Articles | Volume 22, issue 5
https://doi.org/10.5194/nhess-22-1665-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-22-1665-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Asian School of the Environment, Nanyang Technological University,
Singapore
Judith A. Hubbard
Asian School of the Environment, Nanyang Technological University,
Singapore
Earth Observatory of Singapore, Nanyang Technological University,
Singapore
Kyle E. Bradley
Asian School of the Environment, Nanyang Technological University,
Singapore
Earth Observatory of Singapore, Nanyang Technological University,
Singapore
Karen H. Lythgoe
Earth Observatory of Singapore, Nanyang Technological University,
Singapore
Linlin Li
School of Earth Sciences and Engineering, Sun Yat-sen University,
Zhuhai, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Adam D. Switzer
Asian School of the Environment, Nanyang Technological University,
Singapore
Earth Observatory of Singapore, Nanyang Technological University,
Singapore
Related authors
No articles found.
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1913, https://doi.org/10.5194/egusphere-2025-1913, 2025
Short summary
Short summary
Coastal boulder deposits record extreme wave events, both storm and tsunami. Fully understanding hazards as recorded in these deposits requires high-quality data for comparison among sites and over time. We analysed methodologies and constructed a comprehensive set of field measurements to improve data consistency and reproducibility. We aim to help geomorphologists produce of data that can be widely shared and used to build extensive analytic understanding of coastal boulder deposits.
Zhi Yang Koh, Benjamin S. Grandey, Dhrubajyoti Samanta, Adam D. Switzer, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Ocean Sci., 20, 1495–1511, https://doi.org/10.5194/os-20-1495-2024, https://doi.org/10.5194/os-20-1495-2024, 2024
Short summary
Short summary
Identifying tide–surge interaction (TSI) is a complex task. We enhance existing statistical methods with a more-robust test that accounts for complex tides. We also develop a semi-empirical model to investigate the influence of one mechanism of TSI, tidal-phase alteration. We apply these techniques to tide-gauge records from Singapore and the east coast of Peninsular Malaysia. We find TSI at all studied locations: tidal-phase alteration can change the timing of large surges.
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024, https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Short summary
Coastal currents have wide implications for port activities, transport of sediments, and coral reef ecosystems; thus a deeper understanding of their characteristics is needed. We collected data on current velocities for a year using current meters at shallow waters in Singapore. The strength of the currents is primarily affected by tides and winds and generally increases during the monsoon seasons across various frequencies.
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
Gui Hu, Linlin Li, Zhiyuan Ren, and Kan Zhang
Nat. Hazards Earth Syst. Sci., 23, 675–691, https://doi.org/10.5194/nhess-23-675-2023, https://doi.org/10.5194/nhess-23-675-2023, 2023
Short summary
Short summary
We explore the tsunamigenic mechanisms and the hydrodynamic characteristics of the 2022 Hunga Tonga–Hunga Ha'apai volcanic tsunami event. Through extensive analysis of tsunami waveforms, we identify four distinct tsunami components from different physical mechanisms. The long-lasting oscillation of the tsunami event in the Pacific Ocean was mainly associated with the interplay of the ocean waves left by atmospheric waves with local bathymetry.
Kai Wan Yuen, Adam D. Switzer, Paul P. S. Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-4, https://doi.org/10.5194/nhess-2022-4, 2022
Manuscript not accepted for further review
Short summary
Short summary
Few databases provide standardized reporting of disaster-related agricultural damage and loss. We compiled cyclone-induced rice damage data from 1970–2018 in four countries in Asia (Bangladesh, Myanmar, Philippines and Vietnam). Of the 1,046 cyclone events recorded, 13 % or 138 events were associated with rice damage. Philippines and Vietnam accounted for 128 of these events. While higher cyclone intensity tend to cause most damage, lower intensity events were more frequent.
