
812–818, https://doi.org/10.1126/science.1185383, 2010.
Gonzalez, C. G.: Seasons of Resistance: Sustainable Agriculture and Food
Security in Cuba, Tulane Environmental Law Journal, 16, 685–732, 2003.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Hall, M. L., Samaniego, P., Le Pennec, J. L., and Johnson, J. B.: Ecuadorian
Andes volcanism: A review of Late Pliocene to present activity,
J. Volcanol. Geoth. Res., 176, 1–6,
https://doi.org/10.1016/j.jvolgeores.2008.06.012, 2008.
Hastenrath, S.: Annual cycle of upper air circulation and convective
activity over the tropical Americas, J. Geophys. Res.-Atmos., 102, 4267–4274, https://doi.org/10.1029/96JD03122, 1997.
Hoekstra, A. Y., Buurman, J., and van Ginkel, K. C. H.: Urban water
security: A review, Environ. Res. Lett., 13, 053002,
https://doi.org/10.1088/1748-9326/aaba52, 2018.
Hosseini, S. A., de la Fuente, A., and Pons, O.: Multicriteria
decision-making method for sustainable site location of post-disaster
temporary housing in urban areas,
J. Constr. Eng. M., 142, 04016036, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001137, 2016.
IG-EPN, IGM, IRD.: Mapa de Peligros Volcánicos Potenciales del
Volcán Guagua Pichincha 3ra. Edición, Quito – Ecuador, https://www.igepn.edu.ec/ggp-mapa-de-peligros/file (last access: 10 December 2020), 2019.
Inglada, J. and Christophe, E.: The Orfeo Toolbox remote sensing image
processing software, 2009 IEEE International Geoscience and Remote Sensing
Symposium, Cape Town, South Africa, 12–17 July 2009, IV-733-IV-736, doi:10.1109/IGARSS.2009.5417481, 2009.
Instituto Geográfico Militar: Fotografía aérea 360 Rollo 19
Cámara RC10 Proyecto Carta Nacional N-III_1977 Escala
1:60000 B/N, https://www.geoportaligm.gob.ec/geonetwork/srv/spa/catalog.search#/metadata/e56534b0-3b16-423e-a076-e0e41df07a81 (last access: 20 March 2020), 1977 (in Spanish).
Instituto Geográfico Militar: Generation of geospatial information at a
scale 1:5000 for the determination of the physical fitness of the
territory and urban development through the use of geotechnologies, http://www.geograficomilitar.gob.ec/ (last access: 16 May 2022), 2019 (in Spanish).
Jalayer, F., De Risi, R., De Paola, F., Giugni, M., Manfredi, G., Gasparini,
P., Topa, M. E., Yonas, N., Yeshitela, K., Nebebe, A., Cavan, G., Lindley,
S., Printz, A., and Renner, F.: Probabilistic GIS-based method for
delineation of urban flooding risk hotspots, Nat. Hazards, 73, 975–1001,
https://doi.org/10.1007/s11069-014-1119-2, 2014.
James, P., Banay, R. F., Hart, J. E., and Laden, F.: A Review of the Health
Benefits of Greenness, Current Epidemiology Reports, 2, 131–142,
https://doi.org/10.1007/s40471-015-0043-7, 2015.
Jeong, D., Kim, M., Song, K., and Lee, J.: Planning a Green Infrastructure
Network to Integrate Potential Evacuation Routes and the Urban Green Space
in a Coastal City: The Case Study of Haeundae District, Busan, South Korea,
Sci. Total Environ., 761, 143179,
https://doi.org/10.1016/j.scitotenv.2020.143179, 2021.
Kelleher, C. and McPhillips, L.: Exploring the application of topographic
indices in urban areas as indicators of pluvial flooding locations,
Hydrol. Process., 34, 780–794, 2020.