Dominik Jackisch, Bi Xuan Yeo, Adam D. Switzer, Shaoneng He, Danica Linda M. Cantarero, Fernando P. Siringan, and Nathalie F. Goodkin
Nat. Hazards Earth Syst. Sci., 22, 213–226, https://doi.org/10.5194/nhess-22-213-2022, https://doi.org/10.5194/nhess-22-213-2022, 2022
Short summary
Short summary
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable isotopes of precipitation can be used to detect typhoon activities in the Philippines based on daily isotope measurements from Metropolitan Manila. We find that strong typhoons such as Rammasun, which occurred in July 2014, leave detectable isotopic signals in precipitation. Besides other factors, the distance of the typhoon to the sampling site plays a key role in influencing the signal.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Kai Wan Yuen, Tang Thi Hanh, Vu Duong Quynh, Adam D. Switzer, Paul Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci., 21, 1473–1493, https://doi.org/10.5194/nhess-21-1473-2021, https://doi.org/10.5194/nhess-21-1473-2021, 2021
Short summary
Short summary
We used flow diagrams to represent the ways in which anthropogenic land use and natural hazards have affected rice production in the two
mega-deltas of Vietnam. Anthropogenic developments meant to improve productivity may create negative feedbacks on rice production and quality. Natural hazards further amplify problems created by human activities. A systems-thinking approach can yield nuanced perspectives for tackling environmental challenges.
Cited articles
Afif, H. and Cipta, A.: Tsunami hazard map in eastern Bali, AIP Conf. Proc.,
1658, 050001, https://doi.org/10.1063/1.4915041, 2015.
Ammon, C. J., Kanamori, H., and Lay, T.: A great earthquake doublet and
seismic stress transfer cycle in the central Kuril islands, Nature, 451,
561–565, https://doi.org/10.1038/nature06521, 2008.
Beckers, J. and Lay, T.: Very broadband seismic analysis of the 1992 Flores,
Indonesia, earthquake (Mw=7.9), J. Geophys. Res., 100, 18179–18193, https://doi.org/10.1029/95jb01689, 1995.
Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M.
A., Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I.,
Babeyko, A., Baiguera, M., Basili, R., Belliazzi, S., Grezio, A., Johnson,
K., Murphy, S., Paris, R., Rafliana, I., De Risi, R., Rossetto, T., Selva,
J., Taroni, M., Del Zoppo, M., Armigliato, A., Bureš, V., Cech, P.,
Cecioni, C., Christodoulides, P., Davies, G., Dias, F., Bayraktar, H. B.,
González, M., Gritsevich, M., Guillas, S., Harbitz, C. B., Kânoglu,
U., Macías, J., Papadopoulos, G. A., Polet, J., Romano, F., Salamon,
A., Scala, A., Stepinac, M., Tappin, D. R., Thio, H. K., Tonini, R.,
Triantafyllou, I., Ulrich, T., Varini, E., Volpe, M., and Vyhmeister, E.:
Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps,
Front. Earth Sci., 9, 1–28, https://doi.org/10.3389/feart.2021.628772,
2021.
Bilek, S. L.: Invited review paper: Seismicity along the South American
subduction zone: Review of large earthquakes, tsunamis, and subduction zone
complexity, Tectonophysics, 495, 2–14, https://doi.org/10.1016/j.tecto.2009.02.037, 2010.
Boekschoten, G. J., Best, M. B., and Putra, K. S.: Balinese reefs in
historical context, in: Proceedings of the Ninth International Coral Reef Symposium, Bali, Indonesia, 23–27 October 2000, 2, edited by: Moosa, M. K., Soemodihardjo, S., Soegiarto, A., Romimohtarto, K., Nontji, A., Soekarno and Suharsono, ISBN 9798105974, 2000.
Bondarenko, M., Kerr, D., Sorichetta, A., and Tatem, A.:
Census/projection-disaggregated gridded population datasets for 189
countries in 2020 using Built-Settlement Growth Model (BSGM) outputs, WorldPop [data set],
https://doi.org/10.5258/SOTON/WP00684, 2020.
Bowin, C., Purdy, G. M., Johnston, C., Shor, G., Lawver, L. Hartono, H. M.