Kennedy, R. E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen,
W. B., and Healey, S.: Implementation of the LandTrendr Algorithm on Google
Earth Engine, Remote Sensing, 10, 691, https://doi.org/10.3390/rs10050691, 2018.
Khazai, B., Anhorn, J., Girard, T., Brink, S., Daniell, J., Bessel, T.,
Mühr, B., Flörchinger, V., and Kunz-Plapp, T.: Shelter response and
vulnerability of displaced populations in the April 25, 2015 Nepal
Earthquake, Center for Disaster Management and Risk Reduction Technology of
the Karlsruhe Institute of Technology, and the South Asia Institute,
Heidelberg University, 5, 31 pp., https://reliefweb.int/sites/reliefweb.int/files/resources/CEDIM_FDA_NepalEarthquake_Report2Shelter-4%20%281%29.pdf (last access: 16 May 2022), 2015.
Kılcı , F., Kara, B. Y., and Bozkaya, B.: Locating temporary shelter
areas after an earthquake: A case for Turkey,
Eur. J. Oper. Res., 243, 323–332,
https://doi.org/10.1016/j.ejor.2014.11.035, 2015.
Kirschbaum, D., Stanley, T., and Yatheendradas, S.: Modeling landslide
susceptibility over large regions with fuzzy overlay, Landslides, 13,
485–496, https://doi.org/10.1007/s10346-015-0577-2, 2016.
Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of
Rainfall-Triggered Landslide Hazard for Situational Awareness, Earth's
Future, 6, 505–523, https://doi.org/10.1002/2017EF000715, 2018.
Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri,
S. M., Basu, B., Basu, A. S., Bowyer, P., Charizopoulos, N., Jaakko, J.,
Loupis, M., Menenti, M., Mickovski, S. B., Pfeiffer, J., Pilla, F.,
Pröll, J., Pulvirenti, B., Rutzinger, M., Sannigrahi, S., Spyrou, C.,
Tuomenvirta, H., Vojinovic, Z., and Zieher, T.: An overview of monitoring
methods for assessing the performance of nature-based solutions against
natural hazards, Earth-Sci. Rev., 217, 103603,
https://doi.org/10.1016/j.earscirev.2021.103603, 2021.
Labib, S. M. and Harris, A.: The potentials of Sentinel-2 and LandSat-8
data in green infrastructure extraction, using object based image analysis
(OBIA) method, Eur. J. Remote Sens., 51, 231–240,
https://doi.org/10.1080/22797254.2017.1419441, 2018.
Leblon, B., Gallant, L., and Granberg, H.: Effects of shadowing types on
ground-measured visible and near-infrared shadow reflectances, Remote Sens. Environ., 58, 322–328,
https://doi.org/10.1016/S0034-4257(96)00079-X 1996.
Lidberg, W., Nilsson, M., Lundmark, T., and Ågren, A. M.: Evaluating
preprocessing methods of digital elevation models for hydrological
modelling, Hydrol. Process., 31, 4660–4668, 2017.
Liu, Q., Ruan, X., and Shi, P.: Selection of emergency shelter sites for
seismic disasters in mountainous regions: Lessons from the 2008 Wenchuan Ms
8.0 Earthquake, China, J. Asian Earth Sci., 40, 926–934, 2011.
Loughlin, S. C., Sparks, R. S. J., Sparks, S., Brown, S. K., Jenkins, S. F.,
and Vye-Brown, C.: Global volcanic hazards and risk, Cambridge University
Press, https://doi.org/10.1017/CBO9781316276273, 2015.
Manfreda, S., Di Leo, M., and Sole, A.: Detection of flood-prone areas using
digital elevation models, J. Hydrol. Eng., 16, 781–790,
2011.