S., and Jezek, P.: Arc-Continent Collision in Banda Sea Region, Am. Assoc.
Pet. Geol. Bull., 64, 868–915,
https://doi.org/10.1306/2F9193CD-16CE-11D7-8645000102C1865D, 1980.
Chau, K. T. and Lam, K. T. S.: Field observations and numerical simulations
of the 2011 Tohoku tsunami using COMCOT, in: Computer Methods and Recent Advances in Geomechanics, edited by: Oka, F., Murakami, A., Uzuoka, R., and Kimoto, S., Taylor & Francis Group, London, ISBN 978-1-138-00148-0, 2015.
Cruz, A. M. and Suarez-Paba, M. C.: Advances in Natech research: An
overview, Prog. Disaster Sci., 1, 100013,
https://doi.org/10.1016/j.pdisas.2019.100013, 2019.
Darmawan, H., Mutaqin, B. W., Wahyudi, W., Harijoko, A., Wibowo, H. E.,
Haerani, N., Surmayadi, M., Syarifudin, S., Jati, R., Suratman, S., and
Asriningrum, W.: Topography and structural changes of Anak Krakatau due to
the December 2018 catastrophic events, Indones. J. Geogr., 52, 402,
https://doi.org/10.22146/ijg.53740, 2020.
Dewey, J. F. and Bird, J. M.: Mountain belts and the new global tectonics,
J. Geophys. Res., 75, 2625–2647, https://doi.org/10.1029/JB075i014p02625,
1970.
El-Hussain, I., Al-Habsi, Z., Al Bloushi, K., Omira, R., Deif, A., Baptista, M. A., and Mohamad, A. M. E.: Site-specific deterministic and probabilistic tsunami hazard assessment for Diba-Oman and Diba-Al-Emirates, Arab. J. Geosci., 14, 831, https://doi.org/10.1007/s12517-021-07137-9, 2021.
Escobar, R. S., Diaz, L. O., Guerrero, A. M., Galindo, M. P., Mas, E., Koshimura, S., Adriano, B., Urra, L., and Quintero, P.: Tsunami hazard assessment for the central and southern pacific coast of Colombia, Coast. Eng. J., 62, 540–552, https://doi.org/10.1080/21664250.2020.1818362, 2020.
Felix, R. P., Hubbard, J. A., Moore, J. D. P., and Switzer, A. D.: The Role
of Frontal Thrusts in Tsunami Earthquake Generation, Bull. Seismol. Soc.
Am., 112, 680–694, https://doi.org/10.1785/0120210154, 2021.
Felix, R. P., Hubbard, J. A., Bradley, K. E., Lythgoe, K. H., Li, L., and Switzer, A. D.: The animation of the tsunami propagation for the 5 m coseismic slip, https://doi.org/10.21979/N9/DZLM5D, 2022a.
Felix, R. P., Hubbard, J. A., Bradley, K. E., Lythgoe, K. H., Li, L., and Switzer, A. D.: The inundation model for Mataram, Lombok, https://doi.org/10.21979/N9/QKNSKO, 2022b.
Fraser, S. A., Power, W. L., Wang, X., Wallace, L. M., Mueller, C., and
Johnston, D. M.: Tsunami inundation in Napier, New Zealand, due to local
earthquake sources, Nat. Hazards, 70, 415–445,
https://doi.org/10.1007/s11069-013-0820-x, 2014.
González, F. I., Griffin, J., Harbitz, C. B., LeVeque, R. J., Lorito, S., Løvholt, F., Omira, R., Mueller, C., Paris, R., Parsons, T., Polet, J., Power, W., Selva, J., Sørensen, M. B., and Thio, H. K.: Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications, Rev. Geophys., 55, 1158–1198, https://doi.org/10.1002/2017RG000579, 2017.
Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies,
G., Geist, E. L., Glimsdal, S., González, F. I., Griffin, J., Harbitz,
C. B., LeVeque, R. J., Lorito, S., Løvholt, F., Omira, R., Mueller, C.,
Paris, R., Parsons, T., Polet, J., Power, W., Selva, J., Sørensen, M. B.,
and Thio, H. K.: Probabilistic Tsunami Hazard Analysis: Multiple Sources and
Global Applications, Rev. Geophys., 55, 1158–1198,
https://doi.org/10.1002/2017RG000579, 2017.
Griffin, J., Latief, H., Kongko, W., Harig, S., Horspool, N., Hanung, R.,
Rojali, A., Maher, N., Fuchs, A., Hossen, J., Upi, S., Edi Dewanto, S.,
Rakowsky, N., and Cummins, P.: An evaluation of onshore digital elevation
models for modeling tsunami inundation zones, Front. Earth Sci., 3,
https://doi.org/10.3389/feart.2015.00032, 2015.
Griffin, J., Nguyen, N., Cummins, P., and Cipta, A.: Historical earthquakes
of the eastern sunda arc: Source mechanisms and intensity-based testing of
Indonesia's national seismic hazard assessment, Bull. Seismol. Soc. Am.,
109, 43–65, https://doi.org/10.1785/0120180085, 2019.
Hall, R. and Spakman, W.: Mantle structure and tectonic history of SE Asia, Tectonophysics, 658, 14–45, https://doi.org/10.1016/j.tecto.2015.07.003, 2015.
Hamilton, W.: Tectonics of the Indonesian region, Vol. 1078, US Government Printing Office, ISBN QE301.A1H35, 1979.
Hamzah, L., Puspito, N., and Imamura, F.: Tsunami Catalog Indonesia.pdf,
https://www.jstage.jst.go.jp/article/jnds/22/1/22_1_25/_pdf (last access: 10 September 2021), 2000.
Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja,
D. H., Elosegui, P., Fritz, H. M., Suwargadi, B. W., Pranantyo, I. R., Li,
L. L., Macpherson, K. A., Skanavis, V., Synolakis, C. E., and Sieh, K.: The
2010 Mw7.8 Mentawai earthquake: Very shallow source of a rare tsunami
earthquake determined from tsunami field survey and near-field GPS data, J.
Geophys. Res.-Sol. Ea., 117, B6, https://doi.org/10.1029/2012JB009159, 2012.
Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., Cipta, A., Bustaman, B., Anugrah, S. D., and Thio, H. K.: A probabilistic tsunami hazard assessment for Indonesia, Nat. Hazards Earth Syst. Sci., 14, 3105–3122, https://doi.org/10.5194/nhess-14-3105-2014, 2014.
Hutchinson, M. F.: A new procedure for gridding elevation and stream line
data with automatic removal of spurious pits, J. Hydrol., 106, 211–232,
https://doi.org/10.1016/0022-1694(89)90073-5, 1989.
Imamura, F. and Kikuchi, M.: Moment release of the 1992 Flores Island
earthquake inferred from tsunami and teleseismic data, Sci. Tsunami Hazards,
12, 67–76, 1994.
Kaiser, G., Scheele, L., Kortenhaus, A., Løvholt, F., Römer, H., and Leschka, S.: The influence of land cover roughness on the results of high resolution tsunami inundation modeling, Nat. Hazards Earth Syst. Sci., 11, 2521–2540, https://doi.org/10.5194/nhess-11-2521-2011, 2011.
Kajiura, K.: The Leading Edge of a Tsunami, Bull. Earthq. Res. Inst., 41,
535–571, 1963.
Kardoso, R. and Dewi, A. A. C.: Tsunami inundation maps in Mataram City
based on tsunami modeling, in: Proceeding International Conference on
Science (ICST), Universitas Mataram, Indonesia, 14 December 2020, 273–278, 2021.
Koulali, A., Susilo, S., McClusky, S., Meilano, I., Cummins, P., Tregoning,
P., Lister, G., Efendi, J., and Syafi'I, M. A.: Crustal strain partitioning
and the associated earthquake hazard in the eastern Sunda-Banda Arc,
Geophys. Res. Lett., 43, 1943–1949, https://doi.org/10.1002/2016GL067941,
2016.