Maragno, D., Gaglio, M., Robbi, M., Appiotti, F., Fano, E. A., and Gissi,
E.: Fine-scale analysis of urban flooding reduction from green
infrastructure: An ecosystem services approach for the management of water
flows, Ecol. Model., 386, 1–10,
https://doi.org/10.1016/j.ecolmodel.2018.08.002, 2018.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, C. K., Schutz, B. E.,
Smith, B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation
Satellite-2 (ICESat-2): Science requirements, concept, and implementation,
Remote Sens. Environ., 190, 260–273,
https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Marmot, M., Friel, S., Bell, R., Houweling, T. A. J., and Taylor, S.:
Closing the gap in a generation: health equity through action on the social
determinants of health, The Lancet, 372, 1661–1669,
https://doi.org/10.1016/S0140-6736(08)61690-6, 2008.
Marselle, M. R., Bowler, D. E., Watzema, J., Eichenberg, D., Kirsten, T.,
and Bonn, A.: Urban street tree biodiversity and antidepressant
prescriptions, Scientific Reports, 10, 22445, https://doi.org/10.1038/s41598-020-79924-5,
2020.
Mattivi, P., Franci, F., Lambertini, A., and Bitelli, G.: TWI computation: a
comparison of different open source GISs, Open Geospatial Data,
Software and Standards, 4, 1–12, 2019.
McDonald, R. I., Mansur, A. V., Ascensão, F., Colbert, M. L., Crossman,
K., Elmqvist, T., Gonzalez, A., Güneralp, B., Haase, D., Hamann, M.,
Hillel, O., Huang, K., Kahnt, B., Maddox, D., Pacheco, A., Pereira, H. M.,
Seto, K. C., Simkin, R., Walsh, B., Werner, A. S., and Ziter, C.: Research
gaps in knowledge of the impact of urban growth on biodiversity,
Nature Sustainability, 3, 16–24, https://doi.org/10.1038/s41893-019-0436-6, 2020.
McPherson, E. G.: Accounting for benefits and costs of urban
greenspace, Landscape Urban Plan., 22, 41–51,
https://doi.org/10.1016/0169-2046(92)90006-L, 1992.
McVittie, A., Cole, L., Wreford, A., Sgobbi, A., and Yordi, B.:
Ecosystem-based solutions for disaster risk reduction: Lessons from European
applications of ecosystem-based adaptation measures, Int. J. Disast. Risk Re., 32, 42–54,
https://doi.org/10.1016/j.ijdrr.2017.12.014, 2018.
Metro Ecuador: En caso de un sismo en Quito, estos son los sitios seguros en
la ciudad. Metro Ecuador, 12 December,
https://www.metroecuador.com.ec/ec/noticias/2019/05/28/caso-temblor-estos-los-sitios-seguros-quito.html (last access: 1 November 2021), 2019.
Millard, K. and Richardson, M.: On the Importance of Training Data Sample
Selection in Random Forest Image Classification: A Case Study in Peatland
Ecosystem Mapping, Remote. Sens., 7, 8489–8515, 2015.
Ministry of Territory: Habitat and Housing: Accidentes,
https://territorio.maps.arcgis.com/home/item.html?id=5270bc85cf3249b29937d25d0b363396 (last access: 16 May 2022), 2020.
Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., and Weng, Q.:
Per-pixel vs. object-based classification of urban land cover extraction
using high spatial resolution imagery, Remote Sens. Environ., 115,
1145–1161, https://doi.org/10.1016/j.rse.2010.12.017, 2011.
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner,
A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W.,
Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder,
L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., and
Thomas, T. C.: The Ice, Cloud, and Land Elevation Satellite – 2 mission: A
global geolocated photon product derived from the Advanced Topographic Laser
Altimeter System, Remote Sens. Environ., 233, 111325,
https://doi.org/10.1016/j.rse.2019.111325, 2019.
Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck,
K., Gibbons, A., Lee, J., Luthcke, S. B., and Rebold, T.: ATLAS/ICESat-2 L2A
Global Geolocated Photon Data, Version 3, NASA
National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 22 pp., https://doi.org/10.5067/ATLAS/ATL03.003, 2020.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Oliver-Smith, A., Alcántara-Ayala, I., Burton, I., and Lavell, A.: Forensic
Investigations of Disasters (FORIN): a conceptual framework and guide to
research, https://www.irdrinternational.org/uploads/files/2020/08/n0EpdIvgoGZuwbrhioKRFLQiw5XlLfF1vIDE7tEB/FORIN-2-29022016.pdf
(last access: 16 May 2022), 2016.
Olofsson, P., Foody, G. M., Stehman, S. V., and Woodcock, C. E.: Making
better use of accuracy data in land change studies: Estimating accuracy and
area and quantifying uncertainty using stratified estimation, Remote Sens. Environ., 129, 122–131,
https://doi.org/10.1016/j.rse.2012.10.031, 2013.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and
Wulder, M. A.: Good practices for estimating area and assessing accuracy of
land change, Remote Sens. Environ., 148, 42–57,
https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Onuma, A. and Tsuge, T.: Comparing green infrastructure as ecosystem-based
disaster risk reduction with gray infrastructure in terms of costs and
benefits under uncertainty: A theoretical approach, Int. J. Disast. Risk Re., 32, 22–28,
https://doi.org/10.1016/j.ijdrr.2018.01.025, 2018.
Pagani, M., Garcia-Pelaez, J., Gee, R., Johnson, K., Poggi, V., Styron, R.,
Weatherill, G., Simionato, M., Viganò, D., Danciu, L., and Monelli, D.:
Global Earthquake Model (GEM) Seismic Hazard Map (version 2018.1 – December
2018), https://doi.org/10.13117/GEM-GLOBAL-SEISMIC-HAZARD-MAP-2018.1,
2018.
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J.
R., Bode, C. A., Crosby, C., DeLong, S. B., Glenn, N. F., Kelly, S. A.,
Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T.,
and Wheaton, J. M.: Analyzing high resolution topography for advancing the
understanding of mass and energy transfer through landscapes: A review,
Earth-Sci. Rev., 148, 174–193,
https://doi.org/10.1016/j.earscirev.2015.05.012, 2015.
Pelling, M., Maskrey, A., Ruiz, P., Hall, P., Peduzzi, P., Dao, Q.-H.,
Mouton, F., Herold, C., and Kluser, S.: Reducing disaster risk: a challenge
for development, http://archive-ouverte.unige.ch/unige:77685 (last access: 16 May 2022), 2004.
Peralta Arias, J. J. and Higueras García, E.: Evaluación
sostenible de los Planes Directores de Quito, Periodo 1942–2012, 5, 21–34, https://doi.org/10.18537/est.v005.n009.03, 2016.
Perrin, J. L., Bouvier, C., Janeau, J. L., Ménez, G., and Cruz, F.:
Rainfall/runoff processes in a small peri-urban catchment in the Andes
mountains. The Rumihurcu Quebrada, Quito (Ecuador), Hydrol. Process.,
15, 843–854, https://doi.org/10.1002/hyp.190, 2001.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J.,
and Stenseth, N. C.: Using the satellite-derived NDVI to assess ecological
responses to environmental change, Trends Ecol. Evol., 20,
503–510, https://doi.org/10.1016/j.tree.2005.05.011, 2005.
Phillips, C. and Marden, M.: Reforestation Schemes to Manage Regional
Landslide Risk, in: Landslide Hazard and Risk, chapter 18, 517–547, https://doi.org/10.1002/9780470012659.ch18, 2005.
Rebotier, J.: El riesgo y su gestión en Ecuador: una mirada de
geografía social y política, Centro de Publicaciones Pontificia
Universidad Católica del Ecuador, 132 pp., https://biblio.flacsoandes.edu.ec/libros/digital/56738.pdf (last access: 16 May 2022), 2016.