Krausmann, E. and Cruz, A. M.: Impact of the 11 March 2011, Great East Japan
earthquake and tsunami on the chemical industry, Nat. Hazards, 67, 811–828,
https://doi.org/10.1007/s11069-013-0607-0, 2013.
Kulikov, E. A., Gusiakov, V. K., Ivanova, A. A., and Baranov, B. V.:
Numerical tsunami modeling and the bottom relief, Moscow Univ. Phys. Bull.,
71, 527–536, https://doi.org/10.3103/S002713491605012X, 2016.
Kurniawan, T. and Laili, A. F.: Penentuan Area Terdampak “Ketinggian
Maksimum Tsunami” di Pulau Bali Berdasarkan Potensi Gempabumi Pembangkit
Tsunami Pada Segmen Megathrust Sumba, J. Dialog dan Penanggulangan Bencana,
10, 93–104, 2019.
Liu, P. L. F., Cho, Y. S., Yoon, S. B., and Seo, S. N.: Numerical
Simulations of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii, in: Tsunami: Progress in Prediction, Disaster Prevention and Warning. Advances in Natural and Technological Hazards Research, edited by: Tsuchiya, Y. and Shuto, N., Vol. 4, Springer Dordrecht, 99–115, https://doi.org/10.1007/978-94-015-8565-1_7, 1995a.
Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., and Synolakis, C. E.:
Runup of solitary waves on a circular Island, J. Fluid Mech., 302, 259–285,
https://doi.org/10.1017/S0022112095004095, 1995b.
Løvholt, F., Kühn, D., Bungum, H., Harbitz, C. B., and Glimsdal, S.:
Historical tsunamis and present tsunami hazard in eastern Indonesia and the
southern Philippines, J. Geophys. Res.-Sol. Ea., 117, B9,
https://doi.org/10.1029/2012JB009425, 2012.
Lythgoe, K., Muzli, M., Bradley, K., Wang, T., Nugraha, A. D., Zulfakriza,
Z., Widiyantoro, S., and Wei, S.: Thermal squeezing of the seismogenic zone
controlled rupture of the volcano-rooted Flores Thrust, Sci. Adv., 7, 1–9,
https://doi.org/10.1126/SCIADV.ABE2348, 2021.
Marks, K. M. and Smith, W. H. F.: An Evaluation of Publicly Available Global
Bathymetry Grids, Mar. Geophys. Res., 27, 19–34,
https://doi.org/10.1007/s11001-005-2095-4, 2006.
McCaffrey, R. and Nabelek, J.: Earthquakes, gravity, and the origin of the
Bali Basin: An example of a Nascent Continental Fold-and-Thrust Belt, J.
Geophys. Res., 92, 441, https://doi.org/10.1029/JB092iB01p00441, 1987.
Moore, J. D. P., Barbot, S., Lindsey, E., Masuti, S., and Muto, J.:
jdpmoore/unicycle: Unicycle, Zenodo [code], https://doi.org/10.5281/ZENODO.4471162, 2019.
Mori, N., Cox, D. T., Yasuda, T., and Mase, H.: Overview of the 2011 Tohoku Earthquake Tsunami Damage and Its Relation to Coastal Protection along the Sanriku Coast, Earthq. Spectra, 29, 127–143, https://doi.org/10.1193/1.4000118, 2013.
Muhari, A., Imamura, F., Koshimura, S., and Post, J.: Examination of three practical run-up models for assessing tsunami impact on highly populated areas, Nat. Hazards Earth Syst. Sci., 11, 3107–3123, https://doi.org/10.5194/nhess-11-3107-2011, 2011.
Musson, R. M. W.: A provisional catalogue of historical earthquakes in
Indonesia, Br. Geol. Surv., OR/12/073, 22 pp., 2012.
National Geophysical Data Center/World Data Service: NCEI/WDS Global
Historical Tsunami Database, NOAA National Centers for Environmental
Information, NOAA [data set], https://doi.org/10.7289/V5PN93H7, 2021.
Nguyen, N., Griffin, J., Cipta, A., and Cummins, P. R.: Indonesia's
Historical Earthquakes: Modelled examples for improving the national hazard
map, Geoscience Australia, 85 pp., https://doi.org/10.11636/record.2015.023, 2015.
Okada, Y.: Internal deformation due to shear and tensile faults in a
half-space, Bull. Seismol. Soc. Am., 82, 1018–1040, 1992.
Okal, E. A. and Borrero, J. C.: The “tsunami earthquake” of 1932 June 22
in Manzanillo, Mexico: Seismological study and tsunami simulations, Geophys.
J. Int., 187, 1443–1459, https://doi.org/10.1111/j.1365-246X.2011.05199.x,
2011.
Pradjoko, E., Wardani, L., Wardani, H., Sulistiyono, H., and Sulistiyono,
S.: The prediction of tsunami travel time to Mataram City Indonesia based on
North Lombok earthquake as the initial condition, MATEC Web Conf., 229,
4–8, https://doi.org/10.1051/matecconf/201822904007, 2018.
Pranantyo, I. R., Heidarzadeh, M., and Cummins, P. R.: Complex tsunami
hazards in eastern Indonesia from seismic and non-seismic sources:
Deterministic modelling based on historical and modern data, Geosci. Lett.,
8, 20, https://doi.org/10.1186/s40562-021-00190-y, 2021.
Rakowsky, N., Androsov, A., Fuchs, A., Harig, S., Immerz, A., Danilov, S., Hiller, W., and Schröter, J.: Operational tsunami modelling with TsunAWI – recent developments and applications, Nat. Hazards Earth Syst. Sci., 13, 1629–1642, https://doi.org/10.5194/nhess-13-1629-2013, 2013.
Rashidi, A., Dutykh, D., Shomali, Z. H., Keshavarz Farajkhah, N., and Nouri, M.: A Review of Tsunami Hazards in the Makran Subduction Zone, Geosciences, 10, 372, https://doi.org/10.3390/geosciences10090372, 2020.
Rashidi, A., Dutykh, D., Keshavarz, N., and Audin, L.: Regional tsunami hazard from splay faults in the Gulf of Oman, Ocean Eng., 243, 110169, https://doi.org/10.1016/j.oceaneng.2021.110169, 2022.
Rastogi, B. K. and Jaiswal, R. K.: A Catalog of Tsunamis in the Indian
Ocean, Sci. Tsunami Hazards, 25, 128–143, 2006.
Regnier, M., Calmant, S., Pelletier, B., Lagabrielle, Y., and Cabioch, G.:
The Mw7.5 1999 Ambrym earthquake, Vanuatu: A back arc intraplate thrust
event, Tectonics, 22, 18 pp., https://doi.org/10.1029/2002TC001422, 2003.
Roshan, A. D., Basu, P. C., and Jangid, R. S.: Tsunami hazard assessment of Indian coast, Nat. Hazards, 82, 733–762, https://doi.org/10.1007/s11069-016-2216-1, 2016.
Rusli, I. and Rudyanto, A.: Pemodelan Tsunami Sebagai Bahan Mitigasi
Bencana Studi Kasus Sumenep Dan Kepulauannya, J. Neutrino, 2, 19 pp.,
https://doi.org/10.18860/neu.v0i0.1639, 2012.
Salaree, A., Huang, Y., Ramos, M. D., and Stein, S.: Relative Tsunami Hazard
From Segments of Cascadia Subduction Zone For Mw 7.5–9.2 Earthquakes,
Geophys. Res. Lett., 48, 1–10, https://doi.org/10.1029/2021GL094174, 2021.
Sallarès, V. and Ranero, C. R.: Upper-plate rigidity determines
depth-varying rupture behaviour of megathrust earthquakes, Nature, 576,
96–101, https://doi.org/10.1038/s41586-019-1784-0, 2019.