Robin, C., Samaniego, P., Le Pennec, J.-L., Mothes, P., and van der Plicht,
J.: Late Holocene phases of dome growth and Plinian activity at Guagua
Pichincha volcano (Ecuador), J. Volcanol. Geoth. Res.,
176, 7–15, https://doi.org/10.1016/j.jvolgeores.2007.10.008, 2008.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and
Rigol-Sanchez, J. P.: An assessment of the effectiveness of a random forest
classifier for land-cover classification,
ISPRS J. Photogramm., 67, 93–104,
https://doi.org/10.1016/j.isprsjprs.2011.11.002, 2012.
Salazar, E., Henríquez, C., Sliuzas, R., and Qüense, J.: Evaluating
Spatial Scenarios for Sustainable Development in Quito, Ecuador, ISPRS Int.
J. Geo Inf., 9, 141, https://doi.org/10.3390/ijgi9030141, 2020.
Salazar, E., Henríquez, C., Durán, G., Qüense, J., and
Puente-Sotomayor, F.: How to Define a New Metropolitan Area? The Case of
Quito, Ecuador, and Contributions for Urban Planning, Land, 10, 413, https://doi.org/10.3390/land10040413, 2021.
Salmon, N., Yépez, G., Duque, M., Yépez, M., Báez, A.,
Masache-Heredia, M., Mejía, G., Mejía, P., Garofalo, G., and
Montoya, D.: Co-design of a Nature-Based Solutions Ecosystem for
Reactivating a Peri-Urban District in Quito, Ecuador, in: Governance of
Climate Responsive Cities: Exploring Cross-Scale Dynamics, edited by: Peker,
E. and Ataöv, A., Springer International Publishing, Cham, 79–104,
2021.
Sandholz, S., Lange, W., and Nehren, U.: Governing green change:
Ecosystem-based measures for reducing landslide risk in Rio de Janeiro,
Int. J. Disast. Risk Re., 32, 75–86,
https://doi.org/10.1016/j.ijdrr.2018.01.020, 2018.
Schneider, A. and Woodcock, C. E.: Compact, Dispersed, Fragmented,
Extensive? A Comparison of Urban Growth in Twenty-five Global Cities using
Remotely Sensed Data, Pattern Metrics and Census Information, Urban Studies,
45, 659–692, https://doi.org/10.1177/0042098007087340, 2008.
Shimpo, N., Wesener, A., and McWilliam, W.: How community gardens may
contribute to community resilience following an earthquake,
Urban For. Urban Gree., 38, 124–132,
https://doi.org/10.1016/j.ufug.2018.12.002, 2019.
Shrestha, S. R., Sliuzas, R., and Kuffer, M.: Open spaces and risk
perception in post-earthquake Kathmandu city, Appl. Geogr., 93, 81–91,
https://doi.org/10.1016/j.apgeog.2018.02.016, 2018.
Sierra, A.: La política de mitigación de los riesgos en las laderas
de Quito: ?“qué vulnerabilidad combatir?, 737–753, https://doi.org/10.4000/bifea.2421, 2009.
SNI: Archivos de Informacion Geografica, Peligro Volcánico, https://sni.gob.ec/coberturas (last access: 16 May 2022), 2020.
Sphere Association: The Sphere Handbook: Humanitarian Charter and MinimumStandards in Humanitarian Response, fourth edition, Geneva, Switzerland, https://www.spherestandards.org/handbook/ (last access: 16 May 2022), 2018.
Stanley, T. and Kirschbaum, D. B.: A heuristic approach to global landslide
susceptibility mapping, Nat. Hazards, 87, 145–164,
https://doi.org/10.1007/s11069-017-2757-y, 2017.
Styron, R.: GEMScienceTools/gem-global-active-faults: First release of 2019 (Version 2019.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3376300, 2019.