Sallarès, V., Prada, M., Riquelme, S., Meléndez, A., Calahorrano,
A., Grevemeyer, I., and Ranero, C. R.: Large slip, long duration, and
moderate shaking of the Nicaragua 1992 tsunami earthquake caused by low
near-trench rock rigidity, Sci. Adv., 7, eabg8659,
https://doi.org/10.1126/sciadv.abg8659, 2021.
Salman, R., Lindsey, E. O., Lythgoe, K. H., Bradley, K., Muzli, M., Yun, S.
H., Chin, S. T., Tay, C. W. J., Costa, F., Wei, S., and Hill, E. M.:
Cascading partial rupture of the flores thrust during the 2018 lombok
earthquake sequence, indonesia, Seismol. Res. Lett., 91, 2141–2151,
https://doi.org/10.1785/0220190378, 2020.
Satake, K.: Effects of bathymetry on tsunami propagation: Application of ray
tracing to tsunamis, Pure Appl. Geophys. Pageoph., 126, 27–36,
https://doi.org/10.1007/BF00876912, 1988.
Satake, K.: Linear and nonlinear computations of the 1992 Nicaragua
earthquake tsunami, Pure Appl. Geophys., 144, 455–470,
https://doi.org/10.1007/BF00874378, 1995.
Selva, J., Tonini, R., Molinari, I., Tiberti, M. M., Romano, F., Grezio, A.,
Melini, D., Piatanesi, A., Basili, R., and Lorito, S.: Quantification of
source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis
(SPTHA), Geophys. J. Int., 205, 1780–1803,
https://doi.org/10.1093/gji/ggw107, 2016.
Serra, C. S., Martínez-Loriente, S., Gràcia, E., Urgeles, R.,
Gómez de la Peña, L., Maesano, F. E., Basili, R., Volpe, M., Romano,
F., Scala, A., Piatanesi, A., and Lorito, S.: Sensitivity of Tsunami
Scenarios to Complex Fault Geometry and Heterogeneous Slip Distribution:
Case-Studies for SW Iberia and NW Morocco, J. Geophys. Res.-Sol. Ea.,
126, 1–19, https://doi.org/10.1029/2021JB022127, 2021.
Silver, E. A., Reed, D., McCaffrey, R., and Joyodiwiryo, Y.: Back arc
thrusting in the Eastern Sunda Arc, Indonesia: A consequence of
arc-continent collision, J. Geophys. Res.-Sol. Ea., 88, 7429–7448,
https://doi.org/10.1029/JB088iB09p07429, 1983.
Silver, E. A., Breen, N. A., Prasetyo, H., and Hussong, D. M.: Multibeam
study of the Flores Backarc Thrust Belt, Indonesia, J. Geophys. Res.-Sol. Ea., 91, 3489–3500, https://doi.org/10.1029/JB091iB03p03489, 1986.
Suardana, A. A. M. A. P., Sugianto, D. N., and Helmi, M.: Study of
Characteristics and the Coverage of Tsunami Wave Using 2D Numerical Modeling
in the South Coast of Bali, Indonesia, Indones. J. Ocean. Geogr., 13,
237–250, 2019.
Suárez, G., Pardo, M., Domínguez, J., Ponce, L., Montero, W.,
Boschini, I., and Rojas, W.: The Limón, Costa Rica earthquake of April
22, 1991: Back arc thrusting and collisional tectonics in a subduction
environment, Tectonics, 14, 518–530, https://doi.org/10.1029/94TC02546, 1995.
Sulaeman, H.: Discovery of Paleotsunami Deposits along Eastern Sunda Arc:
Potential for Megathrust Earthquakes in Bali, Brigham Young University, BYU Scholars Archive, ISSN 2572-4479, 2018.
Suppasri, A., Maly, E., Kitamura, M., Syamsidik, Pescaroli, G., Alexander,
D., and Imamura, F.: Cascading disasters triggered by tsunami hazards: A
perspective for critical infrastructure resilience and disaster risk
reduction, Int. J. Disaster Risk Reduct., 66, 102597,
https://doi.org/10.1016/j.ijdrr.2021.102597, 2021.