Sudmeier-Rieux, K., Arce-Mojica, T., Boehmer, H. J., Doswald, N., Emerton,
L., Friess, D. A., Galvin, S., Hagenlocher, M., James, H., Laban, P.,
Lacambra, C., Lange, W., McAdoo, B. G., Moos, C., Mysiak, J., Narvaez, L.,
Nehren, U., Peduzzi, P., Renaud, F. G., Sandholz, S., Schreyers, L.,
Sebesvari, Z., Tom, T., Triyanti, A., van Eijk, P., van Staveren, M.,
Vicarelli, M., and Walz, Y.: Scientific evidence for ecosystem-based
disaster risk reduction, Nature Sustainability, 4, 803–810,
https://doi.org/10.1038/s41893-021-00732-4, 2021.
Taylor, L. and Hochuli, D. F.: Defining greenspace: Multiple uses across
multiple disciplines, Landscape Urban Plan., 158, 25–38,
https://doi.org/10.1016/j.landurbplan.2016.09.024, 2017.
Testori, G.: Gobierno Barrial de Atucucho. An urban alternative based on
self-governance and direct democracy, 17 pp., http://contested-cities.net/working-papers/wp-content/uploads/sites/8/2016/07/WPCC-165011-TestoriGiulia-GobiernoBarrialAtucucho.pdf (last access: 16 May 2022), 2016.
Tidball, K. G. and Krasny, M. E.: Greening in the red zone: Disaster, Resilience and Community Greening, 1 edn., Springer, 503 pp., https://doi.org/10.1007/978-90-481-9947-1, 2012.
Tucker, C. J., Holben, B. N., Elgin, J. H., and McMurtrey, J. E.: Remote
sensing of total dry-matter accumulation in winter wheat, Remote Sens. Environ., 11, 171–189,
https://doi.org/10.1016/0034-4257(81)90018-3, 1981.
UN DESA: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420), New York: United Nations, https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (last access: 16 May 2022), 2019.
UNDRR: Ecosystem-Based Disaster Risk Reduction: Implementing Nature-based
Solutions for Resilience, United Nations Office for Disaster Risk Reduction
– Regional Office for Asia and the Pacific, Bangkok, Thailand, https://www.undrr.org/publication/ecosystem-based-disaster-risk-reduction-implementing-nature-based-solutions-0 (last access: 16 May 2022), 2020.
UN General Assembly: Transforming our world: the 2030 Agenda for Sustainable
Development, Report No. A/RES/70/1, https://www.unfpa.org/sites/default/files/resource-pdf/Resolution_A_RES_70_1_EN.pdf (last access: 16 May 2022), 2015.
UN-Habitat: The Challenge of Slums: Global Report on Human Settlements 2003, 345 pp., https://www.alnap.org/help-library/the-challenge-of-slums-global-report-on-human-settlements-2003
(last access: 4 May 2021), 2003.
UNISDR: Sendai framework for disaster risk reduction 2015–2030,
https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf (last access: 5 February 2020), 2015.
Valcárcel, J., Despotaki, V., Burton, C., Yepes-Estrada, C., Silva, V.,
and Villacis, C.: Integrated Assessment of Earthquake Risk in Quito, Ecuador
Using Openquake, 16th World Conference on Earthquake Engineering, 16WCEE
2017, Santiago Chile, 9–13 January 2017.
Valencia, V. H., Levin, G., and Hansen, H. S.: Modelling the spatial extent
of urban growth using a cellular automata-based model: a case study for
Quito, Ecuador, Geogr. Tidsskr., 120,
156–173, https://doi.org/10.1080/00167223.2020.1823867, 2020.
Vidal, X., Burgos, L., and Zevallos, O.: 11 Protection and environmental
restoration of the slopes of Pichincha in Quito, Ecuador, Water and Cities
in Latin America: Challenges for Sustainable Development, Routledge, London, 181, 298 pp., https://doi.org/10.4324/9781315848440, 2015.