Thingbaijam, K. K. S., Mai, P. M., and Goda, K.: New empirical earthquake
source-scaling laws, Bull. Seismol. Soc. Am., 107, 2225–2246,
https://doi.org/10.1785/0120170017, 2017.
Tri Laksono, F. A., Aditama, M. R., Setijadi, R., and Ramadhan, G.: Run-up
Height and Flow Depth Simulation of the 2006 South Java Tsunami Using COMCOT
on Widarapayung Beach, IOP Conf. Ser. Mater. Sci. Eng., 982, 012047,
https://doi.org/10.1088/1757-899X/982/1/012047, 2020.
Tsimopoulou, V., Mikami, T., Hossain, T. T., Takagi, H., Esteban, M., and
Utama, N. A.: Uncovering unnoticed small-scale tsunamis: field survey in
Lombok, Indonesia, following the 2018 earthquakes, Nat. Hazards, 103,
2045–2070, https://doi.org/10.1007/s11069-020-04071-z, 2020.
Tsuji, Y., Matsutomi, H., Imamura, F., Takeo, M., Kawata, Y., Matsuyama, M.,
Takahashi, T., Sunarjo, and Harjadi, P.: Damage to coastal villages due to
the 1992 Flores Island earthquake tsunami, Pure Appl. Geophys. Pageoph., 144,
481–524, https://doi.org/10.1007/BF00874380, 1995.
Van Bemmelen, R. W.: General Geology of Indonesia and adjacent
archipelagoes, The Hague, Govt. Printing Office, Geol. Indones., 1, 732 pp., 1949.
Wang, X. and Liu, P. L.-F.: Numerical Simulations of the 2004 Indian Ocean
Tsunamis – Coastal Effects, J. Earthq. Tsunami, 1, 273–297,
https://doi.org/10.1142/s179343110700016x, 2007.
Wang, X. and Power, W.: COMCOT: a Tsunami Generation Propagation and Run-up
Model, GNS Science, 129 pp., ISBN 9780478198676, 2011.
Wibowo, M., Kongko, W., Hendriyono, W., and Karima, S.: Tsunami Hazard
Potential Modeling as Tourism Development Considerations in the North of
Lombok Strait, IOP Conf. Ser. Earth Environ. Sci., 832, 012047,
https://doi.org/10.1088/1755-1315/832/1/012047, 2021a.
Wibowo, S. B., Hadmoko, D. S., Isnaeni, Y., Farda, N. M., Putri, A. F. S.,
Nurani, I. W., and Supangkat, S. H.: Spatio-Temporal Distribution of Ground
Deformation Due to 2018 Lombok Earthquake Series, Remote Sens., 13, 2222,
https://doi.org/10.3390/rs13112222, 2021b.
Wilson, K. M. and Power, H. E.: Tsunami Modelling with Static and Dynamic
Tides in Drowned River Valleys with Morphological Constrictions, Pure Appl.
Geophys., 177, 1595–1616, https://doi.org/10.1007/s00024-019-02411-0, 2020.
Wronna, M., Omira, R., and Baptista, M. A.: Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal, Nat. Hazards Earth Syst. Sci., 15, 2557–2568, https://doi.org/10.5194/nhess-15-2557-2015, 2015.
Yang, X., Singh, S. C., and Tripathi, A.: Did the Flores backarc thrust
rupture offshore during the 2018 Lombok earthquake sequence in Indonesia?,
Geophys. J. Int., 221, 758–768, https://doi.org/10.1093/gji/ggaa018, 2020.
Yeh, H., Imamura, F., Synolakis, C., Tsuji, Y., Liu, P., and Shi, S.: The
Flores Island tsunamis, Eos, Trans. Am. Geophys. Union, 74, 369–373,
https://doi.org/10.1029/93EO00381, 1993.
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on...
Special issue
Altmetrics
Final-revised paper
Preprint