Vincenti, S. S., Zuleta, D., Moscoso, V., Jácome, P., Palacios, E., and
Villacís, M.: Análisis estadístico de datos meteorológicos
mensuales y diarios para la determinación de variabilidad climática
y cambio climático en el Distrito Metropolitano de Quito, La Granja, 16,
23–47, https://lagranja.ups.edu.ec/index.php/granja/article/download/16.2012.03/232 (last access: 16 May 2022), 2012.
Watson, C. S., Elliott, J. R., Ebmeier, S. K., Vásquez, M. A., Zapata, C., Bonilla-Bedoya, S., Cubillo, P., Orbe, D. F., Córdova, M., Menoscal, J., and Sevilla, E.: Datasets supporting the paper “Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador”, Zenodo [data set], https://doi.org/10.5281/zenodo.5881876, 2022.
WHO Regional Office for Europe: Urban green spaces and health, https://www.euro.who.int/__data/assets/pdf_file/0005/321971/Urban-green-spaces-and-health-review-evidence.pdf (last access: 16 May 2022), 2016.
Wilson, T. M., Stewart, C., Sword-Daniels, V., Leonard, G. S., Johnston, D.
M., Cole, J. W., Wardman, J., Wilson, G., and Barnard, S. T.: Volcanic ash
impacts on critical infrastructure,
Phys. Chem. Earth, Parts A/B/C, 45-46, 5–23,
https://doi.org/10.1016/j.pce.2011.06.006, 2012.
Wolch, J. R., Byrne, J., and Newell, J. P.: Urban green space, public
health, and environmental justice: The challenge of making cities “just
green enough”, Landscape Urban Plan., 125, 234–244,
https://doi.org/10.1016/j.landurbplan.2014.01.017, 2014.
Yamazaki, F., Liu, W., and Takasaki, M.: Characteristics of shadow and
removal of its effects for remote sensing imagery, 2009 IEEE International
Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009, 4, IV-426–IV-429 pp.,
https://doi.org/10.1109/IGARSS.2009.5417404, 2009.
Zalakeviciute, R., López-Villada, J., and Rybarczyk, Y.: Contrasted
Effects of Relative Humidity and Precipitation on Urban PM2.5 Pollution in
High Elevation Urban Areas, Sustainability, 10, 2064, https://doi.org/10.3390/su10062064, 2018.
Zambrano-Barragán, C., Zevallos, O., Villacís, M., and
Enríquez, D.: Quito's Climate Change Strategy: A Response to Climate
Change in the Metropolitan District of Quito, Ecuador, in: Resilient Cities,
Dordrecht, 515–529, https://doi.org/10.1007/978-94-007-0785-6_51, 2011.
Zhou, Y., Parsons, B., Elliott, J. R., Barisin, I., and Walker, R. T.:
Assessing the ability of Pleiades stereo imagery to determine height changes
in earthquakes: A case study for the El Mayor-Cucapah epicentral area,
J. Geophys. Res.-Sol. Ea., 120, 8793–8808,
https://doi.org/10.1002/2015jb012358, 2015.
Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P.,
Loveland, T. R., Jin, S., Dahal, D., Yang, L., and Auch, R. F.: Optimizing
selection of training and auxiliary data for operational land cover
classification for the LCMAP initiative, ISPRS J. Photogramm., 122, 206–221,
https://doi.org/10.1016/j.isprsjprs.2016.11.004, 2016.
Short summary
We assess how greenspaces could guide risk-informed planning and reduce disaster risk for the urbanising city of Quito, Ecuador, which experiences earthquake, volcano, landslide, and flood hazards. We use satellite data to evaluate the use of greenspaces as safe spaces following an earthquake. We find disparities regarding access to and availability of greenspaces. The availability of greenspaces that could contribute to community resilience is high; however, many require official designation.
We assess how greenspaces could guide risk-informed planning and reduce disaster risk for the...
Altmetrics
Final-revised paper
Preprint